diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2015-07-01 11:44:49 -0600 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2015-07-01 23:40:55 -0600 |
commit | 6646bdfeac189c50b19b032ea8b6795ea7fd2074 (patch) | |
tree | 5ae42a27c3852f62c561e5c2ccb02e40349faedb /doc/source/reference | |
parent | 61d2a445881f80b52bc9facdbd4f58f6e74c637b (diff) | |
download | numpy-6646bdfeac189c50b19b032ea8b6795ea7fd2074.tar.gz |
DOC: Fix outdated sphinx directives.
Examples
:cdata: -> :c:data:
.. cfunction:: -> .. c:function::
Diffstat (limited to 'doc/source/reference')
-rw-r--r-- | doc/source/reference/arrays.interface.rst | 30 | ||||
-rw-r--r-- | doc/source/reference/arrays.scalars.rst | 8 | ||||
-rw-r--r-- | doc/source/reference/c-api.array.rst | 1366 | ||||
-rw-r--r-- | doc/source/reference/c-api.config.rst | 52 | ||||
-rw-r--r-- | doc/source/reference/c-api.coremath.rst | 122 | ||||
-rw-r--r-- | doc/source/reference/c-api.dtype.rst | 150 | ||||
-rw-r--r-- | doc/source/reference/c-api.iterator.rst | 400 | ||||
-rw-r--r-- | doc/source/reference/c-api.types-and-structures.rst | 460 | ||||
-rw-r--r-- | doc/source/reference/c-api.ufunc.rst | 136 | ||||
-rw-r--r-- | doc/source/reference/internals.code-explanations.rst | 44 |
10 files changed, 1384 insertions, 1384 deletions
diff --git a/doc/source/reference/arrays.interface.rst b/doc/source/reference/arrays.interface.rst index 50595c2d8..f707c382e 100644 --- a/doc/source/reference/arrays.interface.rst +++ b/doc/source/reference/arrays.interface.rst @@ -12,7 +12,7 @@ The Array Interface This page describes the numpy-specific API for accessing the contents of a numpy array from other C extensions. :pep:`3118` -- - :cfunc:`The Revised Buffer Protocol <PyObject_GetBuffer>` introduces + :c:func:`The Revised Buffer Protocol <PyObject_GetBuffer>` introduces similar, standardized API to Python 2.6 and 3.0 for any extension module to use. Cython__'s buffer array support uses the :pep:`3118` API; see the `Cython numpy @@ -67,7 +67,7 @@ This approach to the interface consists of the object having an could hold (a Python int is a C long). It is up to the code using this attribute to handle this appropriately; either by raising an error when overflow is possible, or by using - :cdata:`Py_LONG_LONG` as the C type for the shapes. + :c:data:`Py_LONG_LONG` as the C type for the shapes. **typestr** (required) @@ -88,9 +88,9 @@ This approach to the interface consists of the object having an ``u`` Unsigned integer ``f`` Floating point ``c`` Complex floating point - ``O`` Object (i.e. the memory contains a pointer to :ctype:`PyObject`) + ``O`` Object (i.e. the memory contains a pointer to :c:type:`PyObject`) ``S`` String (fixed-length sequence of char) - ``U`` Unicode (fixed-length sequence of :ctype:`Py_UNICODE`) + ``U`` Unicode (fixed-length sequence of :c:type:`Py_UNICODE`) ``V`` Other (void \* -- each item is a fixed-size chunk of memory) ===== ================================================================ @@ -134,7 +134,7 @@ This approach to the interface consists of the object having an means the data area is read-only). This attribute can also be an object exposing the - :cfunc:`buffer interface <PyObject_AsCharBuffer>` which + :c:func:`buffer interface <PyObject_AsCharBuffer>` which will be used to share the data. If this key is not present (or returns :class:`None`), then memory sharing will be done through the buffer interface of the object itself. In this @@ -154,7 +154,7 @@ This approach to the interface consists of the object having an :const:`int` or :const:`long`). As with shape, the values may be larger than can be represented by a C "int" or "long"; the calling code should handle this appropiately, either by - raising an error, or by using :ctype:`Py_LONG_LONG` in C. The + raising an error, or by using :c:type:`Py_LONG_LONG` in C. The default is :const:`None` which implies a C-style contiguous memory buffer. In this model, the last dimension of the array varies the fastest. For example, the default strides tuple @@ -195,13 +195,13 @@ C-struct access This approach to the array interface allows for faster access to an array using only one attribute lookup and a well-defined C-structure. -.. cvar:: __array_struct__ +.. c:var:: __array_struct__ - A :ctype:`PyCObject` whose :cdata:`voidptr` member contains a - pointer to a filled :ctype:`PyArrayInterface` structure. Memory - for the structure is dynamically created and the :ctype:`PyCObject` + A :c:type: `PyCObject` whose :c:data:`voidptr` member contains a + pointer to a filled :c:type:`PyArrayInterface` structure. Memory + for the structure is dynamically created and the :c:type:`PyCObject` is also created with an appropriate destructor so the retriever of - this attribute simply has to apply :cfunc:`Py_DECREF()` to the + this attribute simply has to apply :c:func:`Py_DECREF()` to the object returned by this attribute when it is finished. Also, either the data needs to be copied out, or a reference to the object exposing this attribute must be held to ensure the data is @@ -239,12 +239,12 @@ flag is present. .. admonition:: New since June 16, 2006: In the past most implementations used the "desc" member of the - :ctype:`PyCObject` itself (do not confuse this with the "descr" member of - the :ctype:`PyArrayInterface` structure above --- they are two separate + :c:type:`PyCObject` itself (do not confuse this with the "descr" member of + the :c:type:`PyArrayInterface` structure above --- they are two separate things) to hold the pointer to the object exposing the interface. This is now an explicit part of the interface. Be sure to own a - reference to the object when the :ctype:`PyCObject` is created using - :ctype:`PyCObject_FromVoidPtrAndDesc`. + reference to the object when the :c:type:`PyCObject` is created using + :c:type:`PyCObject_FromVoidPtrAndDesc`. Type description examples diff --git a/doc/source/reference/arrays.scalars.rst b/doc/source/reference/arrays.scalars.rst index 652fa62e1..f8fad0095 100644 --- a/doc/source/reference/arrays.scalars.rst +++ b/doc/source/reference/arrays.scalars.rst @@ -65,15 +65,15 @@ Some of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as well as from the generic array scalar type: -==================== ==================== +==================== ================================ Array scalar type Related Python type -==================== ==================== +==================== ================================ :class:`int_` :class:`IntType` (Python 2 only) :class:`float_` :class:`FloatType` :class:`complex_` :class:`ComplexType` :class:`str_` :class:`StringType` :class:`unicode_` :class:`UnicodeType` -==================== ==================== +==================== ================================ The :class:`bool_` data type is very similar to the Python :class:`BooleanType` but does not inherit from it because Python's @@ -215,7 +215,7 @@ Attributes ========== The array scalar objects have an :obj:`array priority -<__array_priority__>` of :cdata:`NPY_SCALAR_PRIORITY` +<__array_priority__>` of :c:data:`NPY_SCALAR_PRIORITY` (-1,000,000.0). They also do not (yet) have a :attr:`ctypes <ndarray.ctypes>` attribute. Otherwise, they share the same attributes as arrays: diff --git a/doc/source/reference/c-api.array.rst b/doc/source/reference/c-api.array.rst index f5f753292..1dfd7d8f0 100644 --- a/doc/source/reference/c-api.array.rst +++ b/doc/source/reference/c-api.array.rst @@ -20,31 +20,31 @@ Array API Array structure and data access ------------------------------- -These macros all access the :ctype:`PyArrayObject` structure members. The input -argument, arr, can be any :ctype:`PyObject *` that is directly interpretable -as a :ctype:`PyArrayObject *` (any instance of the :cdata:`PyArray_Type` and its +These macros all access the :c:type:`PyArrayObject` structure members. The input +argument, arr, can be any :c:type:`PyObject *` that is directly interpretable +as a :c:type:`PyArrayObject *` (any instance of the :c:data:`PyArray_Type` and its sub-types). -.. cfunction:: int PyArray_NDIM(PyArrayObject *arr) +.. c:function:: int PyArray_NDIM(PyArrayObject *arr) The number of dimensions in the array. -.. cfunction:: npy_intp *PyArray_DIMS(PyArrayObject *arr) +.. c:function:: npy_intp *PyArray_DIMS(PyArrayObject *arr) Returns a pointer to the dimensions/shape of the array. The number of elements matches the number of dimensions of the array. -.. cfunction:: npy_intp *PyArray_SHAPE(PyArrayObject *arr) +.. c:function:: npy_intp *PyArray_SHAPE(PyArrayObject *arr) .. versionadded:: 1.7 A synonym for PyArray_DIMS, named to be consistent