summaryrefslogtreecommitdiff
path: root/doc/source/reference/c-api.array.rst
diff options
context:
space:
mode:
authorKriti Singh <kritisingh1.ks@gmail.com>2019-07-22 21:47:39 +0530
committerSebastian Berg <sebastian@sipsolutions.net>2019-07-22 09:17:39 -0700
commitab87388a76c0afca4eb1159ab0ed232d502a8378 (patch)
treee686041b1cc4d10815a2ade2bf7f4f090815e6a8 /doc/source/reference/c-api.array.rst
parent49fbbbff78034bc1c95c11c884b0233fb10b5955 (diff)
downloadnumpy-ab87388a76c0afca4eb1159ab0ed232d502a8378.tar.gz
DOC: Array API : Directory restructure and code cleanup (#14010)
* Minor improvements in Array API docs * Directory restruture
Diffstat (limited to 'doc/source/reference/c-api.array.rst')
-rw-r--r--doc/source/reference/c-api.array.rst3678
1 files changed, 0 insertions, 3678 deletions
diff --git a/doc/source/reference/c-api.array.rst b/doc/source/reference/c-api.array.rst
deleted file mode 100644
index 3d6246baa..000000000
--- a/doc/source/reference/c-api.array.rst
+++ /dev/null
@@ -1,3678 +0,0 @@
-Array API
-=========
-
-.. sectionauthor:: Travis E. Oliphant
-
-| The test of a first-rate intelligence is the ability to hold two
-| opposed ideas in the mind at the same time, and still retain the
-| ability to function.
-| --- *F. Scott Fitzgerald*
-
-| For a successful technology, reality must take precedence over public
-| relations, for Nature cannot be fooled.
-| --- *Richard P. Feynman*
-
-.. index::
- pair: ndarray; C-API
- pair: C-API; array
-
-
-Array structure and data access
--------------------------------
-
-These macros access the :c:type:`PyArrayObject` structure members and are
-defined in ``ndarraytypes.h``. The input argument, *arr*, can be any
-:c:type:`PyObject *<PyObject>` that is directly interpretable as a
-:c:type:`PyArrayObject *` (any instance of the :c:data:`PyArray_Type`
-and itssub-types).
-
-.. c:function:: int PyArray_NDIM(PyArrayObject *arr)
-
- The number of dimensions in the array.
-
-.. c:function:: int PyArray_FLAGS(PyArrayObject* arr)
-
- Returns an integer representing the :ref:`array-flags<array-flags>`.
-
-.. c:function:: int PyArray_TYPE(PyArrayObject* arr)
-
- Return the (builtin) typenumber for the elements of this array.
-
-.. c:function:: int PyArray_SETITEM( \
- PyArrayObject* arr, void* itemptr, PyObject* obj)
-
- Convert obj and place it in the ndarray, *arr*, at the place
- pointed to by itemptr. Return -1 if an error occurs or 0 on
- success.
-
-.. c:function:: void PyArray_ENABLEFLAGS(PyArrayObject* arr, int flags)
-
- .. versionadded:: 1.7
-
- Enables the specified array flags. This function does no validation,
- and assumes that you know what you're doing.
-
-.. c:function:: void PyArray_CLEARFLAGS(PyArrayObject* arr, int flags)
-
- .. versionadded:: 1.7
-
- Clears the specified array flags. This function does no validation,
- and assumes that you know what you're doing.
-
-.. c:function:: void *PyArray_DATA(PyArrayObject *arr)
-
-.. c:function:: char *PyArray_BYTES(PyArrayObject *arr)
-
- These two macros are similar and obtain the pointer to the
- data-buffer for the array. The first macro can (and should be)
- assigned to a particular pointer where the second is for generic
- processing. If you have not guaranteed a contiguous and/or aligned
- array then be sure you understand how to access the data in the
- array to avoid memory and/or alignment problems.
-
-.. c:function:: npy_intp *PyArray_DIMS(PyArrayObject *arr)
-
- Returns a pointer to the dimensions/shape of the array. The
- number of elements matches the number of dimensions
- of the array. Can return ``NULL`` for 0-dimensional arrays.
-
-.. c:function:: npy_intp *PyArray_SHAPE(PyArrayObject *arr)
-
- .. versionadded:: 1.7
-
- A synonym for :c:func:`PyArray_DIMS`, named to be consistent with the
- `shape <numpy.ndarray.shape>` usage within Python.
-
-.. c:function:: npy_intp *PyArray_STRIDES(PyArrayObject* arr)
-
- Returns a pointer to the strides of the array. The
- number of elements matches the number of dimensions
- of the array.
-
-.. c:function:: npy_intp PyArray_DIM(PyArrayObject* arr, int n)
-
- Return the shape in the *n* :math:`^{\textrm{th}}` dimension.
-
-.. c:function:: npy_intp PyArray_STRIDE(PyArrayObject* arr, int n)
-
- Return the stride in the *n* :math:`^{\textrm{th}}` dimension.
-
-.. c:function:: npy_intp PyArray_ITEMSIZE(PyArrayObject* arr)
-
- Return the itemsize for the elements of this array.
-
- Note that, in the old API that was deprecated in version 1.7, this function
- had the return type ``int``.
-
-.. c:function:: npy_intp PyArray_SIZE(PyArrayObject* arr)
-
- Returns the total size (in number of elements) of the array.
-
-.. c:function:: npy_intp PyArray_Size(PyArrayObject* obj)
-
- Returns 0 if *obj* is not a sub-class of ndarray. Otherwise,
- returns the total number of elements in the array. Safer version
- of :c:func:`PyArray_SIZE` (*obj*).
-
-.. c:function:: npy_intp PyArray_NBYTES(PyArrayObject* arr)
-
- Returns the total number of bytes consumed by the array.
-
-.. c:function:: PyObject *PyArray_BASE(PyArrayObject* arr)
-
- This returns the base object of the array. In most cases, this
- means the object which owns the memory the array is pointing at.
-
- If you are constructing an array using the C API, and specifying
- your own memory, you should use the function :c:func:`PyArray_SetBaseObject`
- to set the base to an object which owns the memory.
-
- If the (deprecated) :c:data:`NPY_ARRAY_UPDATEIFCOPY` or the
- :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` flags are set, it has a different
- meaning, namely base is the array into which the current array will
- be copied upon copy resolution. This overloading of the base property
- for two functions is likely to change in a future version of NumPy.
-
-.. c:function:: PyArray_Descr *PyArray_DESCR(PyArrayObject* arr)
-
- Returns a borrowed reference to the dtype property of the array.
-
-.. c:function:: PyArray_Descr *PyArray_DTYPE(PyArrayObject* arr)
-
- .. versionadded:: 1.7
-
- A synonym for PyArray_DESCR, named to be consistent with the
- 'dtype' usage within Python.
-
-.. c:function:: PyObject *PyArray_GETITEM(PyArrayObject* arr, void* itemptr)
-
- Get a Python object of a builtin type from the ndarray, *arr*,
- at the location pointed to by itemptr. Return ``NULL`` on failure.
-
- `numpy.ndarray.item` is identical to PyArray_GETITEM.
-
-
-Data access
-^^^^^^^^^^^
-
-These functions and macros provide easy access to elements of the
-ndarray from C. These work for all arrays. You may need to take care
-when accessing the data in the array, however, if it is not in machine
-byte-order, misaligned, or not writeable. In other words, be sure to
-respect the state of the flags unless you know what you are doing, or
-have previously guaranteed an array that is writeable, aligned, and in
-machine byte-order using :c:func:`PyArray_FromAny`. If you wish to handle all
-types of arrays, the copyswap function for each type is useful for
-handling misbehaved arrays. Some platforms (e.g. Solaris) do not like
-misaligned data and will crash if you de-reference a misaligned
-pointer. Other platforms (e.g. x86 Linux) will just work more slowly
-with misaligned data.
-
-.. c:function:: void* PyArray_GetPtr(PyArrayObject* aobj, npy_intp* ind)
-
- Return a pointer to the data of the ndarray, *aobj*, at the
- N-dimensional index given by the c-array, *ind*, (which must be
- at least *aobj* ->nd in size). You may want to typecast the
- returned pointer to the data type of the ndarray.
-
-.. c:function:: void* PyArray_GETPTR1(PyArrayObject* obj, npy_intp i)
-
-.. c:function:: void* PyArray_GETPTR2( \
- PyArrayObject* obj, npy_intp i, npy_intp j)
-
-.. c:function:: void* PyArray_GETPTR3( \
- PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k)
-
-.. c:function:: void* PyArray_GETPTR4( \
- PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k, npy_intp l)
-
- Quick, inline access to the element at the given coordinates in
- the ndarray, *obj*, which must have respectively 1, 2, 3, or 4
- dimensions (this is not checked). The corresponding *i*, *j*,
- *k*, and *l* coordinates can be any integer but will be
- interpreted as ``npy_intp``. You may want to typecast the
- returned pointer to the data type of the ndarray.
-
-
-Creating arrays
----------------
-
-
-From scratch
-^^^^^^^^^^^^
-
-.. c:function:: PyObject* PyArray_NewFromDescr( \
- PyTypeObject* subtype, PyArray_Descr* descr, int nd, npy_intp const* dims, \
- npy_intp const* strides, void* data, int flags, PyObject* obj)
-
- This function steals a reference to *descr*. The easiest way to get one
- is using :c:func:`PyArray_DescrFromType`.
-
- This is the main array creation function. Most new arrays are
- created with this flexible function.
-
- The returned object is an object of Python-type *subtype*, which
- must be a subtype of :c:data:`PyArray_Type`. The array has *nd*
- dimensions, described by *dims*. The data-type descriptor of the
- new array is *descr*.
-
- If *subtype* is of an array subclass instead of the base
- :c:data:`&PyArray_Type<PyArray_Type>`, then *obj* is the object to pass to
- the :obj:`~numpy.class.__array_finalize__` method of the subclass.
-
- If *data* is ``NULL``, then new unitinialized memory will be allocated and
- *flags* can be non-zero to indicate a Fortran-style contiguous array. Use
- :c:func:`PyArray_FILLWBYTE` to initialize the memory.
-
- If *data* is not ``NULL``, then it is assumed to point to the memory
- to be used for the array and the *flags* argument is used as the
- new flags for the array (except the state of :c:data:`NPY_OWNDATA`,
- :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` and :c:data:`NPY_ARRAY_UPDATEIFCOPY`
- flags of the new array will be reset).
-
- In addition, if *data* is non-NULL, then *strides* can
- also be provided. If *strides* is ``NULL``, then the array strides
- are computed as C-style contiguous (default) or Fortran-style
- contiguous (*flags* is nonzero for *data* = ``NULL`` or *flags* &
- :c:data:`NPY_ARRAY_F_CONTIGUOUS` is nonzero non-NULL *data*). Any
- provided *dims* and *strides* are copied into newly allocated
- dimension and strides arrays for the new array object.
-
- :c:func:`PyArray_CheckStrides` can help verify non- ``NULL`` stride
- information.
-
- If ``data`` is provided, it must stay alive for the life of the array. One
- way to manage this is through :c:func:`PyArray_SetBaseObject`
-
-.. c:function:: PyObject* PyArray_NewLikeArray( \
- PyArrayObject* prototype, NPY_ORDER order, PyArray_Descr* descr, \
- int subok)
-
- .. versionadded:: 1.6
-
- This function steals a reference to *descr* if it is not NULL.
-
- This array creation routine allows for the convenient creation of
- a new array matching an existing array's shapes and memory layout,
- possibly changing the layout and/or data type.
-
- When *order* is :c:data:`NPY_ANYORDER`, the result order is
- :c:data:`NPY_FORTRANORDER` if *prototype* is a fortran array,
- :c:data:`NPY_CORDER` otherwise. When *order* is
- :c:data:`NPY_KEEPORDER`, the result order matches that of *prototype*, even
- when the axes of *prototype* aren't in C or Fortran order.
-
- If *descr* is NULL, the data type of *prototype* is used.
-
- If *subok* is 1, the newly created array will use the sub-type of
- *prototype* to create the new array, otherwise it will create a
- base-class array.
-
-.. c:function:: PyObject* PyArray_New( \
- PyTypeObject* subtype, int nd, npy_intp const* dims, int type_num, \
- npy_intp const* strides, void* data, int itemsize, int flags, \
- PyObject* obj)
-
- This is similar to :c:func:`PyArray_NewFromDescr` (...) except you
- specify the data-type descriptor with *type_num* and *itemsize*,
- where *type_num* corresponds to a builtin (or user-defined)
- type. If the type always has the same number of bytes, then
- itemsize is ignored. Otherwise, itemsize specifies the particular
- size of this array.
-
-
-
-.. warning::
-
- If data is passed to :c:func:`PyArray_NewFromDescr` or :c:func:`PyArray_New`,
- this memory must not be deallocated until the new array is
- deleted. If this data came from another Python object, this can
- be accomplished using :c:func:`Py_INCREF` on that object and setting the
- base member of the new array to point to that object. If strides
- are passed in they must be consistent with the dimensions, the
- itemsize, and the data of the array.
-
-.. c:function:: PyObject* PyArray_SimpleNew(int nd, npy_intp const* dims, int typenum)
-
- Create a new uninitialized array of type, *typenum*, whose size in
- each of *nd* dimensions is given by the integer array, *dims*.The memory
- for the array is uninitialized (unless typenum is :c:data:`NPY_OBJECT`
- in which case each element in the array is set to NULL). The
- *typenum* argument allows specification of any of the builtin
- data-types such as :c:data:`NPY_FLOAT` or :c:data:`NPY_LONG`. The
- memory for the array can be set to zero if desired using
- :c:func:`PyArray_FILLWBYTE` (return_object, 0).This function cannot be
- used to create a flexible-type array (no itemsize given).
-
-.. c:function:: PyObject* PyArray_SimpleNewFromData( \
- int nd, npy_intp const* dims, int typenum, void* data)
-
- Create an array wrapper around *data* pointed to by the given
- pointer. The array flags will have a default that the data area is
- well-behaved and C-style contiguous. The shape of the array is
- given by the *dims* c-array of length *nd*. The data-type of the
- array is indicated by *typenum*. If data comes from another
- reference-counted Python object, the reference count on this object
- should be increased after the pointer is passed in, and the base member
- of the returned ndarray should point to the Python object that owns
- the data. This will ensure that the provided memory is not
- freed while the returned array is in existence. To free memory as soon
- as the ndarray is deallocated, set the OWNDATA flag on the returned ndarray.
-
-.. c:function:: PyObject* PyArray_SimpleNewFromDescr( \
- int nd, npy_int const* dims, PyArray_Descr* descr)
-
- This function steals a reference to *descr*.
-
- Create a new array with the provided data-type descriptor, *descr*,
- of the shape determined by *nd* and *dims*.
-
-.. c:function:: PyArray_FILLWBYTE(PyObject* obj, int val)
-
- Fill the array pointed to by *obj* ---which must be a (subclass
- of) ndarray---with the contents of *val* (evaluated as a byte).
- This macro calls memset, so obj must be contiguous.
-
-.. c:function:: PyObject* PyArray_Zeros( \
- int nd, npy_intp const* dims, PyArray_Descr* dtype, int fortran)
-
- Construct a new *nd* -dimensional array with shape given by *dims*
- and data type given by *dtype*. If *fortran* is non-zero, then a
- Fortran-order array is created, otherwise a C-order array is
- created. Fill the memory with zeros (or the 0 object if *dtype*
- corresponds to :c:type:`NPY_OBJECT` ).
-
-.. c:function:: PyObject* PyArray_ZEROS( \
- int nd, npy_intp const* dims, int type_num, int fortran)
-
- Macro form of :c:func:`PyArray_Zeros` which takes a type-number instead
- of a data-type object.
-
-.. c:function:: PyObject* PyArray_Empty( \
- int nd, npy_intp const* dims, PyArray_Descr* dtype, int fortran)
-
- Construct a new *nd* -dimensional array with shape given by *dims*
- and data type given by *dtype*. If *fortran* is non-zero, then a
- Fortran-order array is created, otherwise a C-order array is
- created. The array is uninitialized unless the data type
- corresponds to :c:type:`NPY_OBJECT` in which case the array is
- filled with :c:data:`Py_None`.
-
-.. c:function:: PyObject* PyArray_EMPTY( \
- int nd, npy_intp const* dims, int typenum, int fortran)
-
- Macro form of :c:func:`PyArray_Empty` which takes a type-number,
- *typenum*, instead of a data-type object.
-
-.. c:function:: PyObject* PyArray_Arange( \
- double start, double stop, double step, int typenum)
-
- Construct a new 1-dimensional array of data-type, *typenum*, that
- ranges from *start* to *stop* (exclusive) in increments of *step*
- . Equivalent to **arange** (*start*, *stop*, *step*, dtype).
-
-.. c:function:: PyObject* PyArray_ArangeObj( \
- PyObject* start, PyObject* stop, PyObject* step, PyArray_Descr* descr)
-
- Construct a new 1-dimensional array of data-type determined by
- ``descr``, that ranges from ``start`` to ``stop`` (exclusive) in
- increments of ``step``. Equivalent to arange( ``start``,
- ``stop``, ``step``, ``typenum`` ).
-
-.. c:function:: int PyArray_SetBaseObject(PyArrayObject* arr, PyObject* obj)
-
- .. versionadded:: 1.7
-
- This function **steals a reference** to ``obj`` and sets it as the
- base property of ``arr``.
-
- If you construct an array by passing in your own memory buffer as
- a parameter, you need to set the array's `base` property to ensure
- the lifetime of the memory buffer is appropriate.
-
- The return value is 0 on success, -1 on failure.
-
- If the object provided is an array, this function traverses the
- chain of `base` pointers so that each array points to the owner
- of the memory directly. Once the base is set, it may not be changed
- to another value.
-
-From other objects
-^^^^^^^^^^^^^^^^^^
-
-.. c:function:: PyObject* PyArray_FromAny( \
- PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, \
- int requirements, PyObject* context)
-
- This is the main function used to obtain an array from any nested
- sequence, or object that exposes the array interface, *op*. The
- parameters allow specification of the required *dtype*, the
- minimum (*min_depth*) and maximum (*max_depth*) number of
- dimensions acceptable, and other *requirements* for the array. This
- function **steals a reference** to the dtype argument, which needs
- to be a :c:type:`PyArray_Descr` structure
- indicating the desired data-type (including required
- byteorder). The *dtype* argument may be ``NULL``, indicating that any
- data-type (and byteorder) is acceptable. Unless
- :c:data:`NPY_ARRAY_FORCECAST` is present in ``flags``,
- this call will generate an error if the data
- type cannot be safely obtained from the object. If you want to use
- ``NULL`` for the *dtype* and ensure the array is notswapped then
- use :c:func:`PyArray_CheckFromAny`. A value of 0 for either of the
- depth parameters causes the parameter to be ignored. Any of the
- following array flags can be added (*e.g.* using \|) to get the
- *requirements* argument. If your code can handle general (*e.g.*
- strided, byte-swapped, or unaligned arrays) then *requirements*
- may be 0. Also, if *op* is not already an array (or does not
- expose the array interface), then a new array will be created (and
- filled from *op* using the sequence protocol). The new array will
- have :c:data:`NPY_ARRAY_DEFAULT` as its flags member. The *context* argument
- is passed to the :obj:`~numpy.class.__array__` method of *op* and is only used if
- the array is constructed that way. Almost always this
- parameter is ``NULL``.
