diff options
author | Pierre de Buyl <pdebuyl@pdebuyl.be> | 2021-11-03 15:24:44 +0100 |
---|---|---|
committer | Pierre de Buyl <pdebuyl@pdebuyl.be> | 2021-12-08 15:29:33 +0100 |
commit | 2525741592afd597572935402355e9d81dac86bd (patch) | |
tree | 0c5441cd6ebc6f51fc871e3edaf1ebfc7df276b5 /doc/source/reference/random | |
parent | ce4555cbfc216a72c19e7369fe3353806bb89b67 (diff) | |
download | numpy-2525741592afd597572935402355e9d81dac86bd.tar.gz |
[DOC] make some doctests in user,reference pass pytest
1. Add `import numpy as np` in rst files
2. Update NumPy repr for array (whitespace)
3. Update bytearray representation
4. Fix tiny output formatting (`<class ...>`, etc)
5. Format tracebacks
6. Skip random number tests or some platform-dependent outputs
7. Add `<matplotlib. ... at 0x...>` or similar output lines where
missing
8. Set seed
Diffstat (limited to 'doc/source/reference/random')
-rw-r--r-- | doc/source/reference/random/generator.rst | 29 |
1 files changed, 16 insertions, 13 deletions
diff --git a/doc/source/reference/random/generator.rst b/doc/source/reference/random/generator.rst index 7934be98a..4a863ebf3 100644 --- a/doc/source/reference/random/generator.rst +++ b/doc/source/reference/random/generator.rst @@ -12,6 +12,9 @@ random values from useful distributions. The default BitGenerator used by can be changed by passing an instantized BitGenerator to ``Generator``. +.. for doctest: + >>> import numpy as np + .. autofunction:: default_rng .. autoclass:: Generator @@ -71,7 +74,7 @@ By default, `Generator.permuted` returns a copy. To operate in-place with `Generator.permuted`, pass the same array as the first argument *and* as the value of the ``out`` parameter. For example, - >>> rng = np.random.default_rng() + >>> rng = np.random.default_rng(12345) >>> x = np.arange(0, 15).reshape(3, 5) >>> x array([[ 0, 1, 2, 3, 4], @@ -79,9 +82,9 @@ the value of the ``out`` parameter. For example, [10, 11, 12, 13, 14]]) >>> y = rng.permuted(x, axis=1, out=x) >>> x - array([[ 1, 0, 2, 4, 3], # random - [ 6, 7, 8, 9, 5], - [10, 14, 11, 13, 12]]) + array([[ 4, 3, 0, 2, 1], + [ 9, 7, 6, 8, 5], + [10, 12, 13, 11, 14]]) Note that when ``out`` is given, the return value is ``out``: @@ -97,16 +100,16 @@ which dimension of the input array to use as the sequence. In the case of a two-dimensional array, ``axis=0`` will, in effect, rearrange the rows of the array, and ``axis=1`` will rearrange the columns. For example - >>> rng = np.random.default_rng() + >>> rng = np.random.default_rng(2345) >>> x = np.arange(0, 15).reshape(3, 5) >>> x array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) >>> rng.permutation(x, axis=1) - array([[ 1, 3, 2, 0, 4], # random - [ 6, 8, 7, 5, 9], - [11, 13, 12, 10, 14]]) + array([[ 4, 2, 1, 3, 0], + [ 9, 7, 6, 8, 5], + [14, 12, 11, 13, 10]]) Note that the columns have been rearranged "in bulk": the values within each column have not changed. @@ -117,9 +120,9 @@ independently of the others. Compare the following example of the use of `Generator.permuted` to the above example of `Generator.permutation`: >>> rng.permuted(x, axis=1) - array([[ 1, 0, 2, 4, 3], # random - [ 5, 7, 6, 9, 8], - [10, 14, 12, 13, 11]]) + array([[ 1, 2, 0, 3, 4], + [ 7, 9, 8, 6, 5], + [13, 11, 10, 14, 12]]) In this example, the values within each row (i.e. the values along ``axis=1``) have been shuffled independently. This is not a "bulk" @@ -131,11 +134,11 @@ Shuffling non-NumPy sequences a sequence that is not a NumPy array, it shuffles that sequence in-place. For example, - >>> rng = np.random.default_rng() + >>> rng = np.random.default_rng(3456) >>> a = ['A', 'B', 'C', 'D', 'E'] >>> rng.shuffle(a) # shuffle the list in-place >>> a - ['B', 'D', 'A', 'E', 'C'] # random + ['B', 'E', 'A', 'D', 'C'] Distributions ============= |