with the 'shape' usage within Python. -.. cfunction:: void *PyArray_DATA(PyArrayObject *arr) +.. c:function:: void *PyArray_DATA(PyArrayObject *arr) -.. cfunction:: char *PyArray_BYTES(PyArrayObject *arr) +.. c:function:: char *PyArray_BYTES(PyArrayObject *arr) These two macros are similar and obtain the pointer to the data-buffer for the array. The first macro can (and should be) @@ -53,94 +53,94 @@ sub-types). array then be sure you understand how to access the data in the array to avoid memory and/or alignment problems. -.. cfunction:: npy_intp *PyArray_STRIDES(PyArrayObject* arr) +.. c:function:: npy_intp *PyArray_STRIDES(PyArrayObject* arr) Returns a pointer to the strides of the array. The number of elements matches the number of dimensions of the array. -.. cfunction:: npy_intp PyArray_DIM(PyArrayObject* arr, int n) +.. c:function:: npy_intp PyArray_DIM(PyArrayObject* arr, int n) Return the shape in the *n* :math:`^{\textrm{th}}` dimension. -.. cfunction:: npy_intp PyArray_STRIDE(PyArrayObject* arr, int n) +.. c:function:: npy_intp PyArray_STRIDE(PyArrayObject* arr, int n) Return the stride in the *n* :math:`^{\textrm{th}}` dimension. -.. cfunction:: PyObject *PyArray_BASE(PyArrayObject* arr) +.. c:function:: PyObject *PyArray_BASE(PyArrayObject* arr) This returns the base object of the array. In most cases, this means the object which owns the memory the array is pointing at. If you are constructing an array using the C API, and specifying - your own memory, you should use the function :cfunc:`PyArray_SetBaseObject` + your own memory, you should use the function :c:func:`PyArray_SetBaseObject` to set the base to an object which owns the memory. - If the :cdata:`NPY_ARRAY_UPDATEIFCOPY` flag is set, it has a different + If the :c:data:`NPY_ARRAY_UPDATEIFCOPY` flag is set, it has a different meaning, namely base is the array into which the current array will be copied upon destruction. This overloading of the base property for two functions is likely to change in a future version of NumPy. -.. cfunction:: PyArray_Descr *PyArray_DESCR(PyArrayObject* arr) +.. c:function:: PyArray_Descr *PyArray_DESCR(PyArrayObject* arr) Returns a borrowed reference to the dtype property of the array. -.. cfunction:: PyArray_Descr *PyArray_DTYPE(PyArrayObject* arr) +.. c:function:: PyArray_Descr *PyArray_DTYPE(PyArrayObject* arr) .. versionadded:: 1.7 A synonym for PyArray_DESCR, named to be consistent with the 'dtype' usage within Python. -.. cfunction:: void PyArray_ENABLEFLAGS(PyArrayObject* arr, int flags) +.. c:function:: void PyArray_ENABLEFLAGS(PyArrayObject* arr, int flags) .. versionadded:: 1.7 Enables the specified array flags. This function does no validation, and assumes that you know what you're doing. -.. cfunction:: void PyArray_CLEARFLAGS(PyArrayObject* arr, int flags) +.. c:function:: void PyArray_CLEARFLAGS(PyArrayObject* arr, int flags) .. versionadded:: 1.7 Clears the specified array flags. This function does no validation, and assumes that you know what you're doing. -.. cfunction:: int PyArray_FLAGS(PyArrayObject* arr) +.. c:function:: int PyArray_FLAGS(PyArrayObject* arr) -.. cfunction:: npy_intp PyArray_ITEMSIZE(PyArrayObject* arr) +.. c:function:: npy_intp PyArray_ITEMSIZE(PyArrayObject* arr) Return the itemsize for the elements of this array. Note that, in the old API that was deprecated in version 1.7, this function had the return type ``int``. -.. cfunction:: int PyArray_TYPE(PyArrayObject* arr) +.. c:function:: int PyArray_TYPE(PyArrayObject* arr) Return the (builtin) typenumber for the elements of this array. -.. cfunction:: PyObject *PyArray_GETITEM(PyArrayObject* arr, void* itemptr) +.. c:function:: PyObject *PyArray_GETITEM(PyArrayObject* arr, void* itemptr) Get a Python object from the ndarray, *arr*, at the location pointed to by itemptr. Return ``NULL`` on failure. -.. cfunction:: int PyArray_SETITEM(PyArrayObject* arr, void* itemptr, PyObject* obj) +.. c:function:: int PyArray_SETITEM(PyArrayObject* arr, void* itemptr, PyObject* obj) Convert obj and place it in the ndarray, *arr*, at the place pointed to by itemptr. Return -1 if an error occurs or 0 on success. -.. cfunction:: npy_intp PyArray_SIZE(PyArrayObject* arr) +.. c:function:: npy_intp PyArray_SIZE(PyArrayObject* arr) Returns the total size (in number of elements) of the array. -.. cfunction:: npy_intp PyArray_Size(PyArrayObject* obj) +.. c:function:: npy_intp PyArray_Size(PyArrayObject* obj) Returns 0 if *obj* is not a sub-class of bigndarray. Otherwise, returns the total number of elements in the array. Safer version - of :cfunc:`PyArray_SIZE` (*obj*). + of :c:func:`PyArray_SIZE` (*obj*). -.. cfunction:: npy_intp PyArray_NBYTES(PyArrayObject* arr) +.. c:function:: npy_intp PyArray_NBYTES(PyArrayObject* arr) Returns the total number of bytes consumed by the array. @@ -154,27 +154,27 @@ when accessing the data in the array, however, if it is not in machine byte-order, misaligned, or not writeable. In other words, be sure to respect the state of the flags unless you know what you are doing, or have previously guaranteed an array that is writeable, aligned, and in -machine byte-order using :cfunc:`PyArray_FromAny`. If you wish to handle all +machine byte-order using :c:func:`PyArray_FromAny`. If you wish to handle all types of arrays, the copyswap function for each type is useful for handling misbehaved arrays. Some platforms (e.g. Solaris) do not like misaligned data and will crash if you de-reference a misaligned pointer. Other platforms (e.g. x86 Linux) will just work more slowly with misaligned data. -.. cfunction:: void* PyArray_GetPtr(PyArrayObject* aobj, npy_intp* ind) +.. c:function:: void* PyArray_GetPtr(PyArrayObject* aobj, npy_intp* ind) Return a pointer to the data of the ndarray, *aobj*, at the N-dimensional index given by the c-array, *ind*, (which must be at least *aobj* ->nd in size). You may want to typecast the returned pointer to the data type of the ndarray. -.. cfunction:: void* PyArray_GETPTR1(PyArrayObject* obj, npy_intp i) +.. c:function:: void* PyArray_GETPTR1(PyArrayObject* obj, npy_intp i) -.. cfunction:: void* PyArray_GETPTR2(PyArrayObject* obj, npy_intp i, npy_intp j) +.. c:function:: void* PyArray_GETPTR2(PyArrayObject* obj, npy_intp i, npy_intp j) -.. cfunction:: void* PyArray_GETPTR3(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k) +.. c:function:: void* PyArray_GETPTR3(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k) -.. cfunction:: void* PyArray_GETPTR4(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k, npy_intp l) +.. c:function:: void* PyArray_GETPTR4(PyArrayObject* obj, npy_intp i, npy_intp j, npy_intp k, npy_intp l) Quick, inline access to the element at the given coordinates in the ndarray, *obj*, which must have respectively 1, 2, 3, or 4 @@ -191,7 +191,7 @@ Creating arrays From scratch ^^^^^^^^^^^^ -.. cfunction:: PyObject* PyArray_NewFromDescr(PyTypeObject* subtype, PyArray_Descr* descr, int nd, npy_intp* dims, npy_intp* strides, void* data, int flags, PyObject* obj) +.. c:function:: PyObject* PyArray_NewFromDescr(PyTypeObject* subtype, PyArray_Descr* descr, int nd, npy_intp* dims, npy_intp* strides, void* data, int flags, PyObject* obj) This function steals a reference to *descr*. @@ -199,31 +199,31 @@ From scratch created with this flexible function. The returned object is an object of Python-type *subtype*, which - must be a subtype of :cdata:`PyArray_Type`. The array has *nd* + must be a subtype of :c:data:`PyArray_Type`. The array has *nd* dimensions, described by *dims*. The data-type descriptor of the new array is *descr*. If *subtype* is of an array subclass instead of the base - :cdata:`&PyArray_Type`, then *obj* is the object to pass to + :c:data:`&PyArray_Type`, then *obj* is the object to pass to the :obj:`__array_finalize__` method of the subclass. If *data* is ``NULL``, then new memory will be allocated and *flags* can be non-zero to indicate a Fortran-style contiguous array. If *data* is not ``NULL``, then it is assumed to point to the memory to be used for the array and the *flags* argument is used as the - new flags for the array (except the state of :cdata:`NPY_OWNDATA` - and :cdata:`NPY_ARRAY_UPDATEIFCOPY` flags of the new array will + new flags for the array (except the state of :c:data:`NPY_OWNDATA` + and :c:data:`NPY_ARRAY_UPDATEIFCOPY` flags of the new array will be reset). In addition, if *data* is non-NULL, then *strides* can also be provided. If *strides* is ``NULL``, then the array strides are computed as C-style contiguous (default) or Fortran-style contiguous (*flags* is nonzero for *data* = ``NULL`` or *flags* & - :cdata:`NPY_ARRAY_F_CONTIGUOUS` is nonzero non-NULL *data*). Any + :c:data:`NPY_ARRAY_F_CONTIGUOUS` is nonzero non-NULL *data*). Any provided *dims* and *strides* are copied into newly allocated dimension and strides arrays for the new array object. -.. cfunction:: PyObject* PyArray_NewLikeArray(PyArrayObject* prototype, NPY_ORDER order, PyArray_Descr* descr, int subok) +.. c:function:: PyObject* PyArray_NewLikeArray(PyArrayObject* prototype, NPY_ORDER order, PyArray_Descr* descr, int subok) .. versionadded:: 1.6 @@ -233,10 +233,10 @@ From scratch a new array matching an existing array's shapes and memory layout, possibly changing the layout and/or data type. - When *order* is :cdata:`NPY_ANYORDER`, the result order is - :cdata:`NPY_FORTRANORDER` if *prototype* is a fortran array, - :cdata:`NPY_CORDER` otherwise. When *order* is - :cdata:`NPY_KEEPORDER`, the result order matches that of *prototype*, even + When *order* is :c:data:`NPY_ANYORDER`, the result order is + :c:data:`NPY_FORTRANORDER` if *prototype* is a fortran array, + :c:data:`NPY_CORDER` otherwise. When *order* is + :c:data:`NPY_KEEPORDER`, the result order matches that of *prototype*, even when the axes of *prototype* aren't in C or Fortran order. If *descr* is NULL, the data type of *prototype* is used. @@ -245,9 +245,9 @@ From scratch *prototype* to create the new array, otherwise it will create a base-class array. -.. cfunction:: PyObject* PyArray_New(PyTypeObject* subtype, int nd, npy_intp* dims, int type_num, npy_intp* strides, void* data, int itemsize, int flags, PyObject* obj) +.. c:function:: PyObject* PyArray_New(PyTypeObject* subtype, int nd, npy_intp* dims, int type_num, npy_intp* strides, void* data, int itemsize, int flags, PyObject* obj) - This is similar to :cfunc:`PyArray_DescrNew` (...) except you + This is similar to :c:func:`PyArray_DescrNew` (...) except you specify the data-type descriptor with *type_num* and *itemsize*, where *type_num* corresponds to a builtin (or user-defined) type. If the type always has the same number of bytes, then @@ -258,22 +258,22 @@ From scratch .. warning:: - If data is passed to :cfunc:`PyArray_NewFromDescr` or :cfunc:`PyArray_New`, + If data is passed to :c:func:`PyArray_NewFromDescr` or :c:func:`PyArray_New`, this memory must not be deallocated until the new array is deleted. If this data came from another Python object, this can - be accomplished using :cfunc:`Py_INCREF` on that object and setting the + be accomplished using :c:func:`Py_INCREF` on that object and setting the base member of the new array to point to that object. If strides are passed in they must be consistent with the dimensions, the itemsize, and the data of the array. -.. cfunction:: PyObject* PyArray_SimpleNew(int nd, npy_intp* dims, int typenum) +.. c:function:: PyObject* PyArray_SimpleNew(int nd, npy_intp* dims, int typenum) Create a new unitialized array of type, *typenum*, whose size in each of *nd* dimensions is given by the integer array, *dims*. This function cannot be used to create a flexible-type array (no itemsize given). -.. cfunction:: PyObject* PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data) +.. c:function:: PyObject* PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data) Create an array wrapper around *data* pointed to by the given pointer. The array flags will have a default that the data area is @@ -281,60 +281,60 @@ From scratch given by the *dims* c-array of length *nd*. The data-type of the array is indicated by *typenum*. -.. cfunction:: PyObject* PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, PyArray_Descr* descr) +.. c:function:: PyObject* PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, PyArray_Descr* descr) This function steals a reference to *descr* if it is not NULL. Create a new array with the provided data-type descriptor, *descr* , of the shape deteremined by *nd* and *dims*. -.. cfunction:: PyArray_FILLWBYTE(PyObject* obj, int val) +.. c:function:: PyArray_FILLWBYTE(PyObject* obj, int val) Fill the array pointed to by *obj* ---which must be a (subclass of) bigndarray---with the contents of *val* (evaluated as a byte). This macro calls memset, so obj must be contiguous. -.. cfunction:: PyObject* PyArray_Zeros(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran) +.. c:function:: PyObject* PyArray_Zeros(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran) Construct a new *nd* -dimensional array with shape given by *dims* and data type given by *dtype*. If *fortran* is non-zero, then a Fortran-order array is created, otherwise a C-order array is created. Fill the memory with zeros (or the 0 object if *dtype* - corresponds to :ctype:`NPY_OBJECT` ). + corresponds to :c:type:`NPY_OBJECT` ). -.. cfunction:: PyObject* PyArray_ZEROS(int nd, npy_intp* dims, int type_num, int fortran) +.. c:function:: PyObject* PyArray_ZEROS(int nd, npy_intp* dims, int type_num, int fortran) - Macro form of :cfunc:`PyArray_Zeros` which takes a type-number instead + Macro form of :c:func:`PyArray_Zeros` which takes a type-number instead of a data-type object. -.. cfunction:: PyObject* PyArray_Empty(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran) +.. c:function:: PyObject* PyArray_Empty(int nd, npy_intp* dims, PyArray_Descr* dtype, int fortran) Construct a new *nd* -dimensional array with shape given by *dims* and data type given by *dtype*. If *fortran* is non-zero, then a Fortran-order array is created, otherwise a C-order array is created. The array is uninitialized unless the data type - corresponds to :ctype:`NPY_OBJECT` in which case the array is - filled with :cdata:`Py_None`. + corresponds to :c:type:`NPY_OBJECT` in which case the array is + filled with :c:data:`Py_None`. -.. cfunction:: PyObject* PyArray_EMPTY(int nd, npy_intp* dims, int typenum, int fortran) +.. c:function:: PyObject* PyArray_EMPTY(int nd, npy_intp* dims, int typenum, int fortran) - Macro form of :cfunc:`PyArray_Empty` which takes a type-number, + Macro form of :c:func:`PyArray_Empty` which takes a type-number, *typenum*, instead of a data-type object. -.. cfunction:: PyObject* PyArray_Arange(double start, double stop, double step, int typenum) +.. c:function:: PyObject* PyArray_Arange(double start, double stop, double step, int typenum) Construct a new 1-dimensional array of data-type, *typenum*, that ranges from *start* to *stop* (exclusive) in increments of *step* . Equivalent to **arange** (*start*, *stop*, *step*, dtype). -.. cfunction:: PyObject* PyArray_ArangeObj(PyObject* start, PyObject* stop, PyObject* step, PyArray_Descr* descr) +.. c:function:: PyObject* PyArray_ArangeObj(PyObject* start, PyObject* stop, PyObject* step, PyArray_Descr* descr) Construct a new 1-dimensional array of data-type determined by ``descr``, that ranges from ``start`` to ``stop`` (exclusive) in increments of ``step``. Equivalent to arange( ``start``, ``stop``, ``step``, ``typenum`` ). -.. cfunction:: int PyArray_SetBaseObject(PyArrayObject* arr, PyObject* obj) +.. c:function:: int PyArray_SetBaseObject(PyArrayObject* arr, PyObject* obj) .. versionadded:: 1.7 @@ -355,21 +355,21 @@ From scratch From other objects ^^^^^^^^^^^^^^^^^^ -.. cfunction:: PyObject* PyArray_FromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int requirements, PyObject* context) +.. c:function:: PyObject* PyArray_FromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int requirements, PyObject* context) This is the main function used to obtain an array from any nested sequence, or object that exposes the array interface, *op*. The parameters allow specification of the required *dtype*, the minimum (*min_depth*) and maximum (*max_depth*) number of dimensions acceptable, and other *requirements* for the array. The - *dtype* argument needs to be a :ctype:`PyArray_Descr` structure + *dtype* argument needs to be a :c:type:`PyArray_Descr` structure indicating the desired data-type (including required byteorder). The *dtype* argument may be NULL, indicating that any data-type (and byteorder) is acceptable. Unless ``FORCECAST`` is present in ``flags``, this call will generate an error if the data type cannot be safely obtained from the object. If you want to use ``NULL`` for the *dtype* and ensure the array is notswapped then - use :cfunc:`PyArray_CheckFromAny`. A value of 0 for either of the + use :c:func:`PyArray_CheckFromAny`. A value of 0 for either of the depth parameters causes the parameter to be ignored. Any of the following array flags can be added (*e.g.* using \|) to get the *requirements* argument. If your code can handle general (*e.g.