-
- .. c:var:: NPY_ARRAY_C_CONTIGUOUS
-
- Make sure the returned array is C-style contiguous
-
- .. c:var:: NPY_ARRAY_F_CONTIGUOUS
-
- Make sure the returned array is Fortran-style contiguous.
-
- .. c:var:: NPY_ARRAY_ALIGNED
-
- Make sure the returned array is aligned on proper boundaries for its
- data type. An aligned array has the data pointer and every strides
- factor as a multiple of the alignment factor for the data-type-
- descriptor.
-
- .. c:var:: NPY_ARRAY_WRITEABLE
-
- Make sure the returned array can be written to.
-
- .. c:var:: NPY_ARRAY_ENSURECOPY
-
- Make sure a copy is made of *op*. If this flag is not
- present, data is not copied if it can be avoided.
-
- .. c:var:: NPY_ARRAY_ENSUREARRAY
-
- Make sure the result is a base-class ndarray. By
- default, if *op* is an instance of a subclass of
- ndarray, an instance of that same subclass is returned. If
- this flag is set, an ndarray object will be returned instead.
-
- .. c:var:: NPY_ARRAY_FORCECAST
-
- Force a cast to the output type even if it cannot be done
- safely. Without this flag, a data cast will occur only if it
- can be done safely, otherwise an error is raised.
-
- .. c:var:: NPY_ARRAY_WRITEBACKIFCOPY
-
- If *op* is already an array, but does not satisfy the
- requirements, then a copy is made (which will satisfy the
- requirements). If this flag is present and a copy (of an object
- that is already an array) must be made, then the corresponding
- :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` flag is set in the returned
- copy and *op* is made to be read-only. You must be sure to call
- :c:func:`PyArray_ResolveWritebackIfCopy` to copy the contents
- back into *op* and the *op* array
- will be made writeable again. If *op* is not writeable to begin
- with, or if it is not already an array, then an error is raised.
-
- .. c:var:: NPY_ARRAY_UPDATEIFCOPY
-
- Deprecated. Use :c:data:`NPY_ARRAY_WRITEBACKIFCOPY`, which is similar.
- This flag "automatically" copies the data back when the returned
- array is deallocated, which is not supported in all python
- implementations.
-
- .. c:var:: NPY_ARRAY_BEHAVED
-
- :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE`
-
- .. c:var:: NPY_ARRAY_CARRAY
-
- :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED`
-
- .. c:var:: NPY_ARRAY_CARRAY_RO
-
- :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
-
- .. c:var:: NPY_ARRAY_FARRAY
-
- :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED`
-
- .. c:var:: NPY_ARRAY_FARRAY_RO
-
- :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
-
- .. c:var:: NPY_ARRAY_DEFAULT
-
- :c:data:`NPY_ARRAY_CARRAY`
-
- .. c:var:: NPY_ARRAY_IN_ARRAY
-
- :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
-
- .. c:var:: NPY_ARRAY_IN_FARRAY
-
- :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
-
- .. c:var:: NPY_OUT_ARRAY
-
- :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \|
- :c:data:`NPY_ARRAY_ALIGNED`
-
- .. c:var:: NPY_ARRAY_OUT_ARRAY
-
- :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED` \|
- :c:data:`NPY_ARRAY_WRITEABLE`
-
- .. c:var:: NPY_ARRAY_OUT_FARRAY
-
- :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \|
- :c:data:`NPY_ARRAY_ALIGNED`
-
- .. c:var:: NPY_ARRAY_INOUT_ARRAY
-
- :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \|
- :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` \|
- :c:data:`NPY_ARRAY_UPDATEIFCOPY`
-
- .. c:var:: NPY_ARRAY_INOUT_FARRAY
-
- :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \|
- :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` \|
- :c:data:`NPY_ARRAY_UPDATEIFCOPY`
-
-.. c:function:: int PyArray_GetArrayParamsFromObject( \
- PyObject* op, PyArray_Descr* requested_dtype, npy_bool writeable, \
- PyArray_Descr** out_dtype, int* out_ndim, npy_intp* out_dims, \
- PyArrayObject** out_arr, PyObject* context)
-
- .. versionadded:: 1.6
-
- Retrieves the array parameters for viewing/converting an arbitrary
- PyObject* to a NumPy array. This allows the "innate type and shape"
- of Python list-of-lists to be discovered without
- actually converting to an array. PyArray_FromAny calls this function
- to analyze its input.
-
- In some cases, such as structured arrays and the :obj:`~numpy.class.__array__` interface,
- a data type needs to be used to make sense of the object. When
- this is needed, provide a Descr for 'requested_dtype', otherwise
- provide NULL. This reference is not stolen. Also, if the requested
- dtype doesn't modify the interpretation of the input, out_dtype will
- still get the "innate" dtype of the object, not the dtype passed
- in 'requested_dtype'.
-
- If writing to the value in 'op' is desired, set the boolean
- 'writeable' to 1. This raises an error when 'op' is a scalar, list
- of lists, or other non-writeable 'op'. This differs from passing
- :c:data:`NPY_ARRAY_WRITEABLE` to PyArray_FromAny, where the writeable array may
- be a copy of the input.
-
- When success (0 return value) is returned, either out_arr
- is filled with a non-NULL PyArrayObject and
- the rest of the parameters are untouched, or out_arr is
- filled with NULL, and the rest of the parameters are filled.
-
- Typical usage:
-
- .. code-block:: c
-
- PyArrayObject *arr = NULL;
- PyArray_Descr *dtype = NULL;
- int ndim = 0;
- npy_intp dims[NPY_MAXDIMS];
-
- if (PyArray_GetArrayParamsFromObject(op, NULL, 1, &dtype,
- &ndim, &dims, &arr, NULL) < 0) {
- return NULL;
- }
- if (arr == NULL) {
- /*
- ... validate/change dtype, validate flags, ndim, etc ...
- Could make custom strides here too */
- arr = PyArray_NewFromDescr(&PyArray_Type, dtype, ndim,
- dims, NULL,
- fortran ? NPY_ARRAY_F_CONTIGUOUS : 0,
- NULL);
- if (arr == NULL) {
- return NULL;
- }
- if (PyArray_CopyObject(arr, op) < 0) {
- Py_DECREF(arr);
- return NULL;
- }
- }
- else {
- /*
- ... in this case the other parameters weren't filled, just
- validate and possibly copy arr itself ...
- */
- }
- /*
- ... use arr ...
- */
-
-.. c:function:: PyObject* PyArray_CheckFromAny( \
- PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, \
- int requirements, PyObject* context)
-
- Nearly identical to :c:func:`PyArray_FromAny` (...) except
- *requirements* can contain :c:data:`NPY_ARRAY_NOTSWAPPED` (over-riding the
- specification in *dtype*) and :c:data:`NPY_ARRAY_ELEMENTSTRIDES` which
- indicates that the array should be aligned in the sense that the
- strides are multiples of the element size.
-
- In versions 1.6 and earlier of NumPy, the following flags
- did not have the _ARRAY_ macro namespace in them. That form
- of the constant names is deprecated in 1.7.
-
-.. c:var:: NPY_ARRAY_NOTSWAPPED
-
- Make sure the returned array has a data-type descriptor that is in
- machine byte-order, over-riding any specification in the *dtype*
- argument. Normally, the byte-order requirement is determined by
- the *dtype* argument. If this flag is set and the dtype argument
- does not indicate a machine byte-order descriptor (or is NULL and
- the object is already an array with a data-type descriptor that is
- not in machine byte- order), then a new data-type descriptor is
- created and used with its byte-order field set to native.
-
-.. c:var:: NPY_ARRAY_BEHAVED_NS
-
- :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE` \| :c:data:`NPY_ARRAY_NOTSWAPPED`
-
-.. c:var:: NPY_ARRAY_ELEMENTSTRIDES
-
- Make sure the returned array has strides that are multiples of the
- element size.
-
-.. c:function:: PyObject* PyArray_FromArray( \
- PyArrayObject* op, PyArray_Descr* newtype, int requirements)
-
- Special case of :c:func:`PyArray_FromAny` for when *op* is already an
- array but it needs to be of a specific *newtype* (including
- byte-order) or has certain *requirements*.
-
-.. c:function:: PyObject* PyArray_FromStructInterface(PyObject* op)
-
- Returns an ndarray object from a Python object that exposes the
- :obj:`__array_struct__` attribute and follows the array interface
- protocol. If the object does not contain this attribute then a
- borrowed reference to :c:data:`Py_NotImplemented` is returned.
-
-.. c:function:: PyObject* PyArray_FromInterface(PyObject* op)
-
- Returns an ndarray object from a Python object that exposes the
- :obj:`__array_interface__` attribute following the array interface
- protocol. If the object does not contain this attribute then a
- borrowed reference to :c:data:`Py_NotImplemented` is returned.
-
-.. c:function:: PyObject* PyArray_FromArrayAttr( \
- PyObject* op, PyArray_Descr* dtype, PyObject* context)
-
- Return an ndarray object from a Python object that exposes the
- :obj:`~numpy.class.__array__` method. The :obj:`~numpy.class.__array__` method can take 0, 1, or 2
- arguments ([dtype, context]) where *context* is used to pass
- information about where the :obj:`~numpy.class.__array__` method is being called
- from (currently only used in ufuncs).
-
-.. c:function:: PyObject* PyArray_ContiguousFromAny( \
- PyObject* op, int typenum, int min_depth, int max_depth)
-
- This function returns a (C-style) contiguous and behaved function
- array from any nested sequence or array interface exporting
- object, *op*, of (non-flexible) type given by the enumerated
- *typenum*, of minimum depth *min_depth*, and of maximum depth
- *max_depth*. Equivalent to a call to :c:func:`PyArray_FromAny` with
- requirements set to :c:data:`NPY_ARRAY_DEFAULT` and the type_num member of the
- type argument set to *typenum*.
-
-.. c:function:: PyObject *PyArray_FromObject( \
- PyObject *op, int typenum, int min_depth, int max_depth)
-
- Return an aligned and in native-byteorder array from any nested
- sequence or array-interface exporting object, op, of a type given by
- the enumerated typenum. The minimum number of dimensions the array can
- have is given by min_depth while the maximum is max_depth. This is
- equivalent to a call to :c:func:`PyArray_FromAny` with requirements set to
- BEHAVED.
-
-.. c:function:: PyObject* PyArray_EnsureArray(PyObject* op)
-
- This function **steals a reference** to ``op`` and makes sure that
- ``op`` is a base-class ndarray. It special cases array scalars,
- but otherwise calls :c:func:`PyArray_FromAny` ( ``op``, NULL, 0, 0,
- :c:data:`NPY_ARRAY_ENSUREARRAY`, NULL).
-
-.. c:function:: PyObject* PyArray_FromString( \
- char* string, npy_intp slen, PyArray_Descr* dtype, npy_intp num, \
- char* sep)
-
- Construct a one-dimensional ndarray of a single type from a binary
- or (ASCII) text ``string`` of length ``slen``. The data-type of
- the array to-be-created is given by ``dtype``. If num is -1, then
- **copy** the entire string and return an appropriately sized
- array, otherwise, ``num`` is the number of items to **copy** from
- the string. If ``sep`` is NULL (or ""), then interpret the string
- as bytes of binary data, otherwise convert the sub-strings
- separated by ``sep`` to items of data-type ``dtype``. Some
- data-types may not be readable in text mode and an error will be
- raised if that occurs. All errors return NULL.
-
-.. c:function:: PyObject* PyArray_FromFile( \
- FILE* fp, PyArray_Descr* dtype, npy_intp num, char* sep)
-
- Construct a one-dimensional ndarray of a single type from a binary
- or text file. The open file pointer is ``fp``, the data-type of
- the array to be created is given by ``dtype``. This must match
- the data in the file. If ``num`` is -1, then read until the end of
- the file and return an appropriately sized array, otherwise,
- ``num`` is the number of items to read. If ``sep`` is NULL (or
- ""), then read from the file in binary mode, otherwise read from
- the file in text mode with ``sep`` providing the item
- separator. Some array types cannot be read in text mode in which
- case an error is raised.
-
-.. c:function:: PyObject* PyArray_FromBuffer( \
- PyObject* buf, PyArray_Descr* dtype, npy_intp count, npy_intp offset)
-
- Construct a one-dimensional ndarray of a single type from an
- object, ``buf``, that exports the (single-segment) buffer protocol
- (or has an attribute __buffer\__ that returns an object that
- exports the buffer protocol). A writeable buffer will be tried
- first followed by a read- only buffer. The :c:data:`NPY_ARRAY_WRITEABLE`
- flag of the returned array will reflect which one was
- successful. The data is assumed to start at ``offset`` bytes from
- the start of the memory location for the object. The type of the
- data in the buffer will be interpreted depending on the data- type
- descriptor, ``dtype.`` If ``count`` is negative then it will be
- determined from the size of the buffer and the requested itemsize,
- otherwise, ``count`` represents how many elements should be
- converted from the buffer.
-
-.. c:function:: int PyArray_CopyInto(PyArrayObject* dest, PyArrayObject* src)
-
- Copy from the source array, ``src``, into the destination array,
- ``dest``, performing a data-type conversion if necessary. If an
- error occurs return -1 (otherwise 0). The shape of ``src`` must be
- broadcastable to the shape of ``dest``. The data areas of dest
- and src must not overlap.
-
-.. c:function:: int PyArray_MoveInto(PyArrayObject* dest, PyArrayObject* src)
-
- Move data from the source array, ``src``, into the destination
- array, ``dest``, performing a data-type conversion if
- necessary. If an error occurs return -1 (otherwise 0). The shape
- of ``src`` must be broadcastable to the shape of ``dest``. The
- data areas of dest and src may overlap.
-
-.. c:function:: PyArrayObject* PyArray_GETCONTIGUOUS(PyObject* op)
-
- If ``op`` is already (C-style) contiguous and well-behaved then
- just return a reference, otherwise return a (contiguous and
- well-behaved) copy of the array. The parameter op must be a
- (sub-class of an) ndarray and no checking for that is done.
-
-.. c:function:: PyObject* PyArray_FROM_O(PyObject* obj)
-
- Convert ``obj`` to an ndarray. The argument can be any nested
- sequence or object that exports the array interface. This is a
- macro form of :c:func:`PyArray_FromAny` using ``NULL``, 0, 0, 0 for the
- other arguments. Your code must be able to handle any data-type
- descriptor and any combination of data-flags to use this macro.
-
-.. c:function:: PyObject* PyArray_FROM_OF(PyObject* obj, int requirements)
-
- Similar to :c:func:`PyArray_FROM_O` except it can take an argument
- of *requirements* indicating properties the resulting array must
- have. Available requirements that can be enforced are
- :c:data:`NPY_ARRAY_C_CONTIGUOUS`, :c:data:`NPY_ARRAY_F_CONTIGUOUS`,
- :c:data:`NPY_ARRAY_ALIGNED`, :c:data:`NPY_ARRAY_WRITEABLE`,
- :c:data:`NPY_ARRAY_NOTSWAPPED`, :c:data:`NPY_ARRAY_ENSURECOPY`,
- :c:data:`NPY_ARRAY_WRITEBACKIFCOPY`, :c:data:`NPY_ARRAY_UPDATEIFCOPY`,
- :c:data:`NPY_ARRAY_FORCECAST`, and
- :c:data:`NPY_ARRAY_ENSUREARRAY`. Standard combinations of flags can also
- be used:
-
-.. c:function:: PyObject* PyArray_FROM_OT(PyObject* obj, int typenum)
-
- Similar to :c:func:`PyArray_FROM_O` except it can take an argument of
- *typenum* specifying the type-number the returned array.
-
-.. c:function:: PyObject* PyArray_FROM_OTF( \
- PyObject* obj, int typenum, int requirements)
-
- Combination of :c:func:`PyArray_FROM_OF` and :c:func:`PyArray_FROM_OT`
- allowing both a *typenum* and a *flags* argument to be provided.
-
-.. c:function:: PyObject* PyArray_FROMANY( \
- PyObject* obj, int typenum, int min, int max, int requirements)
-
- Similar to :c:func:`PyArray_FromAny` except the data-type is
- specified using a typenumber. :c:func:`PyArray_DescrFromType`
- (*typenum*) is passed directly to :c:func:`PyArray_FromAny`. This
- macro also adds :c:data:`NPY_ARRAY_DEFAULT` to requirements if
- :c:data:`NPY_ARRAY_ENSURECOPY` is passed in as requirements.
-
-.. c:function:: PyObject *PyArray_CheckAxis( \
- PyObject* obj, int* axis, int requirements)
-
- Encapsulate the functionality of functions and methods that take
- the axis= keyword and work properly with None as the axis
- argument. The input array is ``obj``, while ``*axis`` is a
- converted integer (so that >=MAXDIMS is the None value), and
- ``requirements`` gives the needed properties of ``obj``. The
- output is a converted version of the input so that requirements
- are met and if needed a flattening has occurred. On output
- negative values of ``*axis`` are converted and the new value is
- checked to ensure consistency with the shape of ``obj``.
-
-
-Dealing with types
-------------------
-
-
-General check of Python Type
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-.. c:function:: PyArray_Check(PyObject *op)
-
- Evaluates true if *op* is a Python object whose type is a sub-type
- of :c:data:`PyArray_Type`.
-
-.. c:function:: PyArray_CheckExact(PyObject *op)
-
- Evaluates true if *op* is a Python object with type
- :c:data:`PyArray_Type`.
-
-.. c:function:: PyArray_HasArrayInterface(PyObject *op, PyObject *out)
-
- If ``op`` implements any part of the array interface, then ``out``
- will contain a new reference to the newly created ndarray using
- the interface or ``out`` will contain ``NULL`` if an error during
- conversion occurs. Otherwise, out will contain a borrowed
- reference to :c:data:`Py_NotImplemented` and no error condition is set.
-
-.. c:function:: PyArray_HasArrayInterfaceType(op, type, context, out)
-
- If ``op`` implements any part of the array interface, then ``out``
- will contain a new reference to the newly created ndarray using
- the interface or ``out`` will contain ``NULL`` if an error during
- conversion occurs. Otherwise, out will contain a borrowed
- reference to Py_NotImplemented and no error condition is set.
- This version allows setting of the type and context in the part of
- the array interface that looks for the :obj:`~numpy.class.__array__` attribute.
-
-.. c:function:: PyArray_IsZeroDim(op)
-
- Evaluates true if *op* is an instance of (a subclass of)
- :c:data:`PyArray_Type` and has 0 dimensions.
-
-.. c:function:: PyArray_IsScalar(op, cls)
-
- Evaluates true if *op* is an instance of :c:data:`Py{cls}ArrType_Type`.
-
-.. c:function:: PyArray_CheckScalar(op)
-
- Evaluates true if *op* is either an array scalar (an instance of a
- sub-type of :c:data:`PyGenericArr_Type` ), or an instance of (a
- sub-class of) :c:data:`PyArray_Type` whose dimensionality is 0.
