summaryrefslogtreecommitdiff
path: root/doc/source/reference/random
diff options
context:
space:
mode:
authorPierre de Buyl <pdebuyl@pdebuyl.be>2021-11-17 10:09:40 +0100
committerPierre de Buyl <pdebuyl@pdebuyl.be>2021-12-08 15:29:33 +0100
commit4a9e3905c06ddd932f78886a27696ba445c90627 (patch)
tree9f15212fc64b9179d23f4f8adfb8260e7c898eaa /doc/source/reference/random
parent393fcf811dc099a052c2e09ac14899c0d8326dc2 (diff)
downloadnumpy-4a9e3905c06ddd932f78886a27696ba445c90627.tar.gz
revert default_rng seeding and use SKIP
Diffstat (limited to 'doc/source/reference/random')
-rw-r--r--doc/source/reference/random/generator.rst36
1 files changed, 18 insertions, 18 deletions
diff --git a/doc/source/reference/random/generator.rst b/doc/source/reference/random/generator.rst
index ecf3f45e8..a0ef01dcb 100644
--- a/doc/source/reference/random/generator.rst
+++ b/doc/source/reference/random/generator.rst
@@ -71,17 +71,17 @@ By default, `Generator.permuted` returns a copy. To operate in-place with
`Generator.permuted`, pass the same array as the first argument *and* as
the value of the ``out`` parameter. For example,
- >>> rng = np.random.default_rng(12345)
+ >>> rng = np.random.default_rng()
>>> x = np.arange(0, 15).reshape(3, 5)
- >>> x
+ >>> x #doctest: +SKIP
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
>>> y = rng.permuted(x, axis=1, out=x)
- >>> x
- array([[ 4, 3, 0, 2, 1],
- [ 9, 7, 6, 8, 5],
- [10, 12, 13, 11, 14]])
+ >>> x #doctest: +SKIP
+ array([[ 1, 0, 2, 4, 3], # random
+ [ 6, 7, 8, 9, 5],
+ [10, 14, 11, 13, 12]])
Note that when ``out`` is given, the return value is ``out``:
@@ -97,16 +97,16 @@ which dimension of the input array to use as the sequence. In the case of a
two-dimensional array, ``axis=0`` will, in effect, rearrange the rows of the
array, and ``axis=1`` will rearrange the columns. For example
- >>> rng = np.random.default_rng(2345)
+ >>> rng = np.random.default_rng()
>>> x = np.arange(0, 15).reshape(3, 5)
>>> x
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
- >>> rng.permutation(x, axis=1)
- array([[ 4, 2, 1, 3, 0],
- [ 9, 7, 6, 8, 5],
- [14, 12, 11, 13, 10]])
+ >>> rng.permutation(x, axis=1) #doctest: +SKIP
+ array([[ 1, 3, 2, 0, 4], # random
+ [ 6, 8, 7, 5, 9],
+ [11, 13, 12, 10, 14]])
Note that the columns have been rearranged "in bulk": the values within
each column have not changed.
@@ -116,10 +116,10 @@ how `numpy.sort` treats it. Each slice along the given axis is shuffled
independently of the others. Compare the following example of the use of
`Generator.permuted` to the above example of `Generator.permutation`:
- >>> rng.permuted(x, axis=1)
- array([[ 1, 2, 0, 3, 4],
- [ 7, 9, 8, 6, 5],
- [13, 11, 10, 14, 12]])
+ >>> rng.permuted(x, axis=1) #doctest: +SKIP
+ array([[ 1, 0, 2, 4, 3], # random
+ [ 5, 7, 6, 9, 8],
+ [10, 14, 12, 13, 11]])
In this example, the values within each row (i.e. the values along
``axis=1``) have been shuffled independently. This is not a "bulk"
@@ -131,11 +131,11 @@ Shuffling non-NumPy sequences
a sequence that is not a NumPy array, it shuffles that sequence in-place.
For example,
- >>> rng = np.random.default_rng(3456)
+ >>> rng = np.random.default_rng()
>>> a = ['A', 'B', 'C', 'D', 'E']
>>> rng.shuffle(a) # shuffle the list in-place
- >>> a
- ['B', 'E', 'A', 'D', 'C']
+ >>> a #doctest: +SKIP
+ ['B', 'D', 'A', 'E', 'C'] # random
Distributions
=============