* @@ -377,7 +377,7 @@ From other objects may be 0. Also, if *op* is not already an array (or does not expose the array interface), then a new array will be created (and filled from *op* using the sequence protocol). The new array will - have :cdata:`NPY_DEFAULT` as its flags member. The *context* argument + have :c:data:`NPY_DEFAULT` as its flags member. The *context* argument is passed to the :obj:`__array__` method of *op* and is only used if the array is constructed that way. Almost always this parameter is ``NULL``. @@ -386,50 +386,50 @@ From other objects did not have the _ARRAY_ macro namespace in them. That form of the constant names is deprecated in 1.7. - .. cvar:: NPY_ARRAY_C_CONTIGUOUS + .. c:var:: NPY_ARRAY_C_CONTIGUOUS Make sure the returned array is C-style contiguous - .. cvar:: NPY_ARRAY_F_CONTIGUOUS + .. c:var:: NPY_ARRAY_F_CONTIGUOUS Make sure the returned array is Fortran-style contiguous. - .. cvar:: NPY_ARRAY_ALIGNED + .. c:var:: NPY_ARRAY_ALIGNED Make sure the returned array is aligned on proper boundaries for its data type. An aligned array has the data pointer and every strides factor as a multiple of the alignment factor for the data-type- descriptor. - .. cvar:: NPY_ARRAY_WRITEABLE + .. c:var:: NPY_ARRAY_WRITEABLE Make sure the returned array can be written to. - .. cvar:: NPY_ARRAY_ENSURECOPY + .. c:var:: NPY_ARRAY_ENSURECOPY Make sure a copy is made of *op*. If this flag is not present, data is not copied if it can be avoided. - .. cvar:: NPY_ARRAY_ENSUREARRAY + .. c:var:: NPY_ARRAY_ENSUREARRAY Make sure the result is a base-class ndarray or bigndarray. By default, if *op* is an instance of a subclass of the bigndarray, an instance of that same subclass is returned. If this flag is set, an ndarray object will be returned instead. - .. cvar:: NPY_ARRAY_FORCECAST + .. c:var:: NPY_ARRAY_FORCECAST Force a cast to the output type even if it cannot be done safely. Without this flag, a data cast will occur only if it can be done safely, otherwise an error is reaised. - .. cvar:: NPY_ARRAY_UPDATEIFCOPY + .. c:var:: NPY_ARRAY_UPDATEIFCOPY If *op* is already an array, but does not satisfy the requirements, then a copy is made (which will satisfy the requirements). If this flag is present and a copy (of an object that is already an array) must be made, then the corresponding - :cdata:`NPY_ARRAY_UPDATEIFCOPY` flag is set in the returned + :c:data:`NPY_ARRAY_UPDATEIFCOPY` flag is set in the returned copy and *op* is made to be read-only. When the returned copy is deleted (presumably after your calculations are complete), its contents will be copied back into *op* and the *op* array @@ -437,59 +437,59 @@ From other objects with, then an error is raised. If *op* is not already an array, then this flag has no effect. - .. cvar:: NPY_ARRAY_BEHAVED + .. c:var:: NPY_ARRAY_BEHAVED - :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_WRITEABLE` + :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE` - .. cvar:: NPY_ARRAY_CARRAY + .. c:var:: NPY_ARRAY_CARRAY - :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_BEHAVED` + :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED` - .. cvar:: NPY_ARRAY_CARRAY_RO + .. c:var:: NPY_ARRAY_CARRAY_RO - :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED` + :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED` - .. cvar:: NPY_ARRAY_FARRAY + .. c:var:: NPY_ARRAY_FARRAY - :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_BEHAVED` + :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED` - .. cvar:: NPY_ARRAY_FARRAY_RO + .. c:var:: NPY_ARRAY_FARRAY_RO - :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED` + :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED` - .. cvar:: NPY_ARRAY_DEFAULT + .. c:var:: NPY_ARRAY_DEFAULT - :cdata:`NPY_ARRAY_CARRAY` + :c:data:`NPY_ARRAY_CARRAY` - .. cvar:: NPY_ARRAY_IN_ARRAY + .. c:var:: NPY_ARRAY_IN_ARRAY - :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED` + :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED` - .. cvar:: NPY_ARRAY_IN_FARRAY + .. c:var:: NPY_ARRAY_IN_FARRAY - :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED` + :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED` - .. cvar:: NPY_OUT_ARRAY + .. c:var:: NPY_OUT_ARRAY - :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_WRITEABLE` \| - :cdata:`NPY_ARRAY_ALIGNED` + :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \| + :c:data:`NPY_ARRAY_ALIGNED` - .. cvar:: NPY_ARRAY_OUT_FARRAY + .. c:var:: NPY_ARRAY_OUT_FARRAY - :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_WRITEABLE` \| - :cdata:`NPY_ARRAY_ALIGNED` + :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \| + :c:data:`NPY_ARRAY_ALIGNED` - .. cvar:: NPY_ARRAY_INOUT_ARRAY + .. c:var:: NPY_ARRAY_INOUT_ARRAY - :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_WRITEABLE` \| - :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_UPDATEIFCOPY` + :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \| + :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_UPDATEIFCOPY` - .. cvar:: NPY_ARRAY_INOUT_FARRAY + .. c:var:: NPY_ARRAY_INOUT_FARRAY - :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_WRITEABLE` \| - :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_UPDATEIFCOPY` + :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_WRITEABLE` \| + :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_UPDATEIFCOPY` -.. cfunction:: int PyArray_GetArrayParamsFromObject(PyObject* op, PyArray_Descr* requested_dtype, npy_bool writeable, PyArray_Descr** out_dtype, int* out_ndim, npy_intp* out_dims, PyArrayObject** out_arr, PyObject* context) +.. c:function:: int PyArray_GetArrayParamsFromObject(PyObject* op, PyArray_Descr* requested_dtype, npy_bool writeable, PyArray_Descr** out_dtype, int* out_ndim, npy_intp* out_dims, PyArrayObject** out_arr, PyObject* context) .. versionadded:: 1.6 @@ -552,11 +552,11 @@ From other objects } ... use arr ... -.. cfunction:: PyObject* PyArray_CheckFromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int requirements, PyObject* context) +.. c:function:: PyObject* PyArray_CheckFromAny(PyObject* op, PyArray_Descr* dtype, int min_depth, int max_depth, int requirements, PyObject* context) - Nearly identical to :cfunc:`PyArray_FromAny` (...) except - *requirements* can contain :cdata:`NPY_ARRAY_NOTSWAPPED` (over-riding the - specification in *dtype*) and :cdata:`NPY_ARRAY_ELEMENTSTRIDES` which + Nearly identical to :c:func:`PyArray_FromAny` (...) except + *requirements* can contain :c:data:`NPY_ARRAY_NOTSWAPPED` (over-riding the + specification in *dtype*) and :c:data:`NPY_ARRAY_ELEMENTSTRIDES` which indicates that the array should be aligned in the sense that the strides are multiples of the element size. @@ -564,7 +564,7 @@ From other objects did not have the _ARRAY_ macro namespace in them. That form of the constant names is deprecated in 1.7. -.. cvar:: NPY_ARRAY_NOTSWAPPED +.. c:var:: NPY_ARRAY_NOTSWAPPED Make sure the returned array has a data-type descriptor that is in machine byte-order, over-riding any specification in the *dtype* @@ -575,36 +575,36 @@ From other objects not in machine byte- order), then a new data-type descriptor is created and used with its byte-order field set to native. -.. cvar:: NPY_ARRAY_BEHAVED_NS +.. c:var:: NPY_ARRAY_BEHAVED_NS - :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_WRITEABLE` \| :cdata:`NPY_ARRAY_NOTSWAPPED` + :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE` \| :c:data:`NPY_ARRAY_NOTSWAPPED` -.. cvar:: NPY_ARRAY_ELEMENTSTRIDES +.. c:var:: NPY_ARRAY_ELEMENTSTRIDES Make sure the returned array has strides that are multiples of the element size. -.. cfunction:: PyObject* PyArray_FromArray(PyArrayObject* op, PyArray_Descr* newtype, int requirements) +.. c:function:: PyObject* PyArray_FromArray(PyArrayObject* op, PyArray_Descr* newtype, int requirements) - Special case of :cfunc:`PyArray_FromAny` for when *op* is already an + Special case of :c:func:`PyArray_FromAny` for when *op* is already an array but it needs to be of a specific *newtype* (including byte-order) or has certain *requirements*. -.. cfunction:: PyObject* PyArray_FromStructInterface(PyObject* op) +.. c:function:: PyObject* PyArray_FromStructInterface(PyObject* op) Returns an ndarray object from a Python object that exposes the :obj:`__array_struct__` attribute and follows the array interface protocol. If the object does not contain this attribute then a - borrowed reference to :cdata:`Py_NotImplemented` is returned. + borrowed reference to :c:data:`Py_NotImplemented` is