-
-.. c:function:: PyArray_IsPythonNumber(op)
-
- Evaluates true if *op* is an instance of a builtin numeric type (int,
- float, complex, long, bool)
-
-.. c:function:: PyArray_IsPythonScalar(op)
-
- Evaluates true if *op* is a builtin Python scalar object (int,
- float, complex, str, unicode, long, bool).
-
-.. c:function:: PyArray_IsAnyScalar(op)
-
- Evaluates true if *op* is either a Python scalar object (see
- :c:func:`PyArray_IsPythonScalar`) or an array scalar (an instance of a sub-
- type of :c:data:`PyGenericArr_Type` ).
-
-.. c:function:: PyArray_CheckAnyScalar(op)
-
- Evaluates true if *op* is a Python scalar object (see
- :c:func:`PyArray_IsPythonScalar`), an array scalar (an instance of a
- sub-type of :c:data:`PyGenericArr_Type`) or an instance of a sub-type of
- :c:data:`PyArray_Type` whose dimensionality is 0.
-
-
-Data-type checking
-^^^^^^^^^^^^^^^^^^
-
-For the typenum macros, the argument is an integer representing an
-enumerated array data type. For the array type checking macros the
-argument must be a :c:type:`PyObject *<PyObject>` that can be directly interpreted as a
-:c:type:`PyArrayObject *`.
-
-.. c:function:: PyTypeNum_ISUNSIGNED(num)
-
-.. c:function:: PyDataType_ISUNSIGNED(descr)
-
-.. c:function:: PyArray_ISUNSIGNED(obj)
-
- Type represents an unsigned integer.
-
-.. c:function:: PyTypeNum_ISSIGNED(num)
-
-.. c:function:: PyDataType_ISSIGNED(descr)
-
-.. c:function:: PyArray_ISSIGNED(obj)
-
- Type represents a signed integer.
-
-.. c:function:: PyTypeNum_ISINTEGER(num)
-
-.. c:function:: PyDataType_ISINTEGER(descr)
-
-.. c:function:: PyArray_ISINTEGER(obj)
-
- Type represents any integer.
-
-.. c:function:: PyTypeNum_ISFLOAT(num)
-
-.. c:function:: PyDataType_ISFLOAT(descr)
-
-.. c:function:: PyArray_ISFLOAT(obj)
-
- Type represents any floating point number.
-
-.. c:function:: PyTypeNum_ISCOMPLEX(num)
-
-.. c:function:: PyDataType_ISCOMPLEX(descr)
-
-.. c:function:: PyArray_ISCOMPLEX(obj)
-
- Type represents any complex floating point number.
-
-.. c:function:: PyTypeNum_ISNUMBER(num)
-
-.. c:function:: PyDataType_ISNUMBER(descr)
-
-.. c:function:: PyArray_ISNUMBER(obj)
-
- Type represents any integer, floating point, or complex floating point
- number.
-
-.. c:function:: PyTypeNum_ISSTRING(num)
-
-.. c:function:: PyDataType_ISSTRING(descr)
-
-.. c:function:: PyArray_ISSTRING(obj)
-
- Type represents a string data type.
-
-.. c:function:: PyTypeNum_ISPYTHON(num)
-
-.. c:function:: PyDataType_ISPYTHON(descr)
-
-.. c:function:: PyArray_ISPYTHON(obj)
-
- Type represents an enumerated type corresponding to one of the
- standard Python scalar (bool, int, float, or complex).
-
-.. c:function:: PyTypeNum_ISFLEXIBLE(num)
-
-.. c:function:: PyDataType_ISFLEXIBLE(descr)
-
-.. c:function:: PyArray_ISFLEXIBLE(obj)
-
- Type represents one of the flexible array types ( :c:data:`NPY_STRING`,
- :c:data:`NPY_UNICODE`, or :c:data:`NPY_VOID` ).
-
-.. c:function:: PyDataType_ISUNSIZED(descr):
-
- Type has no size information attached, and can be resized. Should only be
- called on flexible dtypes. Types that are attached to an array will always
- be sized, hence the array form of this macro not existing.
-
-.. c:function:: PyTypeNum_ISUSERDEF(num)
-
-.. c:function:: PyDataType_ISUSERDEF(descr)
-
-.. c:function:: PyArray_ISUSERDEF(obj)
-
- Type represents a user-defined type.
-
-.. c:function:: PyTypeNum_ISEXTENDED(num)
-
-.. c:function:: PyDataType_ISEXTENDED(descr)
-
-.. c:function:: PyArray_ISEXTENDED(obj)
-
- Type is either flexible or user-defined.
-
-.. c:function:: PyTypeNum_ISOBJECT(num)
-
-.. c:function:: PyDataType_ISOBJECT(descr)
-
-.. c:function:: PyArray_ISOBJECT(obj)
-
- Type represents object data type.
-
-.. c:function:: PyTypeNum_ISBOOL(num)
-
-.. c:function:: PyDataType_ISBOOL(descr)
-
-.. c:function:: PyArray_ISBOOL(obj)
-
- Type represents Boolean data type.
-
-.. c:function:: PyDataType_HASFIELDS(descr)
-
-.. c:function:: PyArray_HASFIELDS(obj)
-
- Type has fields associated with it.
-
-.. c:function:: PyArray_ISNOTSWAPPED(m)
-
- Evaluates true if the data area of the ndarray *m* is in machine
- byte-order according to the array's data-type descriptor.
-
-.. c:function:: PyArray_ISBYTESWAPPED(m)
-
- Evaluates true if the data area of the ndarray *m* is **not** in
- machine byte-order according to the array's data-type descriptor.
-
-.. c:function:: Bool PyArray_EquivTypes( \
- PyArray_Descr* type1, PyArray_Descr* type2)
-
- Return :c:data:`NPY_TRUE` if *type1* and *type2* actually represent
- equivalent types for this platform (the fortran member of each
- type is ignored). For example, on 32-bit platforms,
- :c:data:`NPY_LONG` and :c:data:`NPY_INT` are equivalent. Otherwise
- return :c:data:`NPY_FALSE`.
-
-.. c:function:: Bool PyArray_EquivArrTypes( \
- PyArrayObject* a1, PyArrayObject * a2)
-
- Return :c:data:`NPY_TRUE` if *a1* and *a2* are arrays with equivalent
- types for this platform.
-
-.. c:function:: Bool PyArray_EquivTypenums(int typenum1, int typenum2)
-
- Special case of :c:func:`PyArray_EquivTypes` (...) that does not accept
- flexible data types but may be easier to call.
-
-.. c:function:: int PyArray_EquivByteorders({byteorder} b1, {byteorder} b2)
-
- True if byteorder characters ( :c:data:`NPY_LITTLE`,
- :c:data:`NPY_BIG`, :c:data:`NPY_NATIVE`, :c:data:`NPY_IGNORE` ) are
- either equal or equivalent as to their specification of a native
- byte order. Thus, on a little-endian machine :c:data:`NPY_LITTLE`
- and :c:data:`NPY_NATIVE` are equivalent where they are not
- equivalent on a big-endian machine.
-
-
-Converting data types
-^^^^^^^^^^^^^^^^^^^^^
-
-.. c:function:: PyObject* PyArray_Cast(PyArrayObject* arr, int typenum)
-
- Mainly for backwards compatibility to the Numeric C-API and for
- simple casts to non-flexible types. Return a new array object with
- the elements of *arr* cast to the data-type *typenum* which must
- be one of the enumerated types and not a flexible type.
-
-.. c:function:: PyObject* PyArray_CastToType( \
- PyArrayObject* arr, PyArray_Descr* type, int fortran)
-
- Return a new array of the *type* specified, casting the elements
- of *arr* as appropriate. The fortran argument specifies the
- ordering of the output array.
-
-.. c:function:: int PyArray_CastTo(PyArrayObject* out, PyArrayObject* in)
-
- As of 1.6, this function simply calls :c:func:`PyArray_CopyInto`,
- which handles the casting.
-
- Cast the elements of the array *in* into the array *out*. The
- output array should be writeable, have an integer-multiple of the
- number of elements in the input array (more than one copy can be
- placed in out), and have a data type that is one of the builtin
- types. Returns 0 on success and -1 if an error occurs.
-
-.. c:function:: PyArray_VectorUnaryFunc* PyArray_GetCastFunc( \
- PyArray_Descr* from, int totype)
-
- Return the low-level casting function to cast from the given
- descriptor to the builtin type number. If no casting function
- exists return ``NULL`` and set an error. Using this function
- instead of direct access to *from* ->f->cast will allow support of
- any user-defined casting functions added to a descriptors casting
- dictionary.
-
-.. c:function:: int PyArray_CanCastSafely(int fromtype, int totype)
-
- Returns non-zero if an array of data type *fromtype* can be cast
- to an array of data type *totype* without losing information. An
- exception is that 64-bit integers are allowed to be cast to 64-bit
- floating point values even though this can lose precision on large
- integers so as not to proliferate the use of long doubles without
- explicit requests. Flexible array types are not checked according
- to their lengths with this function.
-
-.. c:function:: int PyArray_CanCastTo( \
- PyArray_Descr* fromtype, PyArray_Descr* totype)
-
- :c:func:`PyArray_CanCastTypeTo` supersedes this function in
- NumPy 1.6 and later.
-
- Equivalent to PyArray_CanCastTypeTo(fromtype, totype, NPY_SAFE_CASTING).
-
-.. c:function:: int PyArray_CanCastTypeTo( \
- PyArray_Descr* fromtype, PyArray_Descr* totype, NPY_CASTING casting)
-
- .. versionadded:: 1.6
-
- Returns non-zero if an array of data type *fromtype* (which can
- include flexible types) can be cast safely to an array of data
- type *totype* (which can include flexible types) according to
- the casting rule *casting*. For simple types with :c:data:`NPY_SAFE_CASTING`,
- this is basically a wrapper around :c:func:`PyArray_CanCastSafely`, but
- for flexible types such as strings or unicode, it produces results
- taking into account their sizes. Integer and float types can only be cast
- to a string or unicode type using :c:data:`NPY_SAFE_CASTING` if the string
- or unicode type is big enough to hold the max value of the integer/float
- type being cast from.
-
-.. c:function:: int PyArray_CanCastArrayTo( \
- PyArrayObject* arr, PyArray_Descr* totype, NPY_CASTING casting)
-
- .. versionadded:: 1.6
-
- Returns non-zero if *arr* can be cast to *totype* according
- to the casting rule given in *casting*. If *arr* is an array
- scalar, its value is taken into account, and non-zero is also
- returned when the value will not overflow or be truncated to
- an integer when converting to a smaller type.
-
- This is almost the same as the result of
- PyArray_CanCastTypeTo(PyArray_MinScalarType(arr), totype, casting),
- but it also handles a special case arising because the set
- of uint values is not a subset of the int values for types with the
- same number of bits.
-
-.. c:function:: PyArray_Descr* PyArray_MinScalarType(PyArrayObject* arr)
-
- .. versionadded:: 1.6
-
- If *arr* is an array, returns its data type descriptor, but if
- *arr* is an array scalar (has 0 dimensions), it finds the data type
- of smallest size to which the value may be converted
- without overflow or truncation to an integer.
-
- This function will not demote complex to float or anything to
- boolean, but will demote a signed integer to an unsigned integer
- when the scalar value is positive.
-
-.. c:function:: PyArray_Descr* PyArray_PromoteTypes( \
- PyArray_Descr* type1, PyArray_Descr* type2)
-
- .. versionadded:: 1.6
-
- Finds the data type of smallest size and kind to which *type1* and
- *type2* may be safely converted. This function is symmetric and
- associative. A string or unicode result will be the proper size for
- storing the max value of the input types converted to a string or unicode.
-
-.. c:function:: PyArray_Descr* PyArray_ResultType( \
- npy_intp narrs, PyArrayObject**arrs, npy_intp ndtypes, \
- PyArray_Descr**dtypes)
-
- .. versionadded:: 1.6
-
- This applies type promotion to all the inputs,
- using the NumPy rules for combining scalars and arrays, to
- determine the output type of a set of operands. This is the
- same result type that ufuncs produce. The specific algorithm
- used is as follows.
-
- Categories are determined by first checking which of boolean,
- integer (int/uint), or floating point (float/complex) the maximum
- kind of all the arrays and the scalars are.
-
- If there are only scalars or the maximum category of the scalars
- is higher than the maximum category of the arrays,
- the data types are combined with :c:func:`PyArray_PromoteTypes`
- to produce the return value.
-
- Otherwise, PyArray_MinScalarType is called on each array, and
- the resulting data types are all combined with
- :c:func:`PyArray_PromoteTypes` to produce the return value.
-
- The set of int values is not a subset of the uint values for types
- with the same number of bits, something not reflected in
- :c:func:`PyArray_MinScalarType`, but handled as a special case in
- PyArray_ResultType.
-
-.. c:function:: int PyArray_ObjectType(PyObject* op, int mintype)
-
- This function is superceded by :c:func:`PyArray_MinScalarType` and/or
- :c:func:`PyArray_ResultType`.
-
- This function is useful for determining a common type that two or
- more arrays can be converted to. It only works for non-flexible
- array types as no itemsize information is passed. The *mintype*
- argument represents the minimum type acceptable, and *op*
- represents the object that will be converted to an array. The
- return value is the enumerated typenumber that represents the
- data-type that *op* should have.
-
-.. c:function:: void PyArray_ArrayType( \
- PyObject* op, PyArray_Descr* mintype, PyArray_Descr* outtype)
-
- This function is superceded by :c:func:`PyArray_ResultType`.
-
- This function works similarly to :c:func:`PyArray_ObjectType` (...)
- except it handles flexible arrays. The *mintype* argument can have
- an itemsize member and the *outtype* argument will have an
- itemsize member at least as big but perhaps bigger depending on
- the object *op*.
-
-.. c:function:: PyArrayObject** PyArray_ConvertToCommonType( \
- PyObject* op, int* n)
-
- The functionality this provides is largely superceded by iterator
- :c:type:`NpyIter` introduced in 1.6, with flag
- :c:data:`NPY_ITER_COMMON_DTYPE` or with the same dtype parameter for
- all operands.
-
- Convert a sequence of Python objects contained in *op* to an array
- of ndarrays each having the same data type. The type is selected
- based on the typenumber (larger type number is chosen over a
- smaller one) ignoring objects that are only scalars. The length of
- the sequence is returned in *n*, and an *n* -length array of
- :c:type:`PyArrayObject` pointers is the return value (or ``NULL`` if an
- error occurs). The returned array must be freed by the caller of
- this routine (using :c:func:`PyDataMem_FREE` ) and all the array objects
- in it ``DECREF`` 'd or a memory-leak will occur. The example
- template-code below shows a typically usage:
-
- .. code-block:: c
-
- mps = PyArray_ConvertToCommonType(obj, &n);
- if (mps==NULL) return NULL;
- {code}
- <before return>
- for (i=0; i<n; i++) Py_DECREF(mps[i]);
- PyDataMem_FREE(mps);
- {return}
-
-.. c:function:: char* PyArray_Zero(PyArrayObject* arr)
-
- A pointer to newly created memory of size *arr* ->itemsize that
- holds the representation of 0 for that type. The returned pointer,
- *ret*, **must be freed** using :c:func:`PyDataMem_FREE` (ret) when it is
- not needed anymore.
-
-.. c:function:: char* PyArray_One(PyArrayObject* arr)
-
- A pointer to newly created memory of size *arr* ->itemsize that
- holds the representation of 1 for that type. The returned pointer,
- *ret*, **must be freed** using :c:func:`PyDataMem_FREE` (ret) when it
- is not needed anymore.
-
-.. c:function:: int PyArray_ValidType(int typenum)
-
- Returns :c:data:`NPY_TRUE` if *typenum* represents a valid type-number
- (builtin or user-defined or character code). Otherwise, this
- function returns :c:data:`NPY_FALSE`.
-
-
-New data types
-^^^^^^^^^^^^^^
-
-.. c:function:: void PyArray_InitArrFuncs(PyArray_ArrFuncs* f)
-
- Initialize all function pointers and members to ``NULL``.
-
-.. c:function:: int PyArray_RegisterDataType(PyArray_Descr* dtype)
-
- Register a data-type as a new user-defined data type for
- arrays. The type must have most of its entries filled in. This is
- not always checked and errors can produce segfaults. In
- particular, the typeobj member of the ``dtype`` structure must be
- filled with a Python type that has a fixed-size element-size that
- corresponds to the elsize member of *dtype*. Also the ``f``
- member must have the required functions: nonzero, copyswap,
- copyswapn, getitem, setitem, and cast (some of the cast functions
- may be ``NULL`` if no support is desired). To avoid confusion, you
- should choose a unique character typecode but this is not enforced
- and not relied on internally.
-
- A user-defined type number is returned that uniquely identifies
- the type. A pointer to the new structure can then be obtained from
- :c:func:`PyArray_DescrFromType` using the returned type number. A -1 is
- returned if an error occurs. If this *dtype* has already been
- registered (checked only by the address of the pointer), then
- return the previously-assigned type-number.
-
-.. c:function:: int PyArray_RegisterCastFunc( \
- PyArray_Descr* descr, int totype, PyArray_VectorUnaryFunc* castfunc)
-
- Register a low-level casting function, *castfunc*, to convert
- from the data-type, *descr*, to the given data-type number,
- *totype*. Any old casting function is over-written. A ``0`` is
- returned on success or a ``-1`` on failure.
-
-.. c:function:: int PyArray_RegisterCanCast( \
- PyArray_Descr* descr, int totype, NPY_SCALARKIND scalar)
-
- Register the data-type number, *totype*, as castable from
- data-type object, *descr*, of the given *scalar* kind. Use
- *scalar* = :c:data:`NPY_NOSCALAR` to register that an array of data-type
- *descr* can be cast safely to a data-type whose type_number is
- *totype*.
-
-
-Special functions for NPY_OBJECT
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-.. c:function:: int PyArray_INCREF(PyArrayObject* op)
-
- Used for an array, *op*, that contains any Python objects. It
- increments the reference count of every object in the array
- according to the data-type of *op*. A -1 is returned if an error
- occurs, otherwise 0 is returned.
-
-.. c:function:: void PyArray_Item_INCREF(char* ptr, PyArray_Descr* dtype)
-
- A function to INCREF all the objects at the location *ptr*
- according to the data-type *dtype*. If *ptr* is the start of a
- structured type with an object at any offset, then this will (recursively)
- increment the reference count of all object-like items in the
- structured type.
-
-.. c:function:: int PyArray_XDECREF(PyArrayObject* op)
-
- Used for an array, *op*, that contains any Python objects. It
- decrements the reference count of every object in the array
- according to the data-type of *op*. Normal return value is 0. A
- -1 is returned if an error occurs.
-
-.. c:function:: void PyArray_Item_XDECREF(char* ptr, PyArray_Descr* dtype)
-
- A function to XDECREF all the object-like items at the location
- *ptr* as recorded in the data-type, *dtype*. This works
- recursively so that if ``dtype`` itself has fields with data-types
- that contain object-like items, all the object-like fields will be
- XDECREF ``'d``.
-
-.. c:function:: void PyArray_FillObjectArray(PyArrayObject* arr, PyObject* obj)
-
- Fill a newly created array with a single value obj at all
- locations in the structure with object data-types. No checking is
- performed but *arr* must be of data-type :c:type:`NPY_OBJECT` and be
- single-segment and uninitialized (no previous objects in
- position). Use :c:func:`PyArray_DECREF` (*arr*) if you need to
- decrement all the items in the object array prior to calling this
- function.
-
-.. c:function:: int PyArray_SetUpdateIfCopyBase(PyArrayObject* arr, PyArrayObject* base)
-
- Precondition: ``arr`` is a copy of ``base`` (though possibly with different
- strides, ordering, etc.) Set the UPDATEIFCOPY flag and ``arr->base`` so
- that when ``arr`` is destructed, it will copy any changes back to ``base``.
- DEPRECATED, use :c:func:`PyArray_SetWritebackIfCopyBase``.
-
- Returns 0 for success, -1 for failure.
-
-.. c:function:: int PyArray_SetWritebackIfCopyBase(PyArrayObject* arr, PyArrayObject* base)
-
- Precondition: ``arr`` is a copy of ``base`` (though possibly with different
- strides, ordering, etc.) Sets the :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` flag
- and ``arr->base``, and set ``base`` to READONLY. Call
- :c:func:`PyArray_ResolveWritebackIfCopy` before calling
- `Py_DECREF`` in order copy any changes back to ``base`` and
- reset the READONLY flag.
-
- Returns 0 for success, -1 for failure.
-
-.. _array-flags:
-
-Array flags
------------
-
-The ``flags`` attribute of the ``PyArrayObject`` structure contains
-important information about the memory used by the array (pointed to
-by the data member) This flag information must be kept accurate or
-strange results and even segfaults may result.
-
-There are 6 (binary) flags that describe the memory area used by the
-data buffer. These constants are defined in ``arrayobject.h`` and
-determine the bit-position of the flag. Python exposes a nice
-attribute- based interface as well as a dictionary-like interface for
-getting (and, if appropriate, setting) these flags.
-
-Memory areas of all kinds can be pointed to by an ndarray, necessitating
-these flags. If you get an arbitrary ``PyArrayObject`` in C-code, you
-need to be aware of the flags that are set. If you need to guarantee
-a certain kind of array (like :c:data:`NPY_ARRAY_C_CONTIGUOUS` and
-:c:data:`NPY_ARRAY_BEHAVED`), then pass these requirements into the
-PyArray_FromAny function.
-
-
-Basic Array Flags
-^^^^^^^^^^^^^^^^^
-
-An ndarray can have a data segment that is not a simple contiguous
-chunk of well-behaved memory you can manipulate. It may not be aligned
-with word boundaries (very important on some platforms). It might have
-its data in a different byte-order than the machine recognizes. It
-might not be writeable. It might be in Fortan-contiguous order. The
-array flags are used to indicate what can be said about data
-associated with an array.
-
-In versions 1.6 and earlier of NumPy, the following flags
-did not have the _ARRAY_ macro namespace in them. That form
-of the constant names is deprecated in 1.7.
-
-.. c:var:: NPY_ARRAY_C_CONTIGUOUS
-
- The data area is in C-style contiguous order (last index varies the
- fastest).
-
-.. c:var:: NPY_ARRAY_F_CONTIGUOUS
-
- The data area is in Fortran-style contiguous order (first index varies
- the fastest).
-
-.. note::
-
- Arrays can be both C-style and Fortran-style contiguous simultaneously.
- This is clear for 1-dimensional arrays, but can also be true for higher
- dimensional arrays.
-
- Even for contiguous arrays a stride for a given dimension
- ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1``
- or the array has no elements.
- It does *not* generally hold that ``self.strides[-1] == self.itemsize``
- for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for
- Fortran-style contiguous arrays is true. The correct way to access the
- ``itemsize`` of an array from the C API is ``PyArray_ITEMSIZE(arr)``.
-
- .. seealso:: :ref:`Internal memory layout of an ndarray <arrays.ndarray>`
-
-.. c:var:: NPY_ARRAY_OWNDATA
-
- The data area is owned by this array.
-
-.. c:var:: NPY_ARRAY_ALIGNED
-
- The data area and all array elements are aligned appropriately.
-
-.. c:var:: NPY_ARRAY_WRITEABLE
-
- The data area can be written to.
-
- Notice that the above 3 flags are defined so that a new, well-
- behaved array has these flags defined as true.
-
-.. c:var:: NPY_ARRAY_WRITEBACKIFCOPY
-
- The data area represents a (well-behaved) copy whose information
- should be transferred back to the original when
- :c:func:`PyArray_ResolveWritebackIfCopy` is called.
-
- This is a special flag that is set if this array represents a copy
- made because a user required certain flags in
- :c:func:`PyArray_FromAny` and a copy had to be made of some other
- array (and the user asked for this flag to be set in such a
- situation). The base attribute then points to the "misbehaved"
- array (which is set read_only). :c:func`PyArray_ResolveWritebackIfCopy`
- will copy its contents back to the "misbehaved"
- array (casting if necessary) and will reset the "misbehaved" array
- to :c:data:`NPY_ARRAY_WRITEABLE`. If the "misbehaved" array was not
- :c:data:`NPY_ARRAY_WRITEABLE` to begin with then :c:func:`PyArray_FromAny`
- would have returned an error because :c:data:`NPY_ARRAY_WRITEBACKIFCOPY`
- would not have been possible.
-
-.. c:var:: NPY_ARRAY_UPDATEIFCOPY
-
- A deprecated version of :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` which
- depends upon ``dealloc`` to trigger the writeback. For backwards
- compatibility, :c:func:`PyArray_ResolveWritebackIfCopy` is called at
- ``dealloc`` but relying
- on that behavior is deprecated and not supported in PyPy.
-
-:c:func:`PyArray_UpdateFlags` (obj, flags) will update the ``obj->flags``
-for ``flags`` which can be any of :c:data:`NPY_ARRAY_C_CONTIGUOUS`,
-:c:data:`NPY_ARRAY_F_CONTIGUOUS`, :c:data:`NPY_ARRAY_ALIGNED`, or
-:c:data:`NPY_ARRAY_WRITEABLE`.
-
-
-Combinations of array flags
-^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-.. c:var:: NPY_ARRAY_BEHAVED
-
- :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE`
-
-.. c:var:: NPY_ARRAY_CARRAY
-
- :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED`
-
-.. c:var:: NPY_ARRAY_CARRAY_RO
-
- :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
-
-.. c:var:: NPY_ARRAY_FARRAY
-
- :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED`
-
-.. c:var:: NPY_ARRAY_FARRAY_RO
-
- :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
-
-.. c:var:: NPY_ARRAY_DEFAULT
-
- :c:data:`NPY_ARRAY_CARRAY`
-
-.. c:var:: NPY_ARRAY_UPDATE_ALL
-
- :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED`
-
-
-Flag-like constants
-^^^^^^^^^^^^^^^^^^^
-
-These constants are used in :c:func:`PyArray_FromAny` (and its macro forms) to
-specify desired properties of the new array.
-
-.. c:var:: NPY_ARRAY_FORCECAST
-
- Cast to the desired type, even if it can't be done without losing
- information.
-
-.. c:var:: NPY_ARRAY_ENSURECOPY
-
- Make sure the resulting array is a copy of the original.
-
-.. c:var:: NPY_ARRAY_ENSUREARRAY
-
- Make sure the resulting object is an actual ndarray, and not a sub-class.
-
-.. c:var:: NPY_ARRAY_NOTSWAPPED
-
- Only used in :c:func:`PyArray_CheckFromAny` to over-ride the byteorder
- of the data-type object passed in.
-
-.. c:var:: NPY_ARRAY_BEHAVED_NS
-
- :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE` \| :c:data:`NPY_ARRAY_NOTSWAPPED`
-
-
-Flag checking
-^^^^^^^^^^^^^
-
-For all of these macros *arr* must be an instance of a (subclass of)
-:c:data:`PyArray_Type`, but no checking is done.
-
-.. c:function:: PyArray_CHKFLAGS(arr, flags)
-
- The first parameter, arr, must be an ndarray or subclass. The
- parameter, *flags*, should be an integer consisting of bitwise
- combinations of the possible flags an array can have:
- :c:data:`NPY_ARRAY_C_CONTIGUOUS`, :c:data:`NPY_ARRAY_F_CONTIGUOUS`,
- :c:data:`NPY_ARRAY_OWNDATA`, :c:data:`NPY_ARRAY_ALIGNED`,
- :c:data:`NPY_ARRAY_WRITEABLE`, :c:data:`NPY_ARRAY_WRITEBACKIFCOPY`,
- :c:data:`NPY_ARRAY_UPDATEIFCOPY`.
-
-.. c:function:: PyArray_IS_C_CONTIGUOUS(arr)
-
- Evaluates true if *arr* is C-style contiguous.
-
-.. c:function:: PyArray_IS_F_CONTIGUOUS(arr)
-
- Evaluates true if *arr* is Fortran-style contiguous.
-
-.. c:function:: PyArray_ISFORTRAN(arr)
-
- Evaluates true if *arr* is Fortran-style contiguous and *not*
- C-style contiguous. :c:func:`PyArray_IS_F_CONTIGUOUS`
- is the correct way to test for Fortran-style contiguity.
-
-.. c:function:: PyArray_ISWRITEABLE(arr)
-
- Evaluates true if the data area of *arr* can be written to
-
-.. c:function:: PyArray_ISALIGNED(arr)
-
- Evaluates true if the data area of *arr* is properly aligned on
- the machine.
-
-.. c:function:: PyArray_ISBEHAVED(arr)
-
- Evaluates true if the data area of *arr* is aligned and writeable
- and in machine byte-order according to its descriptor.
-
-.. c:function:: PyArray_ISBEHAVED_RO(arr)
-
- Evaluates true if the data area of *arr* is aligned and in machine
- byte-order.
-
-.. c:function:: PyArray_ISCARRAY(arr)
-
- Evaluates true if the data area of *arr* is C-style contiguous,
- and :c:func:`PyArray_ISBEHAVED` (*arr*) is true.
-
-.. c:function:: PyArray_ISFARRAY(arr)
-
- Evaluates true if the data area of *arr* is Fortran-style
- contiguous and :c:func:`PyArray_ISBEHAVED` (*arr*) is true.
-
-.. c:function:: PyArray_ISCARRAY_RO(arr)
-
- Evaluates true if the data area of *arr* is C-style contiguous,
- aligned, and in machine byte-order.
-
-.. c:function:: PyArray_ISFARRAY_RO(arr)
-
- Evaluates true if the data area of *arr* is Fortran-style
- contiguous, aligned, and in machine byte-order **.**
-
-.. c:function:: PyArray_ISONESEGMENT(arr)
-
- Evaluates true if the data area of *arr* consists of a single
- (C-style or Fortran-style) contiguous segment.
-
-.. c:function:: void PyArray_UpdateFlags(PyArrayObject* arr, int flagmask)
-
- The :c:data:`NPY_ARRAY_C_CONTIGUOUS`, :c:data:`NPY_ARRAY_ALIGNED`, and
- :c:data:`NPY_ARRAY_F_CONTIGUOUS` array flags can be "calculated" from the
- array object itself. This routine updates one or more of these
- flags of *arr* as specified in *flagmask* by performing the
- required calculation.
-
-
-.. warning::
-
- It is important to keep the flags updated (using
- :c:func:`PyArray_UpdateFlags` can help) whenever a manipulation with an
- array is performed that might cause them to change. Later
- calculations in NumPy that rely on the state of these flags do not
- repeat the calculation to update them.
-
-
-Array method alternative API
-----------------------------
-
-
-Conversion
-^^^^^^^^^^
-
-.. c:function:: PyObject* PyArray_GetField( \
- PyArrayObject* self, PyArray_Descr* dtype, int offset)
-
- Equivalent to :meth:`ndarray.getfield<numpy.ndarray.getfield>`
- (*self*, *dtype*, *offset*). This function `steals a reference
- <https://docs.python.org/3/c-api/intro.html?reference-count-details>`_
- to `PyArray_Descr` and returns a new array of the given `dtype` using
- the data in the current array at a specified `offset` in bytes. The
- `offset` plus the itemsize of the new array type must be less than ``self
- ->descr->elsize`` or an error is raised. The same shape and strides
- as the original array are used. Therefore, this function has the
- effect of returning a field from a structured array. But, it can also
- be used to select specific bytes or groups of bytes from any array
- type.
-
-.. c:function:: int PyArray_SetField( \
- PyArrayObject* self, PyArray_Descr* dtype, int offset, PyObject* val)
-
- Equivalent to :meth:`ndarray.setfield<numpy.ndarray.setfield>` (*self*, *val*, *dtype*, *offset*
- ). Set the field starting at *offset* in bytes and of the given
- *dtype* to *val*. The *offset* plus *dtype* ->elsize must be less
- than *self* ->descr->elsize or an error is raised. Otherwise, the
- *val* argument is converted to an array and copied into the field
- pointed to. If necessary, the elements of *val* are repeated to
- fill the destination array, But, the number of elements in the
- destination must be an integer multiple of the number of elements
- in *val*.
-
-.. c:function:: PyObject* PyArray_Byteswap(PyArrayObject* self, Bool inplace)
-
- Equivalent to :meth:`ndarray.byteswap<numpy.ndarray.byteswap>` (*self*, *inplace*). Return an array
- whose data area is byteswapped. If *inplace* is non-zero, then do
- the byteswap inplace and return a reference to self. Otherwise,
- create a byteswapped copy and leave self unchanged.
-
-.. c:function:: PyObject* PyArray_NewCopy(PyArrayObject* old, NPY_ORDER order)
-
- Equivalent to :meth:`ndarray.copy<numpy.ndarray.copy>` (*self*, *fortran*). Make a copy of the
- *old* array. The returned array is always aligned and writeable
- with data interpreted the same as the old array. If *order* is
- :c:data:`NPY_CORDER`, then a C-style contiguous array is returned. If
- *order* is :c:data:`NPY_FORTRANORDER`, then a Fortran-style contiguous
- array is returned. If *order is* :c:data:`NPY_ANYORDER`, then the array
- returned is Fortran-style contiguous only if the old one is;
- otherwise, it is C-style contiguous.
-
-.. c:function:: PyObject* PyArray_ToList(PyArrayObject* self)
-
- Equivalent to :meth:`ndarray.tolist<numpy.ndarray.tolist>` (*self*). Return a nested Python list
- from *self*.
-
-.. c:function:: PyObject* PyArray_ToString(PyArrayObject* self, NPY_ORDER order)
-
- Equivalent to :meth:`ndarray.tobytes<numpy.ndarray.tobytes>` (*self*, *order*). Return the bytes
- of this array in a Python string.
-
-.. c:function:: PyObject* PyArray_ToFile( \
- PyArrayObject* self, FILE* fp, char* sep, char* format)
-
- Write the contents of *self* to the file pointer *fp* in C-style
- contiguous fashion. Write the data as binary bytes if *sep* is the
- string ""or ``NULL``. Otherwise, write the contents of *self* as
- text using the *sep* string as the item separator. Each item will
- be printed to the file. If the *format* string is not ``NULL`` or
- "", then it is a Python print statement format string showing how
- the items are to be written.
-
-.. c:function:: int PyArray_Dump(PyObject* self, PyObject* file, int protocol)
-
- Pickle the object in *self* to the given *file* (either a string
- or a Python file object). If *file* is a Python string it is
- considered to be the name of a file which is then opened in binary
- mode. The given *protocol* is used (if *protocol* is negative, or
- the highest available is used). This is a simple wrapper around
- cPickle.dump(*self*, *file*, *protocol*).
-
-.. c:function:: PyObject* PyArray_Dumps(PyObject* self, int protocol)
-
- Pickle the object in *self* to a Python string and return it. Use
- the Pickle *protocol* provided (or the highest available if
- *protocol* is negative).
-
-.. c:function:: int PyArray_FillWithScalar(PyArrayObject* arr, PyObject* obj)
-
- Fill the array, *arr*, with the given scalar object, *obj*. The
- object is first converted to the data type of *arr*, and then
- copied into every location. A -1 is returned if an error occurs,
- otherwise 0 is returned.
-
-.. c:function:: PyObject* PyArray_View( \
- PyArrayObject* self, PyArray_Descr* dtype, PyTypeObject *ptype)
-
- Equivalent to :meth:`ndarray.view<numpy.ndarray.view>` (*self*, *dtype*). Return a new
- view of the array *self* as possibly a different data-type, *dtype*,
- and different array subclass *ptype*.
-
- If *dtype* is ``NULL``, then the returned array will have the same
- data type as *self*. The new data-type must be consistent with the
- size of *self*. Either the itemsizes must be identical, or *self* must
- be single-segment and the total number of bytes must be the same.
- In the latter case the dimensions of the returned array will be
- altered in the last (or first for Fortran-style contiguous arrays)
- dimension. The data area of the returned array and self is exactly
- the same.
-
-
-Shape Manipulation
-^^^^^^^^^^^^^^^^^^
-
-.. c:function:: PyObject* PyArray_Newshape( \
- PyArrayObject* self, PyArray_Dims* newshape, NPY_ORDER order)
-
- Result will be a new array (pointing to the same memory location
- as *self* if possible), but having a shape given by *newshape*.
- If the new shape is not compatible with the strides of *self*,
- then a copy of the array with the new specified shape will be
- returned.
-
-.. c:function:: PyObject* PyArray_Reshape(PyArrayObject* self, PyObject* shape)
-
- Equivalent to :meth:`ndarray.reshape<numpy.ndarray.reshape>` (*self*, *shape*) where *shape* is a
- sequence. Converts *shape* to a :c:type:`PyArray_Dims` structure and
- calls :c:func:`PyArray_Newshape` internally.
- For back-ward compatibility -- Not recommended
-
-.. c:function:: PyObject* PyArray_Squeeze(PyArrayObject* self)
-
- Equivalent to :meth:`ndarray.squeeze<numpy.ndarray.squeeze>` (*self*). Return a new view of *self*
- with all of the dimensions of length 1 removed from the shape.
-
-.. warning::
-
- matrix objects are always 2-dimensional. Therefore,
- :c:func:`PyArray_Squeeze` has no effect on arrays of matrix sub-class.
-
-.. c:function:: PyObject* PyArray_SwapAxes(PyArrayObject* self, int a1, int a2)
-
- Equivalent to :meth:`ndarray.swapaxes<numpy.ndarray.swapaxes>` (*self*, *a1*, *a2*). The returned
- array is a new view of the data in *self* with the given axes,
- *a1* and *a2*, swapped.
-
-.. c:function:: PyObject* PyArray_Resize( \
- PyArrayObject* self, PyArray_Dims* newshape, int refcheck, \
- NPY_ORDER fortran)
-
- Equivalent to :meth:`ndarray.resize<numpy.ndarray.resize>` (*self*, *newshape*, refcheck
- ``=`` *refcheck*, order= fortran ). This function only works on
- single-segment arrays. It changes the shape of *self* inplace and
- will reallocate the memory for *self* if *newshape* has a
- different total number of elements then the old shape. If
- reallocation is necessary, then *self* must own its data, have
- *self* - ``>base==NULL``, have *self* - ``>weakrefs==NULL``, and
- (unless refcheck is 0) not be referenced by any other array.