returned. -.. cfunction:: PyObject* PyArray_FromInterface(PyObject* op) +.. c:function:: PyObject* PyArray_FromInterface(PyObject* op) Returns an ndarray object from a Python object that exposes the :obj:`__array_interface__` attribute following the array interface protocol. If the object does not contain this attribute then a - borrowed reference to :cdata:`Py_NotImplemented` is returned. + borrowed reference to :c:data:`Py_NotImplemented` is returned. -.. cfunction:: PyObject* PyArray_FromArrayAttr(PyObject* op, PyArray_Descr* dtype, PyObject* context) +.. c:function:: PyObject* PyArray_FromArrayAttr(PyObject* op, PyArray_Descr* dtype, PyObject* context) Return an ndarray object from a Python object that exposes the :obj:`__array__` method. The :obj:`__array__` method can take 0, 1, or 2 @@ -612,33 +612,33 @@ From other objects information about where the :obj:`__array__` method is being called from (currently only used in ufuncs). -.. cfunction:: PyObject* PyArray_ContiguousFromAny(PyObject* op, int typenum, int min_depth, int max_depth) +.. c:function:: PyObject* PyArray_ContiguousFromAny(PyObject* op, int typenum, int min_depth, int max_depth) This function returns a (C-style) contiguous and behaved function array from any nested sequence or array interface exporting object, *op*, of (non-flexible) type given by the enumerated *typenum*, of minimum depth *min_depth*, and of maximum depth - *max_depth*. Equivalent to a call to :cfunc:`PyArray_FromAny` with - requirements set to :cdata:`NPY_DEFAULT` and the type_num member of the + *max_depth*. Equivalent to a call to :c:func:`PyArray_FromAny` with + requirements set to :c:data:`NPY_DEFAULT` and the type_num member of the type argument set to *typenum*. -.. cfunction:: PyObject *PyArray_FromObject(PyObject *op, int typenum, int min_depth, int max_depth) +.. c:function:: PyObject *PyArray_FromObject(PyObject *op, int typenum, int min_depth, int max_depth) Return an aligned and in native-byteorder array from any nested sequence or array-interface exporting object, op, of a type given by the enumerated typenum. The minimum number of dimensions the array can have is given by min_depth while the maximum is max_depth. This is - equivalent to a call to :cfunc:`PyArray_FromAny` with requirements set to + equivalent to a call to :c:func:`PyArray_FromAny` with requirements set to BEHAVED. -.. cfunction:: PyObject* PyArray_EnsureArray(PyObject* op) +.. c:function:: PyObject* PyArray_EnsureArray(PyObject* op) This function **steals a reference** to ``op`` and makes sure that ``op`` is a base-class ndarray. It special cases array scalars, - but otherwise calls :cfunc:`PyArray_FromAny` ( ``op``, NULL, 0, 0, - :cdata:`NPY_ARRAY_ENSUREARRAY`). + but otherwise calls :c:func:`PyArray_FromAny` ( ``op``, NULL, 0, 0, + :c:data:`NPY_ARRAY_ENSUREARRAY`). -.. cfunction:: PyObject* PyArray_FromString(char* string, npy_intp slen, PyArray_Descr* dtype, npy_intp num, char* sep) +.. c:function:: PyObject* PyArray_FromString(char* string, npy_intp slen, PyArray_Descr* dtype, npy_intp num, char* sep) Construct a one-dimensional ndarray of a single type from a binary or (ASCII) text ``string`` of length ``slen``. The data-type of @@ -651,7 +651,7 @@ From other objects data-types may not be readable in text mode and an error will be raised if that occurs. All errors return NULL. -.. cfunction:: PyObject* PyArray_FromFile(FILE* fp, PyArray_Descr* dtype, npy_intp num, char* sep) +.. c:function:: PyObject* PyArray_FromFile(FILE* fp, PyArray_Descr* dtype, npy_intp num, char* sep) Construct a one-dimensional ndarray of a single type from a binary or text file. The open file pointer is ``fp``, the data-type of @@ -664,13 +664,13 @@ From other objects separator. Some array types cannot be read in text mode in which case an error is raised. -.. cfunction:: PyObject* PyArray_FromBuffer(PyObject* buf, PyArray_Descr* dtype, npy_intp count, npy_intp offset) +.. c:function:: PyObject* PyArray_FromBuffer(PyObject* buf, PyArray_Descr* dtype, npy_intp count, npy_intp offset) Construct a one-dimensional ndarray of a single type from an object, ``buf``, that exports the (single-segment) buffer protocol (or has an attribute __buffer\__ that returns an object that exports the buffer protocol). A writeable buffer will be tried - first followed by a read- only buffer. The :cdata:`NPY_ARRAY_WRITEABLE` + first followed by a read- only buffer. The :c:data:`NPY_ARRAY_WRITEABLE` flag of the returned array will reflect which one was successful. The data is assumed to start at ``offset`` bytes from the start of the memory location for the object. The type of the @@ -680,7 +680,7 @@ From other objects otherwise, ``count`` represents how many elements should be converted from the buffer. -.. cfunction:: int PyArray_CopyInto(PyArrayObject* dest, PyArrayObject* src) +.. c:function:: int PyArray_CopyInto(PyArrayObject* dest, PyArrayObject* src) Copy from the source array, ``src``, into the destination array, ``dest``, performing a data-type conversion if necessary. If an @@ -688,7 +688,7 @@ From other objects broadcastable to the shape of ``dest``. The data areas of dest and src must not overlap. -.. cfunction:: int PyArray_MoveInto(PyArrayObject* dest, PyArrayObject* src) +.. c:function:: int PyArray_MoveInto(PyArrayObject* dest, PyArrayObject* src) Move data from the source array, ``src``, into the destination array, ``dest``, performing a data-type conversion if @@ -696,52 +696,52 @@ From other objects of ``src`` must be broadcastable to the shape of ``dest``. The data areas of dest and src may overlap. -.. cfunction:: PyArrayObject* PyArray_GETCONTIGUOUS(PyObject* op) +.. c:function:: PyArrayObject* PyArray_GETCONTIGUOUS(PyObject* op) If ``op`` is already (C-style) contiguous and well-behaved then just return a reference, otherwise return a (contiguous and well-behaved) copy of the array. The parameter op must be a (sub-class of an) ndarray and no checking for that is done. -.. cfunction:: PyObject* PyArray_FROM_O(PyObject* obj) +.. c:function:: PyObject* PyArray_FROM_O(PyObject* obj) Convert ``obj`` to an ndarray. The argument can be any nested sequence or object that exports the array interface. This is a - macro form of :cfunc:`PyArray_FromAny` using ``NULL``, 0, 0, 0 for the + macro form of :c:func:`PyArray_FromAny` using ``NULL``, 0, 0, 0 for the other arguments. Your code must be able to handle any data-type descriptor and any combination of data-flags to use this macro. -.. cfunction:: PyObject* PyArray_FROM_OF(PyObject* obj, int requirements) +.. c:function:: PyObject* PyArray_FROM_OF(PyObject* obj, int requirements) - Similar to :cfunc:`PyArray_FROM_O` except it can take an argument + Similar to :c:func:`PyArray_FROM_O` except it can take an argument of *requirements* indicating properties the resulting array must have. Available requirements that can be enforced are - :cdata:`NPY_ARRAY_C_CONTIGUOUS`, :cdata:`NPY_ARRAY_F_CONTIGUOUS`, - :cdata:`NPY_ARRAY_ALIGNED`, :cdata:`NPY_ARRAY_WRITEABLE`, - :cdata:`NPY_ARRAY_NOTSWAPPED`, :cdata:`NPY_ARRAY_ENSURECOPY`, - :cdata:`NPY_ARRAY_UPDATEIFCOPY`, :cdata:`NPY_ARRAY_FORCECAST`, and - :cdata:`NPY_ARRAY_ENSUREARRAY`. Standard combinations of flags can also + :c:data:`NPY_ARRAY_C_CONTIGUOUS`, :c:data:`NPY_ARRAY_F_CONTIGUOUS`, + :c:data:`NPY_ARRAY_ALIGNED`, :c:data:`NPY_ARRAY_WRITEABLE`, + :c:data:`NPY_ARRAY_NOTSWAPPED`, :c:data:`NPY_ARRAY_ENSURECOPY`, + :c:data:`NPY_ARRAY_UPDATEIFCOPY`, :c:data:`NPY_ARRAY_FORCECAST`, and + :c:data:`NPY_ARRAY_ENSUREARRAY`. Standard combinations of flags can also be used: -.. cfunction:: PyObject* PyArray_FROM_OT(PyObject* obj, int typenum) +.. c:function:: PyObject* PyArray_FROM_OT(PyObject* obj, int typenum) - Similar to :cfunc:`PyArray_FROM_O` except it can take an argument of + Similar to :c:func:`PyArray_FROM_O` except it can take an argument of *typenum* specifying the type-number the returned array. -.. cfunction:: PyObject* PyArray_FROM_OTF(PyObject* obj, int typenum, int requirements) +.. c:function:: PyObject* PyArray_FROM_OTF(PyObject* obj, int typenum, int requirements) - Combination of :cfunc:`PyArray_FROM_OF` and :cfunc:`PyArray_FROM_OT` + Combination of :c:func:`PyArray_FROM_OF` and :c:func:`PyArray_FROM_OT` allowing both a *typenum* and a *flags* argument to be provided.. -.. cfunction:: PyObject* PyArray_FROMANY(PyObject* obj, int typenum, int min, int max, int requirements) +.. c:function:: PyObject* PyArray_FROMANY(PyObject* obj, int typenum, int min, int max, int requirements) - Similar to :cfunc:`PyArray_FromAny` except the data-type is - specified using a typenumber. :cfunc:`PyArray_DescrFromType` - (*typenum*) is passed