- The fortran argument can be :c:data:`NPY_ANYORDER`, :c:data:`NPY_CORDER`,
- or :c:data:`NPY_FORTRANORDER`. It currently has no effect. Eventually
- it could be used to determine how the resize operation should view
- the data when constructing a differently-dimensioned array.
- Returns None on success and NULL on error.
-
-.. c:function:: PyObject* PyArray_Transpose( \
- PyArrayObject* self, PyArray_Dims* permute)
-
- Equivalent to :meth:`ndarray.transpose<numpy.ndarray.transpose>` (*self*, *permute*). Permute the
- axes of the ndarray object *self* according to the data structure
- *permute* and return the result. If *permute* is ``NULL``, then
- the resulting array has its axes reversed. For example if *self*
- has shape :math:`10\times20\times30`, and *permute* ``.ptr`` is
- (0,2,1) the shape of the result is :math:`10\times30\times20.` If
- *permute* is ``NULL``, the shape of the result is
- :math:`30\times20\times10.`
-
-.. c:function:: PyObject* PyArray_Flatten(PyArrayObject* self, NPY_ORDER order)
-
- Equivalent to :meth:`ndarray.flatten<numpy.ndarray.flatten>` (*self*, *order*). Return a 1-d copy
- of the array. If *order* is :c:data:`NPY_FORTRANORDER` the elements are
- scanned out in Fortran order (first-dimension varies the
- fastest). If *order* is :c:data:`NPY_CORDER`, the elements of ``self``
- are scanned in C-order (last dimension varies the fastest). If
- *order* :c:data:`NPY_ANYORDER`, then the result of
- :c:func:`PyArray_ISFORTRAN` (*self*) is used to determine which order
- to flatten.
-
-.. c:function:: PyObject* PyArray_Ravel(PyArrayObject* self, NPY_ORDER order)
-
- Equivalent to *self*.ravel(*order*). Same basic functionality
- as :c:func:`PyArray_Flatten` (*self*, *order*) except if *order* is 0
- and *self* is C-style contiguous, the shape is altered but no copy
- is performed.
-
-
-Item selection and manipulation
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-.. c:function:: PyObject* PyArray_TakeFrom( \
- PyArrayObject* self, PyObject* indices, int axis, PyArrayObject* ret, \
- NPY_CLIPMODE clipmode)
-
- Equivalent to :meth:`ndarray.take<numpy.ndarray.take>` (*self*, *indices*, *axis*, *ret*,
- *clipmode*) except *axis* =None in Python is obtained by setting
- *axis* = :c:data:`NPY_MAXDIMS` in C. Extract the items from self
- indicated by the integer-valued *indices* along the given *axis.*
- The clipmode argument can be :c:data:`NPY_RAISE`, :c:data:`NPY_WRAP`, or
- :c:data:`NPY_CLIP` to indicate what to do with out-of-bound indices. The
- *ret* argument can specify an output array rather than having one
- created internally.
-
-.. c:function:: PyObject* PyArray_PutTo( \
- PyArrayObject* self, PyObject* values, PyObject* indices, \
- NPY_CLIPMODE clipmode)
-
- Equivalent to *self*.put(*values*, *indices*, *clipmode*
- ). Put *values* into *self* at the corresponding (flattened)
- *indices*. If *values* is too small it will be repeated as
- necessary.
-
-.. c:function:: PyObject* PyArray_PutMask( \
- PyArrayObject* self, PyObject* values, PyObject* mask)
-
- Place the *values* in *self* wherever corresponding positions
- (using a flattened context) in *mask* are true. The *mask* and
- *self* arrays must have the same total number of elements. If
- *values* is too small, it will be repeated as necessary.
-
-.. c:function:: PyObject* PyArray_Repeat( \
- PyArrayObject* self, PyObject* op, int axis)
-
- Equivalent to :meth:`ndarray.repeat<numpy.ndarray.repeat>` (*self*, *op*, *axis*). Copy the
- elements of *self*, *op* times along the given *axis*. Either
- *op* is a scalar integer or a sequence of length *self*
- ->dimensions[ *axis* ] indicating how many times to repeat each
- item along the axis.
-
-.. c:function:: PyObject* PyArray_Choose( \
- PyArrayObject* self, PyObject* op, PyArrayObject* ret, \
- NPY_CLIPMODE clipmode)
-
- Equivalent to :meth:`ndarray.choose<numpy.ndarray.choose>` (*self*, *op*, *ret*, *clipmode*).
- Create a new array by selecting elements from the sequence of
- arrays in *op* based on the integer values in *self*. The arrays
- must all be broadcastable to the same shape and the entries in
- *self* should be between 0 and len(*op*). The output is placed
- in *ret* unless it is ``NULL`` in which case a new output is
- created. The *clipmode* argument determines behavior for when
- entries in *self* are not between 0 and len(*op*).
-
- .. c:var:: NPY_RAISE
-
- raise a ValueError;
-
- .. c:var:: NPY_WRAP
-
- wrap values < 0 by adding len(*op*) and values >=len(*op*)
- by subtracting len(*op*) until they are in range;
-
- .. c:var:: NPY_CLIP
-
- all values are clipped to the region [0, len(*op*) ).
-
-
-.. c:function:: PyObject* PyArray_Sort(PyArrayObject* self, int axis, NPY_SORTKIND kind)
-
- Equivalent to :meth:`ndarray.sort<numpy.ndarray.sort>` (*self*, *axis*, *kind*).
- Return an array with the items of *self* sorted along *axis*. The array
- is sorted using the algorithm denoted by *kind* , which is an integer/enum pointing
- to the type of sorting algorithms used.
-
-.. c:function:: PyObject* PyArray_ArgSort(PyArrayObject* self, int axis)
-
- Equivalent to :meth:`ndarray.argsort<numpy.ndarray.argsort>` (*self*, *axis*).
- Return an array of indices such that selection of these indices
- along the given ``axis`` would return a sorted version of *self*. If *self* ->descr
- is a data-type with fields defined, then self->descr->names is used
- to determine the sort order. A comparison where the first field is equal
- will use the second field and so on. To alter the sort order of a
- structured array, create a new data-type with a different order of names
- and construct a view of the array with that new data-type.
-
-.. c:function:: PyObject* PyArray_LexSort(PyObject* sort_keys, int axis)
-
- Given a sequence of arrays (*sort_keys*) of the same shape,
- return an array of indices (similar to :c:func:`PyArray_ArgSort` (...))
- that would sort the arrays lexicographically. A lexicographic sort
- specifies that when two keys are found to be equal, the order is
- based on comparison of subsequent keys. A merge sort (which leaves
- equal entries unmoved) is required to be defined for the
- types. The sort is accomplished by sorting the indices first using
- the first *sort_key* and then using the second *sort_key* and so
- forth. This is equivalent to the lexsort(*sort_keys*, *axis*)
- Python command. Because of the way the merge-sort works, be sure
- to understand the order the *sort_keys* must be in (reversed from
- the order you would use when comparing two elements).
-
- If these arrays are all collected in a structured array, then
- :c:func:`PyArray_Sort` (...) can also be used to sort the array
- directly.
-
-.. c:function:: PyObject* PyArray_SearchSorted( \
- PyArrayObject* self, PyObject* values, NPY_SEARCHSIDE side, \
- PyObject* perm)
-
- Equivalent to :meth:`ndarray.searchsorted<numpy.ndarray.searchsorted>` (*self*, *values*, *side*,
- *perm*). Assuming *self* is a 1-d array in ascending order, then the
- output is an array of indices the same shape as *values* such that, if
- the elements in *values* were inserted before the indices, the order of
- *self* would be preserved. No checking is done on whether or not self is
- in ascending order.
-
- The *side* argument indicates whether the index returned should be that of
- the first suitable location (if :c:data:`NPY_SEARCHLEFT`) or of the last
- (if :c:data:`NPY_SEARCHRIGHT`).
-
- The *sorter* argument, if not ``NULL``, must be a 1D array of integer
- indices the same length as *self*, that sorts it into ascending order.
- This is typically the result of a call to :c:func:`PyArray_ArgSort` (...)
- Binary search is used to find the required insertion points.
-
-.. c:function:: int PyArray_Partition( \
- PyArrayObject *self, PyArrayObject * ktharray, int axis, \
- NPY_SELECTKIND which)
-
- Equivalent to :meth:`ndarray.partition<numpy.ndarray.partition>` (*self*, *ktharray*, *axis*,
- *kind*). Partitions the array so that the values of the element indexed by
- *ktharray* are in the positions they would be if the array is fully sorted
- and places all elements smaller than the kth before and all elements equal
- or greater after the kth element. The ordering of all elements within the
- partitions is undefined.
- If *self*->descr is a data-type with fields defined, then
- self->descr->names is used to determine the sort order. A comparison where
- the first field is equal will use the second field and so on. To alter the
- sort order of a structured array, create a new data-type with a different
- order of names and construct a view of the array with that new data-type.
- Returns zero on success and -1 on failure.
-
-.. c:function:: PyObject* PyArray_ArgPartition( \
- PyArrayObject *op, PyArrayObject * ktharray, int axis, \
- NPY_SELECTKIND which)
-
- Equivalent to :meth:`ndarray.argpartition<numpy.ndarray.argpartition>` (*self*, *ktharray*, *axis*,
- *kind*). Return an array of indices such that selection of these indices
- along the given ``axis`` would return a partitioned version of *self*.
-
-.. c:function:: PyObject* PyArray_Diagonal( \
- PyArrayObject* self, int offset, int axis1, int axis2)
-
- Equivalent to :meth:`ndarray.diagonal<numpy.ndarray.diagonal>` (*self*, *offset*, *axis1*, *axis2*
- ). Return the *offset* diagonals of the 2-d arrays defined by
- *axis1* and *axis2*.
-
-.. c:function:: npy_intp PyArray_CountNonzero(PyArrayObject* self)
-
- .. versionadded:: 1.6
-
- Counts the number of non-zero elements in the array object *self*.
-
-.. c:function:: PyObject* PyArray_Nonzero(PyArrayObject* self)
-
- Equivalent to :meth:`ndarray.nonzero<numpy.ndarray.nonzero>` (*self*). Returns a tuple of index
- arrays that select elements of *self* that are nonzero. If (nd=
- :c:func:`PyArray_NDIM` ( ``self`` ))==1, then a single index array is
- returned. The index arrays have data type :c:data:`NPY_INTP`. If a
- tuple is returned (nd :math:`\neq` 1), then its length is nd.
-
-.. c:function:: PyObject* PyArray_Compress( \
- PyArrayObject* self, PyObject* condition, int axis, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.compress<numpy.ndarray.compress>` (*self*, *condition*, *axis*
- ). Return the elements along *axis* corresponding to elements of
- *condition* that are true.
-
-
-Calculation
-^^^^^^^^^^^
-
-.. tip::
-
- Pass in :c:data:`NPY_MAXDIMS` for axis in order to achieve the same
- effect that is obtained by passing in *axis* = :const:`None` in Python
- (treating the array as a 1-d array).
-
-.. c:function:: PyObject* PyArray_ArgMax( \
- PyArrayObject* self, int axis, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.argmax<numpy.ndarray.argmax>` (*self*, *axis*). Return the index of
- the largest element of *self* along *axis*.
-
-.. c:function:: PyObject* PyArray_ArgMin( \
- PyArrayObject* self, int axis, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.argmin<numpy.ndarray.argmin>` (*self*, *axis*). Return the index of
- the smallest element of *self* along *axis*.
-
-
-
-
-.. note::
-
- The out argument specifies where to place the result. If out is
- NULL, then the output array is created, otherwise the output is
- placed in out which must be the correct size and type. A new
- reference to the output array is always returned even when out
- is not NULL. The caller of the routine has the responsibility
- to ``DECREF`` out if not NULL or a memory-leak will occur.
-
-.. c:function:: PyObject* PyArray_Max( \
- PyArrayObject* self, int axis, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.max<numpy.ndarray.max>` (*self*, *axis*). Returns the largest
- element of *self* along the given *axis*. When the result is a single
- element, returns a numpy scalar instead of an ndarray.
-
-.. c:function:: PyObject* PyArray_Min( \
- PyArrayObject* self, int axis, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.min<numpy.ndarray.min>` (*self*, *axis*). Return the smallest
- element of *self* along the given *axis*. When the result is a single
- element, returns a numpy scalar instead of an ndarray.
-
-
-.. c:function:: PyObject* PyArray_Ptp( \
- PyArrayObject* self, int axis, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.ptp<numpy.ndarray.ptp>` (*self*, *axis*). Return the difference
- between the largest element of *self* along *axis* and the
- smallest element of *self* along *axis*. When the result is a single
- element, returns a numpy scalar instead of an ndarray.
-
-
-
-
-.. note::
-
- The rtype argument specifies the data-type the reduction should
- take place over. This is important if the data-type of the array
- is not "large" enough to handle the output. By default, all
- integer data-types are made at least as large as :c:data:`NPY_LONG`
- for the "add" and "multiply" ufuncs (which form the basis for
- mean, sum, cumsum, prod, and cumprod functions).
-
-.. c:function:: PyObject* PyArray_Mean( \
- PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.mean<numpy.ndarray.mean>` (*self*, *axis*, *rtype*). Returns the
- mean of the elements along the given *axis*, using the enumerated
- type *rtype* as the data type to sum in. Default sum behavior is
- obtained using :c:data:`NPY_NOTYPE` for *rtype*.
-
-.. c:function:: PyObject* PyArray_Trace( \
- PyArrayObject* self, int offset, int axis1, int axis2, int rtype, \
- PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.trace<numpy.ndarray.trace>` (*self*, *offset*, *axis1*, *axis2*,
- *rtype*). Return the sum (using *rtype* as the data type of
- summation) over the *offset* diagonal elements of the 2-d arrays
- defined by *axis1* and *axis2* variables. A positive offset
- chooses diagonals above the main diagonal. A negative offset
- selects diagonals below the main diagonal.
-
-.. c:function:: PyObject* PyArray_Clip( \
- PyArrayObject* self, PyObject* min, PyObject* max)
-
- Equivalent to :meth:`ndarray.clip<numpy.ndarray.clip>` (*self*, *min*, *max*). Clip an array,
- *self*, so that values larger than *max* are fixed to *max* and
- values less than *min* are fixed to *min*.
-
-.. c:function:: PyObject* PyArray_Conjugate(PyArrayObject* self)
-
- Equivalent to :meth:`ndarray.conjugate<numpy.ndarray.conjugate>` (*self*).
- Return the complex conjugate of *self*. If *self* is not of
- complex data type, then return *self* with a reference.
-
-.. c:function:: PyObject* PyArray_Round( \
- PyArrayObject* self, int decimals, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.round<numpy.ndarray.round>` (*self*, *decimals*, *out*). Returns
- the array with elements rounded to the nearest decimal place. The
- decimal place is defined as the :math:`10^{-\textrm{decimals}}`
- digit so that negative *decimals* cause rounding to the nearest 10's, 100's, etc. If out is ``NULL``, then the output array is created, otherwise the output is placed in *out* which must be the correct size and type.
-
-.. c:function:: PyObject* PyArray_Std( \
- PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.std<numpy.ndarray.std>` (*self*, *axis*, *rtype*). Return the
- standard deviation using data along *axis* converted to data type
- *rtype*.
-
-.. c:function:: PyObject* PyArray_Sum( \
- PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.sum<numpy.ndarray.sum>` (*self*, *axis*, *rtype*). Return 1-d
- vector sums of elements in *self* along *axis*. Perform the sum
- after converting data to data type *rtype*.
-
-.. c:function:: PyObject* PyArray_CumSum( \
- PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.cumsum<numpy.ndarray.cumsum>` (*self*, *axis*, *rtype*). Return
- cumulative 1-d sums of elements in *self* along *axis*. Perform
- the sum after converting data to data type *rtype*.
-
-.. c:function:: PyObject* PyArray_Prod( \
- PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.prod<numpy.ndarray.prod>` (*self*, *axis*, *rtype*). Return 1-d
- products of elements in *self* along *axis*. Perform the product
- after converting data to data type *rtype*.
-
-.. c:function:: PyObject* PyArray_CumProd( \
- PyArrayObject* self, int axis, int rtype, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.cumprod<numpy.ndarray.cumprod>` (*self*, *axis*, *rtype*). Return
- 1-d cumulative products of elements in ``self`` along ``axis``.
- Perform the product after converting data to data type ``rtype``.
-
-.. c:function:: PyObject* PyArray_All( \
- PyArrayObject* self, int axis, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.all<numpy.ndarray.all>` (*self*, *axis*). Return an array with
- True elements for every 1-d sub-array of ``self`` defined by
- ``axis`` in which all the elements are True.
-
-.. c:function:: PyObject* PyArray_Any( \
- PyArrayObject* self, int axis, PyArrayObject* out)
-
- Equivalent to :meth:`ndarray.any<numpy.ndarray.any>` (*self*, *axis*). Return an array with
- True elements for every 1-d sub-array of *self* defined by *axis*
- in which any of the elements are True.
-
-Functions
----------
-
-
-Array Functions
-^^^^^^^^^^^^^^^
-
-.. c:function:: int PyArray_AsCArray( \
- PyObject** op, void* ptr, npy_intp* dims, int nd, int typenum, \
- int itemsize)
-
- Sometimes it is useful to access a multidimensional array as a
- C-style multi-dimensional array so that algorithms can be
- implemented using C's a[i][j][k] syntax. This routine returns a
- pointer, *ptr*, that simulates this kind of C-style array, for
- 1-, 2-, and 3-d ndarrays.
-
- :param op:
-
- The address to any Python object. This Python object will be replaced
- with an equivalent well-behaved, C-style contiguous, ndarray of the
- given data type specified by the last two arguments. Be sure that
- stealing a reference in this way to the input object is justified.
-
- :param ptr:
-
- The address to a (ctype* for 1-d, ctype** for 2-d or ctype*** for 3-d)
- variable where ctype is the equivalent C-type for the data type. On
- return, *ptr* will be addressable as a 1-d, 2-d, or 3-d array.
-
- :param dims:
-
- An output array that contains the shape of the array object. This
- array gives boundaries on any looping that will take place.
-
- :param nd:
-
- The dimensionality of the array (1, 2, or 3).
-
- :param typenum:
-
- The expected data type of the array.
-
- :param itemsize:
-
- This argument is only needed when *typenum* represents a
- flexible array. Otherwise it should be 0.
-
-.. note::
-
- The simulation of a C-style array is not complete for 2-d and 3-d
- arrays. For example, the simulated arrays of pointers cannot be passed
- to subroutines expecting specific, statically-defined 2-d and 3-d
- arrays. To pass to functions requiring those kind of inputs, you must
- statically define the required array and copy data.
-
-.. c:function:: int PyArray_Free(PyObject* op, void* ptr)
-
- Must be called with the same objects and memory locations returned
- from :c:func:`PyArray_AsCArray` (...). This function cleans up memory
- that otherwise would get leaked.
-
-.. c:function:: PyObject* PyArray_Concatenate(PyObject* obj, int axis)
-
- Join the sequence of objects in *obj* together along *axis* into a
- single array. If the dimensions or types are not compatible an
- error is raised.
-
-.. c:function:: PyObject* PyArray_InnerProduct(PyObject* obj1, PyObject* obj2)
-
- Compute a product-sum over the last dimensions of *obj1* and
- *obj2*. Neither array is conjugated.
-
-.. c:function:: PyObject* PyArray_MatrixProduct(PyObject* obj1, PyObject* obj)
-
- Compute a product-sum over the last dimension of *obj1* and the
- second-to-last dimension of *obj2*. For 2-d arrays this is a
- matrix-product. Neither array is conjugated.
-
-.. c:function:: PyObject* PyArray_MatrixProduct2( \
- PyObject* obj1, PyObject* obj, PyArrayObject* out)
-
- .. versionadded:: 1.6
-
- Same as PyArray_MatrixProduct, but store the result in *out*. The
- output array must have the correct shape, type, and be
- C-contiguous, or an exception is raised.
-
-.. c:function:: PyObject* PyArray_EinsteinSum( \
- char* subscripts, npy_intp nop, PyArrayObject** op_in, \
- PyArray_Descr* dtype, NPY_ORDER order, NPY_CASTING casting, \
- PyArrayObject* out)
-
- .. versionadded:: 1.6
-
- Applies the Einstein summation convention to the array operands
- provided, returning a new array or placing the result in *out*.
- The string in *subscripts* is a comma separated list of index
- letters. The number of operands is in *nop*, and *op_in* is an
- array containing those operands. The data type of the output can
- be forced with *dtype*, the output order can be forced with *order*
- (:c:data:`NPY_KEEPORDER` is recommended), and when *dtype* is specified,
- *casting* indicates how permissive the data conversion should be.
-
- See the :func:`~numpy.einsum` function for more details.
-
-.. c:function:: PyObject* PyArray_CopyAndTranspose(PyObject \* op)
-
- A specialized copy and transpose function that works only for 2-d
- arrays. The returned array is a transposed copy of *op*.
-
-.. c:function:: PyObject* PyArray_Correlate( \
- PyObject* op1, PyObject* op2, int mode)
-
- Compute the 1-d correlation of the 1-d arrays *op1* and *op2*
- . The correlation is computed at each output point by multiplying
- *op1* by a shifted version of *op2* and summing the result. As a
- result of the shift, needed values outside of the defined range of
- *op1* and *op2* are interpreted as zero. The mode determines how
- many shifts to return: 0 - return only shifts that did not need to
- assume zero- values; 1 - return an object that is the same size as
- *op1*, 2 - return all possible shifts (any overlap at all is
- accepted).
-
- .. rubric:: Notes
-
- This does not compute the usual correlation: if op2 is larger than op1, the
- arguments are swapped, and the conjugate is never taken for complex arrays.
- See PyArray_Correlate2 for the usual signal processing correlation.
-
-.. c:function:: PyObject* PyArray_Correlate2( \
- PyObject* op1, PyObject* op2, int mode)
-
- Updated version of PyArray_Correlate, which uses the usual definition of
- correlation for 1d arrays. The correlation is computed at each output point
- by multiplying *op1* by a shifted version of *op2* and summing the result.
- As a result of the shift, needed values outside of the defined range of
- *op1* and *op2* are interpreted as zero. The mode determines how many
- shifts to return: 0 - return only shifts that did not need to assume zero-
- values; 1 - return an object that is the same size as *op1*, 2 - return all
- possible shifts (any overlap at all is accepted).
-
- .. rubric:: Notes
-
- Compute z as follows::
-
- z[k] = sum_n op1[n] * conj(op2[n+k])
-
-.. c:function:: PyObject* PyArray_Where( \
- PyObject* condition, PyObject* x, PyObject* y)
-
- If both ``x`` and ``y`` are ``NULL``, then return
- :c:func:`PyArray_Nonzero` (*condition*). Otherwise, both *x* and *y*
- must be given and the object returned is shaped like *condition*
- and has elements of *x* and *y* where *condition* is respectively
- True or False.
-
-
-Other functions
-^^^^^^^^^^^^^^^
-
-.. c:function:: Bool PyArray_CheckStrides( \
- int elsize, int nd, npy_intp numbytes, npy_intp const* dims, \
- npy_intp const* newstrides)
-
- Determine if *newstrides* is a strides array consistent with the
- memory of an *nd* -dimensional array with shape ``dims`` and
- element-size, *elsize*. The *newstrides* array is checked to see
- if jumping by the provided number of bytes in each direction will
- ever mean jumping more than *numbytes* which is the assumed size
- of the available memory segment. If *numbytes* is 0, then an
- equivalent *numbytes* is computed assuming *nd*, *dims*, and
- *elsize* refer to a single-segment array. Return :c:data:`NPY_TRUE` if
- *newstrides* is acceptable, otherwise return :c:data:`NPY_FALSE`.
-
-.. c:function:: npy_intp PyArray_MultiplyList(npy_intp const* seq, int n)
-
-.. c:function:: int PyArray_MultiplyIntList(int const* seq, int n)
-
- Both of these routines multiply an *n* -length array, *seq*, of
- integers and return the result. No overflow checking is performed.
-
-.. c:function:: int PyArray_CompareLists(npy_intp const* l1, npy_intp const* l2, int n)
-
- Given two *n* -length arrays of integers, *l1*, and *l2*, return
- 1 if the lists are identical; otherwise, return 0.
-
-
-Auxiliary Data With Object Semantics
-------------------------------------
-
-.. versionadded:: 1.7.0
-
-.. c:type:: NpyAuxData
-
-When working with more complex dtypes which are composed of other dtypes,
-such as the struct dtype, creating inner loops that manipulate the dtypes
-requires carrying along additional data. NumPy supports this idea
-through a struct :c:type:`NpyAuxData`, mandating a few conventions so that
-it is possible to do this.
-
-Defining an :c:type:`NpyAuxData` is similar to defining a class in C++,
-but the object semantics have to be tracked manually since the API is in C.
-Here's an example for a function which doubles up an element using
-an element copier function as a primitive.::
-
- typedef struct {
- NpyAuxData base;
- ElementCopier_Func *func;
- NpyAuxData *funcdata;
- } eldoubler_aux_data;
-
- void free_element_doubler_aux_data(NpyAuxData *data)
- {
- eldoubler_aux_data *d = (eldoubler_aux_data *)data;
- /* Free the memory owned by this auxdata */
- NPY_AUXDATA_FREE(d->funcdata);
- PyArray_free(d);
- }
-
- NpyAuxData *clone_element_doubler_aux_data(NpyAuxData *data)
- {
- eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
- if (ret == NULL) {
- return NULL;
- }
-
- /* Raw copy of all data */
- memcpy(ret, data, sizeof(eldoubler_aux_data));
-
- /* Fix up the owned auxdata so we have our own copy */
- ret->funcdata = NPY_AUXDATA_CLONE(ret->funcdata);
- if (ret->funcdata == NULL) {
- PyArray_free(ret);
- return NULL;
- }
-
- return (NpyAuxData *)ret;
- }
-
- NpyAuxData *create_element_doubler_aux_data(
- ElementCopier_Func *func,
- NpyAuxData *funcdata)
- {
- eldoubler_aux_data *ret = PyArray_malloc(sizeof(eldoubler_aux_data));
- if (ret == NULL) {
- PyErr_NoMemory();
- return NULL;
- }
- memset(&ret, 0, sizeof(eldoubler_aux_data));
- ret->base->free = &free_element_doubler_aux_data;
- ret->base->clone = &clone_element_doubler_aux_data;
- ret->func = func;
- ret->funcdata = funcdata;
-
- return (NpyAuxData *)ret;
- }
-
-.. c:type:: NpyAuxData_FreeFunc
-
- The function pointer type for NpyAuxData free functions.
-
-.. c:type:: NpyAuxData_CloneFunc
-
- The function pointer type for NpyAuxData clone functions. These
- functions should never set the Python exception on error, because
- they may be called from a multi-threaded context.
-
-.. c:function:: NPY_AUXDATA_FREE(auxdata)
-
- A macro which calls the auxdata's free function appropriately,
- does nothing if auxdata is NULL.
-
-.. c:function:: NPY_AUXDATA_CLONE(auxdata)
-
- A macro which calls the auxdata's clone function appropriately,
- returning a deep copy of the auxiliary data.
-
-Array Iterators
----------------
-
-As of NumPy 1.6.0, these array iterators are superceded by
-the new array iterator, :c:type:`NpyIter`.
-
-An array iterator is a simple way to access the elements of an
-N-dimensional array quickly and efficiently. Section `2
-<#sec-array-iterator>`__ provides more description and examples of
-this useful approach to looping over an array.
-
-.. c:function:: PyObject* PyArray_IterNew(PyObject* arr)
-
- Return an array iterator object from the array, *arr*. This is
- equivalent to *arr*. **flat**. The array iterator object makes
- it easy to loop over an N-dimensional non-contiguous array in
- C-style contiguous fashion.
-
-.. c:function:: PyObject* PyArray_IterAllButAxis(PyObject* arr, int \*axis)
-
- Return an array iterator that will iterate over all axes but the
- one provided in *\*axis*. The returned iterator cannot be used
- with :c:func:`PyArray_ITER_GOTO1D`. This iterator could be used to
- write something similar to what ufuncs do wherein the loop over
- the largest axis is done by a separate sub-routine. If *\*axis* is
- negative then *\*axis* will be set to the axis having the smallest
- stride and that axis will be used.
-
-.. c:function:: PyObject *PyArray_BroadcastToShape( \
- PyObject* arr, npy_intp *dimensions, int nd)
-
- Return an array iterator that is broadcast to iterate as an array
- of the shape provided by *dimensions* and *nd*.
-
-.. c:function:: int PyArrayIter_Check(PyObject* op)
-
- Evaluates true if *op* is an array iterator (or instance of a
- subclass of the array iterator type).
-
-.. c:function:: void PyArray_ITER_RESET(PyObject* iterator)
-
- Reset an *iterator* to the beginning of the array.
-
-.. c:function:: void PyArray_ITER_NEXT(PyObject* iterator)
-
- Incremement the index and the dataptr members of the *iterator* to
- point to the next element of the array. If the array is not
- (C-style) contiguous, also increment the N-dimensional coordinates
- array.
-
-.. c:function:: void *PyArray_ITER_DATA(PyObject* iterator)
-
- A pointer to the current element of the array.
-
-.. c:function:: void PyArray_ITER_GOTO( \
- PyObject* iterator, npy_intp* destination)
-
- Set the *iterator* index, dataptr, and coordinates members to the
- location in the array indicated by the N-dimensional c-array,
- *destination*, which must have size at least *iterator*
- ->nd_m1+1.
-
-.. c:function:: PyArray_ITER_GOTO1D(PyObject* iterator, npy_intp index)
-
- Set the *iterator* index and dataptr to the location in the array
- indicated by the integer *index* which points to an element in the
- C-styled flattened array.
-
-.. c:function:: int PyArray_ITER_NOTDONE(PyObject* iterator)
-
- Evaluates TRUE as long as the iterator has not looped through all of
- the elements, otherwise it evaluates FALSE.
-
-
-Broadcasting (multi-iterators)
-------------------------------
-
-.. c:function:: PyObject* PyArray_MultiIterNew(int num, ...)
-
- A simplified interface to broadcasting. This function takes the
- number of arrays to broadcast and then *num* extra ( :c:type:`PyObject *<PyObject>`
- ) arguments. These arguments are converted to arrays and iterators
- are created. :c:func:`PyArray_Broadcast` is then called on the resulting
- multi-iterator object. The resulting, broadcasted mult-iterator
- object is then returned. A broadcasted operation can then be
- performed using a single loop and using :c:func:`PyArray_MultiIter_NEXT`
- (..)
-
-.. c:function:: void PyArray_MultiIter_RESET(PyObject* multi)
-
- Reset all the iterators to the beginning in a multi-iterator
- object, *multi*.
-
-.. c:function:: void PyArray_MultiIter_NEXT(PyObject* multi)
-
- Advance each iterator in a multi-iterator object, *multi*, to its
- next (broadcasted) element.
-
-.. c:function:: void *PyArray_MultiIter_DATA(PyObject* multi, int i)
-
- Return the data-pointer of the *i* :math:`^{\textrm{th}}` iterator
- in a multi-iterator object.
-
-.. c:function:: void PyArray_MultiIter_NEXTi(PyObject* multi, int i)
-
- Advance the pointer of only the *i* :math:`^{\textrm{th}}` iterator.
-
-.. c:function:: void PyArray_MultiIter_GOTO( \
- PyObject* multi, npy_intp* destination)
-
- Advance each iterator in a multi-iterator object, *multi*, to the
- given :math:`N` -dimensional *destination* where :math:`N` is the
- number of dimensions in the broadcasted array.
-
-.. c:function:: void PyArray_MultiIter_GOTO1D(PyObject* multi, npy_intp index)
-
- Advance each iterator in a multi-iterator object, *multi*, to the
- corresponding location of the *index* into the flattened
- broadcasted array.
-
-.. c:function:: int PyArray_MultiIter_NOTDONE(PyObject* multi)
-
- Evaluates TRUE as long as the multi-iterator has not looped
- through all of the elements (of the broadcasted result), otherwise
- it evaluates FALSE.
-
-.. c:function:: int PyArray_Broadcast(PyArrayMultiIterObject* mit)
-
- This function encapsulates the broadcasting rules. The *mit*
- container should already contain iterators for all the arrays that
- need to be broadcast. On return, these iterators will be adjusted
- so that iteration over each simultaneously will accomplish the
- broadcasting. A negative number is returned if an error occurs.
-
-.. c:function:: int PyArray_RemoveSmallest(PyArrayMultiIterObject* mit)
-
- This function takes a multi-iterator object that has been
- previously "broadcasted," finds the dimension with the smallest
- "sum of strides" in the broadcasted result and adapts all the
- iterators so as not to iterate over that dimension (by effectively
- making them of length-1 in that dimension). The corresponding
- dimension is returned unless *mit* ->nd is 0, then -1 is
- returned. This function is useful for constructing ufunc-like
- routines that broadcast their inputs correctly and then call a
- strided 1-d version of the routine as the inner-loop. This 1-d
- version is usually optimized for speed and for this reason the
- loop should be performed over the axis that won't require large
- stride jumps.
-
-Neighborhood iterator
----------------------
-
-.. versionadded:: 1.4.0
-
-Neighborhood iterators are subclasses of the iterator object, and can be used
-to iter over a neighborhood of a point. For example, you may want to iterate
-over every voxel of a 3d image, and for every such voxel, iterate over an
-hypercube. Neighborhood iterator automatically handle boundaries, thus making
-this kind of code much easier to write than manual boundaries handling, at the
-cost of a slight overhead.
-
-.. c:function:: PyObject* PyArray_NeighborhoodIterNew( \
- PyArrayIterObject* iter, npy_intp bounds, int mode, \
- PyArrayObject* fill_value)
-
- This function creates a new neighborhood iterator from an existing
- iterator. The neighborhood will be computed relatively to the position
- currently pointed by *iter*, the bounds define the shape of the
- neighborhood iterator, and the mode argument the boundaries handling mode.
-
- The *bounds* argument is expected to be a (2 * iter->ao->nd) arrays, such
- as the range bound[2*i]->bounds[2*i+1] defines the range where to walk for
- dimension i (both bounds are included in the walked coordinates). The
- bounds should be ordered for each dimension (bounds[2*i] <= bounds[2*i+1]).
-
- The mode should be one of:
-
- * NPY_NEIGHBORHOOD_ITER_ZERO_PADDING: zero padding. Outside bounds values
- will be 0.
- * NPY_NEIGHBORHOOD_ITER_ONE_PADDING: one padding, Outside bounds values
- will be 1.
- * NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING: constant padding. Outside bounds
- values will be the same as the first item in fill_value.
- * NPY_NEIGHBORHOOD_ITER_MIRROR_PADDING: mirror padding. Outside bounds
- values will be as if the array items were mirrored. For example, for the
- array [1, 2, 3, 4], x[-2] will be 2, x[-2] will be 1, x[4] will be 4,
- x[5] will be 1, etc...
- * NPY_NEIGHBORHOOD_ITER_CIRCULAR_PADDING: circular padding. Outside bounds
- values will be as if the array was repeated. For example, for the
- array [1, 2, 3, 4], x[-2] will be 3, x[-2] will be 4, x[4] will be 1,
- x[5] will be 2, etc...
-
- If the mode is constant filling (NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING),
- fill_value should point to an array object which holds the filling value
- (the first item will be the filling value if the array contains more than
- one item). For other cases, fill_value may be NULL.
-
- - The iterator holds a reference to iter
- - Return NULL on failure (in which case the reference count of iter is not
- changed)
- - iter itself can be a Neighborhood iterator: this can be useful for .e.g
- automatic boundaries handling
- - the object returned by this function should be safe to use as a normal
- iterator
- - If the position of iter is changed, any subsequent call to
- PyArrayNeighborhoodIter_Next is undefined behavior, and
- PyArrayNeighborhoodIter_Reset must be called.
-
- .. code-block:: c
-
- PyArrayIterObject *iter;
- PyArrayNeighborhoodIterObject *neigh_iter;
- iter = PyArray_IterNew(x);
-
- /*For a 3x3 kernel */
- bounds = {-1, 1, -1, 1};
- neigh_iter = (PyArrayNeighborhoodIterObject*)PyArrayNeighborhoodIter_New(
- iter, bounds, NPY_NEIGHBORHOOD_ITER_ZERO_PADDING, NULL);
-
- for(i = 0; i < iter->size; ++i) {
- for (j = 0; j < neigh_iter->size; ++j) {
- /* Walk around the item currently pointed by iter->dataptr */
- PyArrayNeighborhoodIter_Next(neigh_iter);
- }
-
- /* Move to the next point of iter */
- PyArrayIter_Next(iter);
- PyArrayNeighborhoodIter_Reset(neigh_iter);
- }
-
-.. c:function:: int PyArrayNeighborhoodIter_Reset( \
- PyArrayNeighborhoodIterObject* iter)
-
- Reset the iterator position to the first point of the neighborhood. This
- should be called whenever the iter argument given at
- PyArray_NeighborhoodIterObject is changed (see example)
-
-.. c:function:: int PyArrayNeighborhoodIter_Next( \
- PyArrayNeighborhoodIterObject* iter)
-
- After this call, iter->dataptr points to the next point of the
- neighborhood. Calling this function after every point of the
- neighborhood has been visited is undefined.
-
-Array Scalars
--------------
-
-.. c:function:: PyObject* PyArray_Return(PyArrayObject* arr)
-
- This function steals a reference to *arr*.
-
- This function checks to see if *arr* is a 0-dimensional array and,
- if so, returns the appropriate array scalar. It should be used
- whenever 0-dimensional arrays could be returned to Python.
-
-.. c:function:: PyObject* PyArray_Scalar( \
- void* data, PyArray_Descr* dtype, PyObject* itemsize)
-
- Return an array scalar object of the given enumerated *typenum*
- and *itemsize* by **copying** from memory pointed to by *data*
- . If *swap* is nonzero then this function will byteswap the data
- if appropriate to the data-type because array scalars are always
- in correct machine-byte order.