directly to :cfunc:`PyArray_FromAny`. This - macro also adds :cdata:`NPY_DEFAULT` to requirements if - :cdata:`NPY_ARRAY_ENSURECOPY` is passed in as requirements. + Similar to :c:func:`PyArray_FromAny` except the data-type is + specified using a typenumber. :c:func:`PyArray_DescrFromType` + (*typenum*) is passed directly to :c:func:`PyArray_FromAny`. This + macro also adds :c:data:`NPY_DEFAULT` to requirements if + :c:data:`NPY_ARRAY_ENSURECOPY` is passed in as requirements. -.. cfunction:: PyObject *PyArray_CheckAxis(PyObject* obj, int* axis, int requirements) +.. c:function:: PyObject *PyArray_CheckAxis(PyObject* obj, int* axis, int requirements) Encapsulate the functionality of functions and methods that take the axis= keyword and work properly with None as the axis @@ -761,25 +761,25 @@ Dealing with types General check of Python Type ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -.. cfunction:: PyArray_Check(op) +.. c:function:: PyArray_Check(op) Evaluates true if *op* is a Python object whose type is a sub-type - of :cdata:`PyArray_Type`. + of :c:data:`PyArray_Type`. -.. cfunction:: PyArray_CheckExact(op) +.. c:function:: PyArray_CheckExact(op) Evaluates true if *op* is a Python object with type - :cdata:`PyArray_Type`. + :c:data:`PyArray_Type`. -.. cfunction:: PyArray_HasArrayInterface(op, out) +.. c:function:: PyArray_HasArrayInterface(op, out) If ``op`` implements any part of the array interface, then ``out`` will contain a new reference to the newly created ndarray using the interface or ``out`` will contain ``NULL`` if an error during conversion occurs. Otherwise, out will contain a borrowed - reference to :cdata:`Py_NotImplemented` and no error condition is set. + reference to :c:data:`Py_NotImplemented` and no error condition is set. -.. cfunction:: PyArray_HasArrayInterfaceType(op, type, context, out) +.. c:function:: PyArray_HasArrayInterfaceType(op, type, context, out) If ``op`` implements any part of the array interface, then ``out`` will contain a new reference to the newly created ndarray using @@ -789,43 +789,43 @@ General check of Python Type This version allows setting of the type and context in the part of the array interface that looks for the :obj:`__array__` attribute. -.. cfunction:: PyArray_IsZeroDim(op) +.. c:function:: PyArray_IsZeroDim(op) Evaluates true if *op* is an instance of (a subclass of) - :cdata:`PyArray_Type` and has 0 dimensions. + :c:data:`PyArray_Type` and has 0 dimensions. -.. cfunction:: PyArray_IsScalar(op, cls) +.. c:function:: PyArray_IsScalar(op, cls) - Evaluates true if *op* is an instance of :cdata:`Py{cls}ArrType_Type`. + Evaluates true if *op* is an instance of :c:data:`Py{cls}ArrType_Type`. -.. cfunction:: PyArray_CheckScalar(op) +.. c:function:: PyArray_CheckScalar(op) Evaluates true if *op* is either an array scalar (an instance of a - sub-type of :cdata:`PyGenericArr_Type` ), or an instance of (a - sub-class of) :cdata:`PyArray_Type` whose dimensionality is 0. + sub-type of :c:data:`PyGenericArr_Type` ), or an instance of (a + sub-class of) :c:data:`PyArray_Type` whose dimensionality is 0. -.. cfunction:: PyArray_IsPythonNumber(op) +.. c:function:: PyArray_IsPythonNumber(op) Evaluates true if *op* is an instance of a builtin numeric type (int, float, complex, long, bool) -.. cfunction:: PyArray_IsPythonScalar(op) +.. c:function:: PyArray_IsPythonScalar(op) Evaluates true if *op* is a builtin Python scalar object (int, float, complex, str, unicode, long, bool). -.. cfunction:: PyArray_IsAnyScalar(op) +.. c:function:: PyArray_IsAnyScalar(op) Evaluates true if *op* is either a Python scalar object (see - :cfunc:`PyArray_IsPythonScalar`) or an array scalar (an instance of a sub- - type of :cdata:`PyGenericArr_Type` ). + :c:func:`PyArray_IsPythonScalar`) or an array scalar (an instance of a sub- + type of :c:data:`PyGenericArr_Type` ). -.. cfunction:: PyArray_CheckAnyScalar(op) +.. c:function:: PyArray_CheckAnyScalar(op) Evaluates true if *op* is a Python scalar object (see - :cfunc:`PyArray_IsPythonScalar`), an array scalar (an instance of a - sub-type of :cdata:`PyGenericArr_Type`) or an instance of a sub-type of - :cdata:`PyArray_Type` whose dimensionality is 0. + :c:func:`PyArray_IsPythonScalar`), an array scalar (an instance of a + sub-type of :c:data:`PyGenericArr_Type`) or an instance of a sub-type of + :c:data:`PyArray_Type` whose dimensionality is 0. Data-type checking @@ -833,179 +833,179 @@ Data-type checking For the typenum macros, the argument is an integer representing an enumerated array data type. For the array type checking macros the -argument must be a :ctype:`PyObject *` that can be directly interpreted as a -:ctype:`PyArrayObject *`. +argument must be a :c:type:`PyObject *` that can be directly interpreted as a +:c:type:`PyArrayObject *`. -.. cfunction:: PyTypeNum_ISUNSIGNED(num) +.. c:function:: PyTypeNum_ISUNSIGNED(num) -.. cfunction:: PyDataType_ISUNSIGNED(descr) +.. c:function:: PyDataType_ISUNSIGNED(descr) -.. cfunction:: PyArray_ISUNSIGNED(obj) +.. c:function:: PyArray_ISUNSIGNED(obj) Type represents an unsigned integer. -.. cfunction:: PyTypeNum_ISSIGNED(num) +.. c:function:: PyTypeNum_ISSIGNED(num) -.. cfunction:: PyDataType_ISSIGNED(descr) +.. c:function:: PyDataType_ISSIGNED(descr) -.. cfunction:: PyArray_ISSIGNED(obj) +.. c:function:: PyArray_ISSIGNED(obj) Type represents a signed integer. -.. cfunction:: PyTypeNum_ISINTEGER(num) +.. c:function:: PyTypeNum_ISINTEGER(num) -.. cfunction:: PyDataType_ISINTEGER(descr) +.. c:function:: PyDataType_ISINTEGER(descr) -.. cfunction:: PyArray_ISINTEGER(obj) +.. c:function:: PyArray_ISINTEGER(obj) Type represents any integer. -.. cfunction:: PyTypeNum_ISFLOAT(num) +.. c:function:: PyTypeNum_ISFLOAT(num) -.. cfunction:: PyDataType_ISFLOAT(descr) +.. c:function:: PyDataType_ISFLOAT(descr) -.. cfunction:: PyArray_ISFLOAT(obj) +.. c:function:: PyArray_ISFLOAT(obj) Type represents any floating point number. -.. cfunction:: PyTypeNum_ISCOMPLEX(num) +.. c:function:: PyTypeNum_ISCOMPLEX(num) -.. cfunction:: PyDataType_ISCOMPLEX(descr) +.. c:function:: PyDataType_ISCOMPLEX(descr) -.. cfunction:: PyArray_ISCOMPLEX(obj) +.. c:function:: PyArray_ISCOMPLEX(obj) Type represents any complex floating point number. -.. cfunction:: PyTypeNum_ISNUMBER(num) +.. c:function:: PyTypeNum_ISNUMBER(num) -.. cfunction:: PyDataType_ISNUMBER(descr) +.. c:function:: PyDataType_ISNUMBER(descr) -.. cfunction:: PyArray_ISNUMBER(obj) +.. c:function:: PyArray_ISNUMBER(obj) Type represents any integer, floating point, or complex floating point number. -.. cfunction:: PyTypeNum_ISSTRING(num) +.. c:function:: PyTypeNum_ISSTRING(num) -.. cfunction:: PyDataType_ISSTRING(descr) +.. c:function:: PyDataType_ISSTRING(descr) -.. cfunction:: PyArray_ISSTRING(obj) +.. c:function:: PyArray_ISSTRING(obj) Type represents a string data type. -.. cfunction:: PyTypeNum_ISPYTHON(num) +.. c:function:: PyTypeNum_ISPYTHON(num) -.. cfunction:: PyDataType_ISPYTHON(descr) +.. c:function:: PyDataType_ISPYTHON(descr) -.. cfunction:: PyArray_ISPYTHON(obj) +.. c:function:: PyArray_ISPYTHON(obj) Type represents an enumerated type corresponding to one of the standard Python scalar (bool, int, float, or complex). -.. cfunction:: PyTypeNum_ISFLEXIBLE(num) +.. c:function:: PyTypeNum_ISFLEXIBLE(num) -.. cfunction:: PyDataType_ISFLEXIBLE(descr) +.. c:function:: PyDataType_ISFLEXIBLE(descr) -.. cfunction:: PyArray_ISFLEXIBLE(obj) +.. c:function:: PyArray_ISFLEXIBLE(obj) - Type represents one of the flexible array types ( :cdata:`NPY_STRING`, - :cdata:`NPY_UNICODE`, or :cdata:`NPY_VOID` ). + Type represents one of the flexible array types ( :c:data:`NPY_STRING`, + :c:data:`NPY_UNICODE`, or :c:data:`NPY_VOID` ). -.. cfunction:: PyTypeNum_ISUSERDEF(num) +.. c:function:: PyTypeNum_ISUSERDEF(num) -.. cfunction:: PyDataType_ISUSERDEF(descr) +.. c:function:: PyDataType_ISUSERDEF(descr) -.. cfunction:: PyArray_ISUSERDEF(obj) +.. c:function:: PyArray_ISUSERDEF(obj) Type represents a user-defined type. -.. cfunction:: PyTypeNum_ISEXTENDED(num) +.. c:function:: PyTypeNum_ISEXTENDED(num) -.. cfunction:: PyDataType_ISEXTENDED(descr) +.. c:function:: PyDataType_ISEXTENDED(descr) -.. cfunction:: PyArray_ISEXTENDED(obj) +.. c:function:: PyArray_ISEXTENDED(obj) Type is either flexible or user-defined. -.. cfunction:: PyTypeNum_ISOBJECT(num) +.. c:function:: PyTypeNum_ISOBJECT(num) -.. cfunction:: PyDataType_ISOBJECT(descr) +.. c:function:: PyDataType_ISOBJECT(descr) -.. cfunction:: PyArray_ISOBJECT(obj) +.. c:function:: PyArray_ISOBJECT(obj) Type represents object data