-
-.. c:function:: PyObject* PyArray_ToScalar(void* data, PyArrayObject* arr)
-
- Return an array scalar object of the type and itemsize indicated
- by the array object *arr* copied from the memory pointed to by
- *data* and swapping if the data in *arr* is not in machine
- byte-order.
-
-.. c:function:: PyObject* PyArray_FromScalar( \
- PyObject* scalar, PyArray_Descr* outcode)
-
- Return a 0-dimensional array of type determined by *outcode* from
- *scalar* which should be an array-scalar object. If *outcode* is
- NULL, then the type is determined from *scalar*.
-
-.. c:function:: void PyArray_ScalarAsCtype(PyObject* scalar, void* ctypeptr)
-
- Return in *ctypeptr* a pointer to the actual value in an array
- scalar. There is no error checking so *scalar* must be an
- array-scalar object, and ctypeptr must have enough space to hold
- the correct type. For flexible-sized types, a pointer to the data
- is copied into the memory of *ctypeptr*, for all other types, the
- actual data is copied into the address pointed to by *ctypeptr*.
-
-.. c:function:: void PyArray_CastScalarToCtype( \
- PyObject* scalar, void* ctypeptr, PyArray_Descr* outcode)
-
- Return the data (cast to the data type indicated by *outcode*)
- from the array-scalar, *scalar*, into the memory pointed to by
- *ctypeptr* (which must be large enough to handle the incoming
- memory).
-
-.. c:function:: PyObject* PyArray_TypeObjectFromType(int type)
-
- Returns a scalar type-object from a type-number, *type*
- . Equivalent to :c:func:`PyArray_DescrFromType` (*type*)->typeobj
- except for reference counting and error-checking. Returns a new
- reference to the typeobject on success or ``NULL`` on failure.
-
-.. c:function:: NPY_SCALARKIND PyArray_ScalarKind( \
- int typenum, PyArrayObject** arr)
-
- See the function :c:func:`PyArray_MinScalarType` for an alternative
- mechanism introduced in NumPy 1.6.0.
-
- Return the kind of scalar represented by *typenum* and the array
- in *\*arr* (if *arr* is not ``NULL`` ). The array is assumed to be
- rank-0 and only used if *typenum* represents a signed integer. If
- *arr* is not ``NULL`` and the first element is negative then
- :c:data:`NPY_INTNEG_SCALAR` is returned, otherwise
- :c:data:`NPY_INTPOS_SCALAR` is returned. The possible return values
- are :c:data:`NPY_{kind}_SCALAR` where ``{kind}`` can be **INTPOS**,
- **INTNEG**, **FLOAT**, **COMPLEX**, **BOOL**, or **OBJECT**.
- :c:data:`NPY_NOSCALAR` is also an enumerated value
- :c:type:`NPY_SCALARKIND` variables can take on.
-
-.. c:function:: int PyArray_CanCoerceScalar( \
- char thistype, char neededtype, NPY_SCALARKIND scalar)
-
- See the function :c:func:`PyArray_ResultType` for details of
- NumPy type promotion, updated in NumPy 1.6.0.
-
- Implements the rules for scalar coercion. Scalars are only
- silently coerced from thistype to neededtype if this function
- returns nonzero. If scalar is :c:data:`NPY_NOSCALAR`, then this
- function is equivalent to :c:func:`PyArray_CanCastSafely`. The rule is
- that scalars of the same KIND can be coerced into arrays of the
- same KIND. This rule means that high-precision scalars will never
- cause low-precision arrays of the same KIND to be upcast.
-
-
-Data-type descriptors
----------------------
-
-
-
-.. warning::
-
- Data-type objects must be reference counted so be aware of the
- action on the data-type reference of different C-API calls. The
- standard rule is that when a data-type object is returned it is a
- new reference. Functions that take :c:type:`PyArray_Descr *` objects and
- return arrays steal references to the data-type their inputs
- unless otherwise noted. Therefore, you must own a reference to any
- data-type object used as input to such a function.
-
-.. c:function:: int PyArray_DescrCheck(PyObject* obj)
-
- Evaluates as true if *obj* is a data-type object ( :c:type:`PyArray_Descr *` ).
-
-.. c:function:: PyArray_Descr* PyArray_DescrNew(PyArray_Descr* obj)
-
- Return a new data-type object copied from *obj* (the fields
- reference is just updated so that the new object points to the
- same fields dictionary if any).
-
-.. c:function:: PyArray_Descr* PyArray_DescrNewFromType(int typenum)
-
- Create a new data-type object from the built-in (or
- user-registered) data-type indicated by *typenum*. All builtin
- types should not have any of their fields changed. This creates a
- new copy of the :c:type:`PyArray_Descr` structure so that you can fill
- it in as appropriate. This function is especially needed for
- flexible data-types which need to have a new elsize member in
- order to be meaningful in array construction.
-
-.. c:function:: PyArray_Descr* PyArray_DescrNewByteorder( \
- PyArray_Descr* obj, char newendian)
-
- Create a new data-type object with the byteorder set according to
- *newendian*. All referenced data-type objects (in subdescr and
- fields members of the data-type object) are also changed
- (recursively). If a byteorder of :c:data:`NPY_IGNORE` is encountered it
- is left alone. If newendian is :c:data:`NPY_SWAP`, then all byte-orders
- are swapped. Other valid newendian values are :c:data:`NPY_NATIVE`,
- :c:data:`NPY_LITTLE`, and :c:data:`NPY_BIG` which all cause the returned
- data-typed descriptor (and all it's
- referenced data-type descriptors) to have the corresponding byte-
- order.
-
-.. c:function:: PyArray_Descr* PyArray_DescrFromObject( \
- PyObject* op, PyArray_Descr* mintype)
-
- Determine an appropriate data-type object from the object *op*
- (which should be a "nested" sequence object) and the minimum
- data-type descriptor mintype (which can be ``NULL`` ). Similar in
- behavior to array(*op*).dtype. Don't confuse this function with
- :c:func:`PyArray_DescrConverter`. This function essentially looks at
- all the objects in the (nested) sequence and determines the
- data-type from the elements it finds.
-
-.. c:function:: PyArray_Descr* PyArray_DescrFromScalar(PyObject* scalar)
-
- Return a data-type object from an array-scalar object. No checking
- is done to be sure that *scalar* is an array scalar. If no
- suitable data-type can be determined, then a data-type of
- :c:data:`NPY_OBJECT` is returned by default.
-
-.. c:function:: PyArray_Descr* PyArray_DescrFromType(int typenum)
-
- Returns a data-type object corresponding to *typenum*. The
- *typenum* can be one of the enumerated types, a character code for
- one of the enumerated types, or a user-defined type. If you want to use a
- flexible size array, then you need to ``flexible typenum`` and set the
- results ``elsize`` parameter to the desired size. The typenum is one of the
- :c:data:`NPY_TYPES`.
-
-.. c:function:: int PyArray_DescrConverter(PyObject* obj, PyArray_Descr** dtype)
-
- Convert any compatible Python object, *obj*, to a data-type object
- in *dtype*. A large number of Python objects can be converted to
- data-type objects. See :ref:`arrays.dtypes` for a complete
- description. This version of the converter converts None objects
- to a :c:data:`NPY_DEFAULT_TYPE` data-type object. This function can
- be used with the "O&" character code in :c:func:`PyArg_ParseTuple`
- processing.
-
-.. c:function:: int PyArray_DescrConverter2( \
- PyObject* obj, PyArray_Descr** dtype)
-
- Convert any compatible Python object, *obj*, to a data-type
- object in *dtype*. This version of the converter converts None
- objects so that the returned data-type is ``NULL``. This function
- can also be used with the "O&" character in PyArg_ParseTuple
- processing.
-
-.. c:function:: int Pyarray_DescrAlignConverter( \
- PyObject* obj, PyArray_Descr** dtype)
-
- Like :c:func:`PyArray_DescrConverter` except it aligns C-struct-like
- objects on word-boundaries as the compiler would.
-
-.. c:function:: int Pyarray_DescrAlignConverter2( \
- PyObject* obj, PyArray_Descr** dtype)
-
- Like :c:func:`PyArray_DescrConverter2` except it aligns C-struct-like
- objects on word-boundaries as the compiler would.
-
-.. c:function:: PyObject *PyArray_FieldNames(PyObject* dict)
-
- Take the fields dictionary, *dict*, such as the one attached to a
- data-type object and construct an ordered-list of field names such
- as is stored in the names field of the :c:type:`PyArray_Descr` object.
-
-
-Conversion Utilities
---------------------
-
-
-For use with :c:func:`PyArg_ParseTuple`
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-All of these functions can be used in :c:func:`PyArg_ParseTuple` (...) with
-the "O&" format specifier to automatically convert any Python object
-to the required C-object. All of these functions return
-:c:data:`NPY_SUCCEED` if successful and :c:data:`NPY_FAIL` if not. The first
-argument to all of these function is a Python object. The second
-argument is the **address** of the C-type to convert the Python object
-to.
-
-
-.. warning::
-
- Be sure to understand what steps you should take to manage the
- memory when using these conversion functions. These functions can
- require freeing memory, and/or altering the reference counts of
- specific objects based on your use.
-
-.. c:function:: int PyArray_Converter(PyObject* obj, PyObject** address)
-
- Convert any Python object to a :c:type:`PyArrayObject`. If
- :c:func:`PyArray_Check` (*obj*) is TRUE then its reference count is
- incremented and a reference placed in *address*. If *obj* is not
- an array, then convert it to an array using :c:func:`PyArray_FromAny`
- . No matter what is returned, you must DECREF the object returned
- by this routine in *address* when you are done with it.
-
-.. c:function:: int PyArray_OutputConverter( \
- PyObject* obj, PyArrayObject** address)
-
- This is a default converter for output arrays given to
- functions. If *obj* is :c:data:`Py_None` or ``NULL``, then *\*address*
- will be ``NULL`` but the call will succeed. If :c:func:`PyArray_Check` (
- *obj*) is TRUE then it is returned in *\*address* without
- incrementing its reference count.
-
-.. c:function:: int PyArray_IntpConverter(PyObject* obj, PyArray_Dims* seq)
-
- Convert any Python sequence, *obj*, smaller than :c:data:`NPY_MAXDIMS`
- to a C-array of :c:type:`npy_intp`. The Python object could also be a
- single number. The *seq* variable is a pointer to a structure with
- members ptr and len. On successful return, *seq* ->ptr contains a
- pointer to memory that must be freed, by calling :c:func:`PyDimMem_FREE`,
- to avoid a memory leak. The restriction on memory size allows this
- converter to be conveniently used for sequences intended to be
- interpreted as array shapes.
-
-.. c:function:: int PyArray_BufferConverter(PyObject* obj, PyArray_Chunk* buf)
-
- Convert any Python object, *obj*, with a (single-segment) buffer
- interface to a variable with members that detail the object's use
- of its chunk of memory. The *buf* variable is a pointer to a
- structure with base, ptr, len, and flags members. The
- :c:type:`PyArray_Chunk` structure is binary compatible with the
- Python's buffer object (through its len member on 32-bit platforms
- and its ptr member on 64-bit platforms or in Python 2.5). On
- return, the base member is set to *obj* (or its base if *obj* is
- already a buffer object pointing to another object). If you need
- to hold on to the memory be sure to INCREF the base member. The
- chunk of memory is pointed to by *buf* ->ptr member and has length
- *buf* ->len. The flags member of *buf* is :c:data:`NPY_BEHAVED_RO` with
- the :c:data:`NPY_ARRAY_WRITEABLE` flag set if *obj* has a writeable buffer
- interface.
-
-.. c:function:: int PyArray_AxisConverter(PyObject \* obj, int* axis)
-
- Convert a Python object, *obj*, representing an axis argument to
- the proper value for passing to the functions that take an integer
- axis. Specifically, if *obj* is None, *axis* is set to
- :c:data:`NPY_MAXDIMS` which is interpreted correctly by the C-API
- functions that take axis arguments.
-
-.. c:function:: int PyArray_BoolConverter(PyObject* obj, Bool* value)
-
- Convert any Python object, *obj*, to :c:data:`NPY_TRUE` or
- :c:data:`NPY_FALSE`, and place the result in *value*.
-
-.. c:function:: int PyArray_ByteorderConverter(PyObject* obj, char* endian)
-
- Convert Python strings into the corresponding byte-order
- character:
- '>', '<', 's', '=', or '\|'.
-
-.. c:function:: int PyArray_SortkindConverter(PyObject* obj, NPY_SORTKIND* sort)
-
- Convert Python strings into one of :c:data:`NPY_QUICKSORT` (starts
- with 'q' or 'Q'), :c:data:`NPY_HEAPSORT` (starts with 'h' or 'H'),
- :c:data:`NPY_MERGESORT` (starts with 'm' or 'M') or :c:data:`NPY_STABLESORT`
- (starts with 't' or 'T'). :c:data:`NPY_MERGESORT` and :c:data:`NPY_STABLESORT`
- are aliased to each other for backwards compatibility and may refer to one
- of several stable sorting algorithms depending on the data type.
-
-.. c:function:: int PyArray_SearchsideConverter( \
- PyObject* obj, NPY_SEARCHSIDE* side)
-
- Convert Python strings into one of :c:data:`NPY_SEARCHLEFT` (starts with 'l'
- or 'L'), or :c:data:`NPY_SEARCHRIGHT` (starts with 'r' or 'R').
-
-.. c:function:: int PyArray_OrderConverter(PyObject* obj, NPY_ORDER* order)
-
- Convert the Python strings 'C', 'F', 'A', and 'K' into the :c:type:`NPY_ORDER`
- enumeration :c:data:`NPY_CORDER`, :c:data:`NPY_FORTRANORDER`,
- :c:data:`NPY_ANYORDER`, and :c:data:`NPY_KEEPORDER`.
-
-.. c:function:: int PyArray_CastingConverter( \
- PyObject* obj, NPY_CASTING* casting)
-
- Convert the Python strings 'no', 'equiv', 'safe', 'same_kind', and
- 'unsafe' into the :c:type:`NPY_CASTING` enumeration :c:data:`NPY_NO_CASTING`,
- :c:data:`NPY_EQUIV_CASTING`, :c:data:`NPY_SAFE_CASTING`,
- :c:data:`NPY_SAME_KIND_CASTING`, and :c:data:`NPY_UNSAFE_CASTING`.
-
-.. c:function:: int PyArray_ClipmodeConverter( \
- PyObject* object, NPY_CLIPMODE* val)
-
- Convert the Python strings 'clip', 'wrap', and 'raise' into the
- :c:type:`NPY_CLIPMODE` enumeration :c:data:`NPY_CLIP`, :c:data:`NPY_WRAP`,
- and :c:data:`NPY_RAISE`.
-
-.. c:function:: int PyArray_ConvertClipmodeSequence( \
- PyObject* object, NPY_CLIPMODE* modes, int n)
-
- Converts either a sequence of clipmodes or a single clipmode into
- a C array of :c:type:`NPY_CLIPMODE` values. The number of clipmodes *n*
- must be known before calling this function. This function is provided
- to help functions allow a different clipmode for each dimension.
-
-Other conversions
-^^^^^^^^^^^^^^^^^
-
-.. c:function:: int PyArray_PyIntAsInt(PyObject* op)
-
- Convert all kinds of Python objects (including arrays and array
- scalars) to a standard integer. On error, -1 is returned and an
- exception set. You may find useful the macro:
-
- .. code-block:: c
-
- #define error_converting(x) (((x) == -1) && PyErr_Occurred()
-
-.. c:function:: npy_intp PyArray_PyIntAsIntp(PyObject* op)
-
- Convert all kinds of Python objects (including arrays and array
- scalars) to a (platform-pointer-sized) integer. On error, -1 is
- returned and an exception set.
-
-.. c:function:: int PyArray_IntpFromSequence( \
- PyObject* seq, npy_intp* vals, int maxvals)
-
- Convert any Python sequence (or single Python number) passed in as
- *seq* to (up to) *maxvals* pointer-sized integers and place them
- in the *vals* array. The sequence can be smaller then *maxvals* as
- the number of converted objects is returned.
-
-.. c:function:: int PyArray_TypestrConvert(int itemsize, int gentype)
-
- Convert typestring characters (with *itemsize*) to basic
- enumerated data types. The typestring character corresponding to
- signed and unsigned integers, floating point numbers, and
- complex-floating point numbers are recognized and converted. Other
- values of gentype are returned. This function can be used to
- convert, for example, the string 'f4' to :c:data:`NPY_FLOAT32`.
-
-
-Miscellaneous
--------------
-
-
-Importing the API
-^^^^^^^^^^^^^^^^^
-
-In order to make use of the C-API from another extension module, the
-:c:func:`import_array` function must be called. If the extension module is
-self-contained in a single .c file, then that is all that needs to be
-done. If, however, the extension module involves multiple files where
-the C-API is needed then some additional steps must be taken.
-
-.. c:function:: void import_array(void)
-
- This function must be called in the initialization section of a
- module that will make use of the C-API. It imports the module
- where the function-pointer table is stored and points the correct
- variable to it.
-
-.. c:macro:: PY_ARRAY_UNIQUE_SYMBOL
-
-.. c:macro:: NO_IMPORT_ARRAY
-
- Using these #defines you can use the C-API in multiple files for a
- single extension module. In each file you must define
- :c:macro:`PY_ARRAY_UNIQUE_SYMBOL` to some name that will hold the
- C-API (*e.g.* myextension_ARRAY_API). This must be done **before**
- including the numpy/arrayobject.h file. In the module
- initialization routine you call :c:func:`import_array`. In addition,
- in the files that do not have the module initialization
- sub_routine define :c:macro:`NO_IMPORT_ARRAY` prior to including
- numpy/arrayobject.h.
-
- Suppose I have two files coolmodule.c and coolhelper.c which need
- to be compiled and linked into a single extension module. Suppose
- coolmodule.c contains the required initcool module initialization
- function (with the import_array() function called). Then,
- coolmodule.c would have at the top:
-
- .. code-block:: c
-
- #define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
- #include numpy/arrayobject.h
-
- On the other hand, coolhelper.c would contain at the top:
-
- .. code-block:: c
-
- #define NO_IMPORT_ARRAY
- #define PY_ARRAY_UNIQUE_SYMBOL cool_ARRAY_API
- #include numpy/arrayobject.h
-
- You can also put the common two last lines into an extension-local
- header file as long as you make sure that NO_IMPORT_ARRAY is
- #defined before #including that file.
-
- Internally, these #defines work as follows:
-
- * If neither is defined, the C-API is declared to be
- :c:type:`static void**`, so it is only visible within the
- compilation unit that #includes numpy/arrayobject.h.
- * If :c:macro:`PY_ARRAY_UNIQUE_SYMBOL` is #defined, but
- :c:macro:`NO_IMPORT_ARRAY` is not, the C-API is declared to
- be :c:type:`void**`, so that it will also be visible to other
- compilation units.
- * If :c:macro:`NO_IMPORT_ARRAY` is #defined, regardless of
- whether :c:macro:`PY_ARRAY_UNIQUE_SYMBOL` is, the C-API is
- declared to be :c:type:`extern void**`, so it is expected to
- be defined in another compilation unit.
- * Whenever :c:macro:`PY_ARRAY_UNIQUE_SYMBOL` is #defined, it
- also changes the name of the variable holding the C-API, which
- defaults to :c:data:`PyArray_API`, to whatever the macro is
- #defined to.
-
-Checking the API Version
-^^^^^^^^^^^^^^^^^^^^^^^^
-
-Because python extensions are not used in the same way as usual libraries on
-most platforms, some errors cannot be automatically detected at build time or
-even runtime. For example, if you build an extension using a function available
-only for numpy >= 1.3.0, and you import the extension later with numpy 1.2, you
-will not get an import error (but almost certainly a segmentation fault when
-calling the function). That's why several functions are provided to check for
-numpy versions. The macros :c:data:`NPY_VERSION` and
-:c:data:`NPY_FEATURE_VERSION` corresponds to the numpy version used to build the
-extension, whereas the versions returned by the functions
-PyArray_GetNDArrayCVersion and PyArray_GetNDArrayCFeatureVersion corresponds to
-the runtime numpy's version.
-
-The rules for ABI and API compatibilities can be summarized as follows:
-
- * Whenever :c:data:`NPY_VERSION` != PyArray_GetNDArrayCVersion, the
- extension has to be recompiled (ABI incompatibility).
- * :c:data:`NPY_VERSION` == PyArray_GetNDArrayCVersion and
- :c:data:`NPY_FEATURE_VERSION` <= PyArray_GetNDArrayCFeatureVersion means
- backward compatible changes.
-
-ABI incompatibility is automatically detected in every numpy's version. API
-incompatibility detection was added in numpy 1.4.0. If you want to supported
-many different numpy versions with one extension binary, you have to build your
-extension with the lowest NPY_FEATURE_VERSION as possible.
-
-.. c:function:: unsigned int PyArray_GetNDArrayCVersion(void)
-
- This just returns the value :c:data:`NPY_VERSION`. :c:data:`NPY_VERSION`
- changes whenever a backward incompatible change at the ABI level. Because
- it is in the C-API, however, comparing the output of this function from the
- value defined in the current header gives a way to test if the C-API has
- changed thus requiring a re-compilation of extension modules that use the
- C-API. This is automatically checked in the function :c:func:`import_array`.
-
-.. c:function:: unsigned int PyArray_GetNDArrayCFeatureVersion(void)
-
- .. versionadded:: 1.4.0
-
- This just returns the value :c:data:`NPY_FEATURE_VERSION`.
- :c:data:`NPY_FEATURE_VERSION` changes whenever the API changes (e.g. a
- function is added). A changed value does not always require a recompile.
-
-Internal Flexibility
-^^^^^^^^^^^^^^^^^^^^
-
-.. c:function:: int PyArray_SetNumericOps(PyObject* dict)
-
- NumPy stores an internal table of Python callable objects that are
- used to implement arithmetic operations for arrays as well as
- certain array calculation methods. This function allows the user
- to replace any or all of these Python objects with their own
- versions. The keys of the dictionary, *dict*, are the named
- functions to replace and the paired value is the Python callable
- object to use. Care should be taken that the function used to
- replace an internal array operation does not itself call back to
- that internal array operation (unless you have designed the
- function to handle that), or an unchecked infinite recursion can
- result (possibly causing program crash). The key names that
- represent operations that can be replaced are:
-
- **add**, **subtract**, **multiply**, **divide**,
- **remainder**, **power**, **square**, **reciprocal**,
- **ones_like**, **sqrt**, **negative**, **positive**,
- **absolute**, **invert**, **left_shift**, **right_shift**,
- **bitwise_and**, **bitwise_xor**, **bitwise_or**,
- **less**, **less_equal**, **equal**, **not_equal**,
- **greater**, **greater_equal**, **floor_divide**,
- **true_divide**, **logical_or**, **logical_and**,
- **floor**, **ceil**, **maximum**, **minimum**, **rint**.
-
-
- These functions are included here because they are used at least once
- in the array object's methods. The function returns -1 (without
- setting a Python Error) if one of the objects being assigned is not
- callable.
-
- .. deprecated:: 1.16
-
-.. c:function:: PyObject* PyArray_GetNumericOps(void)
-
- Return a Python dictionary containing the callable Python objects
- stored in the internal arithmetic operation table. The keys of
- this dictionary are given in the explanation for :c:func:`PyArray_SetNumericOps`.
-
- .. deprecated:: 1.16
-
-.. c:function:: void PyArray_SetStringFunction(PyObject* op, int repr)
-
- This function allows you to alter the tp_str and tp_repr methods
- of the array object to any Python function. Thus you can alter
- what happens for all arrays when str(arr) or repr(arr) is called
- from Python. The function to be called is passed in as *op*. If
- *repr* is non-zero, then this function will be called in response
- to repr(arr), otherwise the function will be called in response to
- str(arr). No check on whether or not *op* is callable is
- performed. The callable passed in to *op* should expect an array
- argument and should return a string to be printed.
-
-
-Memory management
-^^^^^^^^^^^^^^^^^
-
-.. c:function:: char* PyDataMem_NEW(size_t nbytes)
-
-.. c:function:: PyDataMem_FREE(char* ptr)
-
-.. c:function:: char* PyDataMem_RENEW(void * ptr, size_t newbytes)
-
- Macros to allocate, free, and reallocate memory. These macros are used
- internally to create arrays.
-
-.. c:function:: npy_intp* PyDimMem_NEW(int nd)
-
-.. c:function:: PyDimMem_FREE(char* ptr)
-
-.. c:function:: npy_intp* PyDimMem_RENEW(void* ptr, size_t newnd)
-
- Macros to allocate, free, and reallocate dimension and strides memory.
-
-.. c:function:: void* PyArray_malloc(size_t nbytes)
-
-.. c:function:: PyArray_free(void* ptr)
-
-.. c:function:: void* PyArray_realloc(npy_intp* ptr, size_t nbytes)
-
- These macros use different memory allocators, depending on the
- constant :c:data:`NPY_USE_PYMEM`. The system malloc is used when
- :c:data:`NPY_USE_PYMEM` is 0, if :c:data:`NPY_USE_PYMEM` is 1, then
- the Python memory allocator is used.
-
-.. c:function:: int PyArray_ResolveWritebackIfCopy(PyArrayObject* obj)
-
- If ``obj.flags`` has :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` or (deprecated)
- :c:data:`NPY_ARRAY_UPDATEIFCOPY`, this function clears the flags, `DECREF` s
- `obj->base` and makes it writeable, and sets ``obj->base`` to NULL. It then
- copies ``obj->data`` to `obj->base->data`, and returns the error state of
- the copy operation. This is the opposite of
- :c:func:`PyArray_SetWritebackIfCopyBase`. Usually this is called once
- you are finished with ``obj``, just before ``Py_DECREF(obj)``. It may be called
- multiple times, or with ``NULL`` input. See also
- :c:func:`PyArray_DiscardWritebackIfCopy`.
-
- Returns 0 if nothing was done, -1 on error, and 1 if action was taken.
-
-Threading support
-^^^^^^^^^^^^^^^^^
-
-These macros are only meaningful if :c:data:`NPY_ALLOW_THREADS`
-evaluates True during compilation of the extension module. Otherwise,
-these macros are equivalent to whitespace. Python uses a single Global
-Interpreter Lock (GIL) for each Python process so that only a single
-thread may execute at a time (even on multi-cpu machines). When
-calling out to a compiled function that may take time to compute (and
-does not have side-effects for other threads like updated global
-variables), the GIL should be released so that other Python threads
-can run while the time-consuming calculations are performed. This can
-be accomplished using two groups of macros. Typically, if one macro in
-a group is used in a code block, all of them must be used in the same
-code block. Currently, :c:data:`NPY_ALLOW_THREADS` is defined to the
-python-defined :c:data:`WITH_THREADS` constant unless the environment
-variable :c:data:`NPY_NOSMP` is set in which case
-:c:data:`NPY_ALLOW_THREADS` is defined to be 0.
-
-Group 1
-"""""""
-
- This group is used to call code that may take some time but does not
- use any Python C-API calls. Thus, the GIL should be released during
- its calculation.
-
- .. c:macro:: NPY_BEGIN_ALLOW_THREADS
-
- Equivalent to :c:macro:`Py_BEGIN_ALLOW_THREADS` except it uses
- :c:data:`NPY_ALLOW_THREADS` to determine if the macro if
- replaced with white-space or not.
-
- .. c:macro:: NPY_END_ALLOW_THREADS
-
- Equivalent to :c:macro:`Py_END_ALLOW_THREADS` except it uses
- :c:data:`NPY_ALLOW_THREADS` to determine if the macro if
- replaced with white-space or not.
-
- .. c:macro:: NPY_BEGIN_THREADS_DEF
-
- Place in the variable declaration area. This macro sets up the
- variable needed for storing the Python state.
-
- .. c:macro:: NPY_BEGIN_THREADS
-
- Place right before code that does not need the Python
- interpreter (no Python C-API calls). This macro saves the
- Python state and releases the GIL.
-
- .. c:macro:: NPY_END_THREADS
-
- Place right after code that does not need the Python
- interpreter. This macro acquires the GIL and restores the
- Python state from the saved variable.
-
- .. c:function:: NPY_BEGIN_THREADS_DESCR(PyArray_Descr *dtype)
-
- Useful to release the GIL only if *dtype* does not contain
- arbitrary Python objects which may need the Python interpreter
- during execution of the loop. Equivalent to
-
- .. c:function:: NPY_END_THREADS_DESCR(PyArray_Descr *dtype)
-
- Useful to regain the GIL in situations where it was released
- using the BEGIN form of this macro.
-
- .. c:function:: NPY_BEGIN_THREADS_THRESHOLDED(int loop_size)
-
- Useful to release the GIL only if *loop_size* exceeds a
- minimum threshold, currently set to 500. Should be matched
- with a :c:macro:`NPY_END_THREADS` to regain the GIL.
-
-Group 2
-"""""""
-
- This group is used to re-acquire the Python GIL after it has been
- released. For example, suppose the GIL has been released (using the
- previous calls), and then some path in the code (perhaps in a
- different subroutine) requires use of the Python C-API, then these
- macros are useful to acquire the GIL. These macros accomplish
- essentially a reverse of the previous three (acquire the LOCK saving
- what state it had) and then re-release it with the saved state.
-
- .. c:macro:: NPY_ALLOW_C_API_DEF
-
- Place in the variable declaration area to set up the necessary
- variable.
-
- .. c:macro:: NPY_ALLOW_C_API
-
- Place before code that needs to call the Python C-API (when it is
- known that the GIL has already been released).
-
- .. c:macro:: NPY_DISABLE_C_API
-
- Place after code that needs to call the Python C-API (to re-release
- the GIL).
-
-.. tip::
-
- Never use semicolons after the threading support macros.
-
-
-Priority
-^^^^^^^^
-
-.. c:var:: NPY_PRIORITY
-
- Default priority for arrays.
-
-.. c:var:: NPY_SUBTYPE_PRIORITY
-
- Default subtype priority.
-
-.. c:var:: NPY_SCALAR_PRIORITY
-
- Default scalar priority (very small)
-
-.. c:function:: double PyArray_GetPriority(PyObject* obj, double def)
-
- Return the :obj:`~numpy.class.__array_priority__` attribute (converted to a
- double) of *obj* or *def* if no attribute of that name
- exists. Fast returns that avoid the attribute lookup are provided
- for objects of type :c:data:`PyArray_Type`.
-
-
-Default buffers
-^^^^^^^^^^^^^^^
-
-.. c:var:: NPY_BUFSIZE
-
- Default size of the user-settable internal buffers.
-
-.. c:var:: NPY_MIN_BUFSIZE
-
- Smallest size of user-settable internal buffers.
-
-.. c:var:: NPY_MAX_BUFSIZE
-
- Largest size allowed for the user-settable buffers.
-
-
-Other constants
-^^^^^^^^^^^^^^^
-
-.. c:var:: NPY_NUM_FLOATTYPE
-
- The number of floating-point types
-
-.. c:var:: NPY_MAXDIMS
-
- The maximum number of dimensions allowed in arrays.
-
-.. c:var:: NPY_MAXARGS
-
- The maximum number of array arguments that can be used in functions.
-
-.. c:var:: NPY_VERSION
-
- The current version of the ndarray object (check to see if this
- variable is defined to guarantee the numpy/arrayobject.h header is
- being used).
-
-.. c:var:: NPY_FALSE
-
- Defined as 0 for use with Bool.
-
-.. c:var:: NPY_TRUE
-
- Defined as 1 for use with Bool.
-
-.. c:var:: NPY_FAIL
-
- The return value of failed converter functions which are called using
- the "O&" syntax in :c:func:`PyArg_ParseTuple`-like functions.
-
-.. c:var:: NPY_SUCCEED
-
- The return value of successful converter functions which are called
- using the "O&" syntax in :c:func:`PyArg_ParseTuple`-like functions.
-
-
-Miscellaneous Macros
-^^^^^^^^^^^^^^^^^^^^
-
-.. c:function:: PyArray_SAMESHAPE(PyArrayObject *a1, PyArrayObject *a2)
-
- Evaluates as True if arrays *a1* and *a2* have the same shape.
-
-.. c:macro:: PyArray_MAX(a,b)
-
- Returns the maximum of *a* and *b*. If (*a*) or (*b*) are
- expressions they are evaluated twice.
-
-.. c:macro:: PyArray_MIN(a,b)
-
- Returns the minimum of *a* and *b*. If (*a*) or (*b*) are
- expressions they are evaluated twice.
-
-.. c:macro:: PyArray_CLT(a,b)
-
-.. c:macro:: PyArray_CGT(a,b)
-
-.. c:macro:: PyArray_CLE(a,b)
-
-.. c:macro:: PyArray_CGE(a,b)
-
-.. c:macro:: PyArray_CEQ(a,b)
-
-.. c:macro:: PyArray_CNE(a,b)
-
- Implements the complex comparisons between two complex numbers
- (structures with a real and imag member) using NumPy's definition
- of the ordering which is lexicographic: comparing the real parts
- first and then the complex parts if the real parts are equal.
-
-.. c:function:: PyArray_REFCOUNT(PyObject* op)
-
- Returns the reference count of any Python object.
-
-.. c:function:: PyArray_DiscardWritebackIfCopy(PyObject* obj)
-
- If ``obj.flags`` has :c:data:`NPY_ARRAY_WRITEBACKIFCOPY` or (deprecated)
- :c:data:`NPY_ARRAY_UPDATEIFCOPY`, this function clears the flags, `DECREF` s
- `obj->base` and makes it writeable, and sets ``obj->base`` to NULL. In
- contrast to :c:func:`PyArray_DiscardWritebackIfCopy` it makes no attempt
- to copy the data from `obj->base` This undoes
- :c:func:`PyArray_SetWritebackIfCopyBase`. Usually this is called after an
- error when you are finished with ``obj``, just before ``Py_DECREF(obj)``.
- It may be called multiple times, or with ``NULL`` input.
-
-.. c:function:: PyArray_XDECREF_ERR(PyObject* obj)
-
- Deprecated in 1.14, use :c:func:`PyArray_DiscardWritebackIfCopy`
- followed by ``Py_XDECREF``
-
- DECREF's an array object which may have the (deprecated)
- :c:data:`NPY_ARRAY_UPDATEIFCOPY` or :c:data:`NPY_ARRAY_WRITEBACKIFCOPY`
- flag set without causing the contents to be copied back into the
- original array. Resets the :c:data:`NPY_ARRAY_WRITEABLE` flag on the base
- object. This is useful for recovering from an error condition when
- writeback semantics are used, but will lead to wrong results.
-
-
-Enumerated Types
-^^^^^^^^^^^^^^^^
-
-.. c:type:: NPY_SORTKIND
-
- A special variable-type which can take on different values to indicate
- the sorting algorithm being used.
-
- .. c:var:: NPY_QUICKSORT
-
- .. c:var:: NPY_HEAPSORT
-
- .. c:var:: NPY_MERGESORT
-
- .. c:var:: NPY_STABLESORT
-
- Used as an alias of :c:data:`NPY_MERGESORT` and vica versa.
-
- .. c:var:: NPY_NSORTS
-
- Defined to be the number of sorts. It is fixed at three by the need for
- backwards compatibility, and consequently :c:data:`NPY_MERGESORT` and
- :c:data:`NPY_STABLESORT` are aliased to each other and may refer to one
- of several stable sorting algorithms depending on the data type.
-
-
-.. c:type:: NPY_SCALARKIND
-
- A special variable type indicating the number of "kinds" of
- scalars distinguished in determining scalar-coercion rules. This
- variable can take on the values :c:data:`NPY_{KIND}` where ``{KIND}`` can be
-
- **NOSCALAR**, **BOOL_SCALAR**, **INTPOS_SCALAR**,
- **INTNEG_SCALAR**, **FLOAT_SCALAR**, **COMPLEX_SCALAR**,
- **OBJECT_SCALAR**
-
- .. c:var:: NPY_NSCALARKINDS
-
- Defined to be the number of scalar kinds
- (not including :c:data:`NPY_NOSCALAR`).
-
-.. c:type:: NPY_ORDER
-
- An enumeration type indicating the element order that an array should be
- interpreted in. When a brand new array is created, generally
- only **NPY_CORDER** and **NPY_FORTRANORDER** are used, whereas
- when one or more inputs are provided, the order can be based on them.
-
- .. c:var:: NPY_ANYORDER
-
- Fortran order if all the inputs are Fortran, C otherwise.
-
- .. c:var:: NPY_CORDER
-
- C order.
-
- .. c:var:: NPY_FORTRANORDER
-
- Fortran order.
-
- .. c:var:: NPY_KEEPORDER
-
- An order as close to the order of the inputs as possible, even
- if the input is in neither C nor Fortran order.
-
-.. c:type:: NPY_CLIPMODE
-
- A variable type indicating the kind of clipping that should be
- applied in certain functions.
-
- .. c:var:: NPY_RAISE
-
- The default for most operations, raises an exception if an index
- is out of bounds.
-
- .. c:var:: NPY_CLIP
-
- Clips an index to the valid range if it is out of bounds.
-
- .. c:var:: NPY_WRAP
-
- Wraps an index to the valid range if it is out of bounds.
-
-.. c:type:: NPY_CASTING
-
- .. versionadded:: 1.6
-
- An enumeration type indicating how permissive data conversions should
- be. This is used by the iterator added in NumPy 1.6, and is intended
- to be used more broadly in a future version.
-
- .. c:var:: NPY_NO_CASTING
-
- Only allow identical types.
-
- .. c:var:: NPY_EQUIV_CASTING
-
- Allow identical and casts involving byte swapping.
-
- .. c:var:: NPY_SAFE_CASTING
-
- Only allow casts which will not cause values to be rounded,
- truncated, or otherwise changed.
-
- .. c:var:: NPY_SAME_KIND_CASTING
-
- Allow any safe casts, and casts between types of the same kind.
- For example, float64 -> float32 is permitted with this rule.
-
- .. c:var:: NPY_UNSAFE_CASTING
-
- Allow any cast, no matter what kind of data loss may occur.
-
-.. index::
- pair: ndarray; C-API