type. -.. cfunction:: PyTypeNum_ISBOOL(num) +.. c:function:: PyTypeNum_ISBOOL(num) -.. cfunction:: PyDataType_ISBOOL(descr) +.. c:function:: PyDataType_ISBOOL(descr) -.. cfunction:: PyArray_ISBOOL(obj) +.. c:function:: PyArray_ISBOOL(obj) Type represents Boolean data type. -.. cfunction:: PyDataType_HASFIELDS(descr) +.. c:function:: PyDataType_HASFIELDS(descr) -.. cfunction:: PyArray_HASFIELDS(obj) +.. c:function:: PyArray_HASFIELDS(obj) Type has fields associated with it. -.. cfunction:: PyArray_ISNOTSWAPPED(m) +.. c:function:: PyArray_ISNOTSWAPPED(m) Evaluates true if the data area of the ndarray *m* is in machine byte-order according to the array's data-type descriptor. -.. cfunction:: PyArray_ISBYTESWAPPED(m) +.. c:function:: PyArray_ISBYTESWAPPED(m) Evaluates true if the data area of the ndarray *m* is **not** in machine byte-order according to the array's data-type descriptor. -.. cfunction:: Bool PyArray_EquivTypes(PyArray_Descr* type1, PyArray_Descr* type2) +.. c:function:: Bool PyArray_EquivTypes(PyArray_Descr* type1, PyArray_Descr* type2) - Return :cdata:`NPY_TRUE` if *type1* and *type2* actually represent + Return :c:data:`NPY_TRUE` if *type1* and *type2* actually represent equivalent types for this platform (the fortran member of each type is ignored). For example, on 32-bit platforms, - :cdata:`NPY_LONG` and :cdata:`NPY_INT` are equivalent. Otherwise - return :cdata:`NPY_FALSE`. + :c:data:`NPY_LONG` and :c:data:`NPY_INT` are equivalent. Otherwise + return :c:data:`NPY_FALSE`. -.. cfunction:: Bool PyArray_EquivArrTypes(PyArrayObject* a1, PyArrayObject * a2) +.. c:function:: Bool PyArray_EquivArrTypes(PyArrayObject* a1, PyArrayObject * a2) - Return :cdata:`NPY_TRUE` if *a1* and *a2* are arrays with equivalent + Return :c:data:`NPY_TRUE` if *a1* and *a2* are arrays with equivalent types for this platform. -.. cfunction:: Bool PyArray_EquivTypenums(int typenum1, int typenum2) +.. c:function:: Bool PyArray_EquivTypenums(int typenum1, int typenum2) - Special case of :cfunc:`PyArray_EquivTypes` (...) that does not accept + Special case of :c:func:`PyArray_EquivTypes` (...) that does not accept flexible data types but may be easier to call. -.. cfunction:: int PyArray_EquivByteorders({byteorder} b1, {byteorder} b2) +.. c:function:: int PyArray_EquivByteorders({byteorder} b1, {byteorder} b2) - True if byteorder characters ( :cdata:`NPY_LITTLE`, - :cdata:`NPY_BIG`, :cdata:`NPY_NATIVE`, :cdata:`NPY_IGNORE` ) are + True if byteorder characters ( :c:data:`NPY_LITTLE`, + :c:data:`NPY_BIG`, :c:data:`NPY_NATIVE`, :c:data:`NPY_IGNORE` ) are either equal or equivalent as to their specification of a native - byte order. Thus, on a little-endian machine :cdata:`NPY_LITTLE` - and :cdata:`NPY_NATIVE` are equivalent where they are not + byte order. Thus, on a little-endian machine :c:data:`NPY_LITTLE` + and :c:data:`NPY_NATIVE` are equivalent where they are not equivalent on a big-endian machine. Converting data types ^^^^^^^^^^^^^^^^^^^^^ -.. cfunction:: PyObject* PyArray_Cast(PyArrayObject* arr, int typenum) +.. c:function:: PyObject* PyArray_Cast(PyArrayObject* arr, int typenum) Mainly for backwards compatibility to the Numeric C-API and for simple casts to non-flexible types. Return a new array object with the elements of *arr* cast to the data-type *typenum* which must be one of the enumerated types and not a flexible type. -.. cfunction:: PyObject* PyArray_CastToType(PyArrayObject* arr, PyArray_Descr* type, int fortran) +.. c:function:: PyObject* PyArray_CastToType(PyArrayObject* arr, PyArray_Descr* type, int fortran) Return a new array of the *type* specified, casting the elements of *arr* as appropriate. The fortran argument specifies the ordering of the output array. -.. cfunction:: int PyArray_CastTo(PyArrayObject* out, PyArrayObject* in) +.. c:function:: int PyArray_CastTo(PyArrayObject* out, PyArrayObject* in) - As of 1.6, this function simply calls :cfunc:`PyArray_CopyInto`, + As of 1.6, this function simply calls :c:func:`PyArray_CopyInto`, which handles the casting. Cast the elements of the array *in* into the array *out*. The @@ -1014,7 +1014,7 @@ Converting data types placed in out), and have a data type that is one of the builtin types. Returns 0 on success and -1 if an error occurs. -.. cfunction:: PyArray_VectorUnaryFunc* PyArray_GetCastFunc(PyArray_Descr* from, int totype) +.. c:function:: PyArray_VectorUnaryFunc* PyArray_GetCastFunc(PyArray_Descr* from, int totype) Return the low-level casting function to cast from the given descriptor to the builtin type number. If no casting function @@ -1023,7 +1023,7 @@ Converting data types any user-defined casting functions added to a descriptors casting dictionary. -.. cfunction:: int PyArray_CanCastSafely(int fromtype, int totype) +.. c:function:: int PyArray_CanCastSafely(int fromtype, int totype) Returns non-zero if an array of data type *fromtype* can be cast to an array of data type *totype* without losing information. An @@ -1033,29 +1033,29 @@ Converting data types explict requests. Flexible array types are not checked according to their lengths with this function. -.. cfunction:: int PyArray_CanCastTo(PyArray_Descr* fromtype, PyArray_Descr* totype) +.. c:function:: int PyArray_CanCastTo(PyArray_Descr* fromtype, PyArray_Descr* totype) - :cfunc:`PyArray_CanCastTypeTo` supercedes this function in + :c:func:`PyArray_CanCastTypeTo` supercedes this function in NumPy 1.6 and later. Equivalent to PyArray_CanCastTypeTo(fromtype, totype, NPY_SAFE_CASTING). -.. cfunction:: int PyArray_CanCastTypeTo(PyArray_Descr* fromtype, PyArray_Descr* totype, NPY_CASTING casting) +.. c:function:: int PyArray_CanCastTypeTo(PyArray_Descr* fromtype, PyArray_Descr* totype, NPY_CASTING casting) .. versionadded:: 1.6 Returns non-zero if an array of data type *fromtype* (which can include flexible types) can be cast safely to an array of data type *totype* (which can include flexible types) according to - the casting rule *casting*. For simple types with :cdata:`NPY_SAFE_CASTING`, - this is basically a wrapper around :cfunc:`PyArray_CanCastSafely`, but + the casting rule *casting*. For simple types with :c:data:`NPY_SAFE_CASTING`, + this is basically a wrapper around :c:func:`PyArray_CanCastSafely`, but for flexible types such as strings or unicode, it produces results taking into account their sizes. Integer and float types can only be cast - to a string or unicode type using :cdata:`NPY_SAFE_CASTING` if the string + to a string or unicode type using :c:data:`NPY_SAFE_CASTING` if the string or unicode type is big enough to hold the max value of the integer/float type being cast from. -.. cfunction:: int PyArray_CanCastArrayTo(PyArrayObject* arr, PyArray_Descr* totype, NPY_CASTING casting) +.. c:function:: int PyArray_CanCastArrayTo(PyArrayObject* arr, PyArray_Descr* totype, NPY_CASTING casting) .. versionadded:: 1.6 @@ -1071,7 +1071,7 @@ Converting data types of uint values is not a subset of the int values for types with the same number of bits. -.. cfunction:: PyArray_Descr* PyArray_MinScalarType(PyArrayObject* arr) +.. c:function:: PyArray_Descr* PyArray_MinScalarType(PyArrayObject* arr) .. versionadded:: 1.6 @@ -1084,7 +1084,7 @@ Converting data types boolean, but will demote a signed integer to an unsigned integer when the scalar value is positive. -.. cfunction:: PyArray_Descr* PyArray_PromoteTypes(PyArray_Descr* type1, PyArray_Descr* type2) +.. c:function:: PyArray_Descr* PyArray_PromoteTypes(PyArray_Descr* type1, PyArray_Descr* type2) .. versionadded:: 1.6 @@ -1093,7 +1093,7 @@ Converting data types associative. A string or unicode result will be the proper size for storing the max value of the input types converted to a string or unicode. -.. cfunction:: PyArray_Descr* PyArray_ResultType(npy_intp narrs, PyArrayObject**arrs, npy_intp ndtypes, PyArray_Descr**dtypes) +.. c:function:: PyArray_Descr* PyArray_ResultType(npy_intp narrs, PyArrayObject**arrs, npy_intp ndtypes, PyArray_Descr**dtypes) .. versionadded:: 1.6 @@ -1109,22 +1109,22 @@ Converting data types If there are only scalars or the maximum category of the scalars is higher than the maximum category of the arrays, - the data types are combined with :cfunc:`PyArray_PromoteTypes` + the data types are combined with :c:func:`PyArray_PromoteTypes` to produce the return value. Otherwise, PyArray_MinScalarType is called on each array, and the resulting data types are all combined with - :cfunc:`PyArray_PromoteTypes` to produce the return value. + :c:func:`PyArray_PromoteTypes` to produce the return value. The set of int values is not a subset of the uint values for types with the same number of bits, something not reflected in - :cfunc:`PyArray_MinScalarType`, but handled as a special case in + :c:func:`PyArray_MinScalarType`, but handled as a special case in PyArray_ResultType. -.. cfunction:: int PyArray_ObjectType(PyObject* op, int mintype) +.. c:function:: int PyArray_ObjectType(PyObject* op, int mintype) - This function is superceded by :cfunc:`PyArray_MinScalarType` and/or - :cfunc:`PyArray_ResultType`. + This function is superceded by :c:func:`PyArray_MinScalarType` and/or + :c:func:`PyArray_ResultType`. This function is useful for determining a common type that two or more arrays can be converted to. It only works for non-flexible @@ -1134,21 +1134,21 @@ Converting data types return value is the enumerated typenumber that represents the data-type that *op* should have. -.. cfunction:: void PyArray_ArrayType(PyObject* op, PyArray_Descr* mintype, PyArray_Descr* outtype) +.. c:function:: void PyArray_ArrayType(PyObject* op, PyArray_Descr* mintype, PyArray_Descr* outtype) - This function is superceded by :cfunc:`PyArray_ResultType`. + This function is superceded by :c:func:`PyArray_ResultType`. - This function works similarly to :cfunc:`PyArray_ObjectType` (...) + This function works similarly to :c:func:`PyArray_ObjectType` (...) except it handles flexible arrays. The *mintype* argument can have an itemsize member and the *outtype* argument will have an itemsize member at least as big but perhaps bigger depending on the object *op*. -.. cfunction:: PyArrayObject** PyArray_ConvertToCommonType(PyObject* op, int* n) +.. c:function:: PyArrayObject** PyArray_ConvertToCommonType(PyObject* op, int* n) The functionality this provides is largely superceded by iterator - :ctype:`NpyIter` introduced in 1.6, with flag - :cdata:`NPY_ITER_COMMON_DTYPE` or with the same dtype parameter for + :c:type:`NpyIter` introduced in 1.6, with flag + :c:data:`NPY_ITER_COMMON_DTYPE` or with the same dtype parameter for all operands. Convert a sequence of Python objects contained in *op* to an array @@ -1156,9 +1156,9 @@ Converting data types based on the typenumber (larger type number is chosen over a smaller one) ignoring objects that are only scalars. The length of the sequence is returned in *n*, and an *n* -length array of - :ctype:`PyArrayObject` pointers is the return value (or ``NULL`` if an + :c:type:`PyArrayObject` pointers is the return value (or ``NULL`` if an error occurs). The returned array must be freed by the caller of - this routine (using :cfunc:`PyDataMem_FREE` ) and all the array objects + this routine (using :c:func:`PyDataMem_FREE` ) and all the array objects in it ``DECREF`` 'd or a memory-leak will occur. The example template-code below shows a typically usage: @@ -1172,35 +1172,35 @@ Converting data types PyDataMem_FREE(mps); {return} -.. cfunction:: char* PyArray_Zero(PyArrayObject* arr) +.. c:function:: char* PyArray_Zero(PyArrayObject* arr) A pointer to newly created memory of size *arr* ->itemsize that holds the representation of 0 for that type. The returned pointer, - *ret*, **must be freed** using :cfunc:`PyDataMem_FREE` (ret) when it is + *ret*, **must be freed** using :c:func:`PyDataMem_FREE` (ret) when it is not needed anymore. -.. cfunction:: char* PyArray_One(PyArrayObject* arr) +.. c:function:: char* PyArray_One(PyArrayObject* arr) A pointer to newly created memory of size *arr* ->itemsize that holds the representation of 1 for that type. The returned pointer, - *ret*, **must be freed** using :cfunc:`PyDataMem_FREE` (ret) when it + *ret*, **must be freed** using :c:func:`PyDataMem_FREE` (ret) when it is not needed anymore. -.. cfunction:: int PyArray_ValidType(int typenum) +.. c:function:: int PyArray_ValidType(int typenum) - Returns :cdata:`NPY_TRUE` if *typenum* represents a valid type-number + Returns :c:data:`NPY_TRUE` if *typenum* represents a valid type-number (builtin or user-defined or character code). Otherwise, this - function returns :cdata:`NPY_FALSE`. + function returns :c:data:`NPY_FALSE`. New data types ^^^^^^^^^^^^^^ -.. cfunction:: void PyArray_InitArrFuncs(PyArray_ArrFuncs* f) +.. c:function:: void PyArray_InitArrFuncs(PyArray_ArrFuncs* f) Initialize all function pointers and members to ``NULL``. -.. cfunction:: int PyArray_RegisterDataType(PyArray_Descr* dtype) +.. c:function:: int PyArray_RegisterDataType(PyArray_Descr* dtype) Register a data-type as a new user-defined data type for arrays. The type must have most of its entries filled in. This is @@ -1216,23 +1216,23 @@ New data types A user-defined type number is returned that uniquely identifies the type. A pointer to the new structure can then be obtained from - :cfunc:`PyArray_DescrFromType` using the returned type number. A -1 is + :c:func:`PyArray_DescrFromType` using the returned type number. A -1 is returned if an error occurs. If this *dtype* has already been registered (checked only by the address of the pointer), then return the previously-assigned type-number. -.. cfunction:: int PyArray_RegisterCastFunc(PyArray_Descr* descr, int totype, PyArray_VectorUnaryFunc* castfunc) +.. c:function:: int PyArray_RegisterCastFunc(PyArray_Descr* descr, int totype, PyArray_VectorUnaryFunc* castfunc) Register a low-level casting function, *castfunc*, to convert from the data-type, *descr*, to the given data-type number, *totype*. Any old casting function is over-written. A ``0`` is returned on success or a ``-1`` on failure. -.. cfunction:: int PyArray_RegisterCanCast(PyArray_Descr* descr, int totype, NPY_SCALARKIND scalar) +.. c:function:: int PyArray_RegisterCanCast(PyArray_Descr* descr, int totype, NPY_SCALARKIND scalar) Register the data-type number, *totype*, as castable from data-type object, *descr*, of the given *scalar* kind. Use - *scalar* = :cdata:`NPY_NOSCALAR` to register that an array of data-type + *scalar* = :c:data:`NPY_NOSCALAR` to register that an array of data-type *descr* can be cast safely to a data-type whose type_number is *totype*. @@ -1240,14 +1240,14 @@ New data types Special functions for NPY_OBJECT ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -.. cfunction:: int PyArray_INCREF(PyArrayObject* op) +.. c:function:: int PyArray_INCREF(PyArrayObject* op) Used for an array, *op*, that contains any Python objects. It increments the reference count of every object in the array according to the data-type of *op*. A -1 is returned if an error occurs, otherwise 0 is returned. -.. cfunction:: void PyArray_Item_INCREF(char* ptr, PyArray_Descr* dtype) +.. c:function:: void PyArray_Item_INCREF(char* ptr, PyArray_Descr* dtype) A function to INCREF all the objects at the location *ptr* according to the data-type *dtype*. If *ptr* is the start of a @@ -1255,14 +1255,14 @@ Special functions for NPY_OBJECT increment the reference count of all object-like items in the structured type. -.. cfunction:: int PyArray_XDECREF(PyArrayObject* op) +.. c:function:: int PyArray_XDECREF(PyArrayObject* op) Used for an array, *op*, that contains any Python objects. It decrements the reference count of every object in the array according to the data-type of *op*. Normal return value is 0. A -1 is returned if an error occurs. -.. cfunction:: void PyArray_Item_XDECREF(char* ptr, PyArray_Descr* dtype) +.. c:function:: void PyArray_Item_XDECREF(char* ptr, PyArray_Descr* dtype) A function to XDECREF all the object-like items at the location *ptr* as recorded in the data-type, *dtype*. This works @@ -1270,13 +1270,13 @@ Special functions for NPY_OBJECT that contain object-like items, all the object-like fields will be XDECREF ``'d``. -.. cfunction:: void PyArray_FillObjectArray(PyArrayObject* arr, PyObject* obj) +.. c:function:: void PyArray_FillObjectArray(PyArrayObject* arr, PyObject* obj) Fill a newly created array with a single value obj at all locations in the structure with object data-types. No checking is - performed but *arr* must be of data-type :ctype:`NPY_OBJECT` and be + performed but *arr* must be of data-type :c:type:`NPY_OBJECT` and be single-segment and uninitialized (no previous objects in - position). Use :cfunc:`PyArray_DECREF` (*arr*) if you need to + position). Use :c:func:`PyArray_DECREF` (*arr*) if you need to decrement all the items in the object array prior to calling this function. @@ -1298,8 +1298,8 @@ getting (and, if appropriate, setting) these flags. Memory areas of all kinds can be pointed to by an ndarray, necessitating these flags. If you get an arbitrary ``PyArrayObject`` in C-code, you need to be aware of the flags that are set. If you need to guarantee -a certain kind of array (like :cdata:`NPY_ARRAY_C_CONTIGUOUS` and -:cdata:`NPY_ARRAY_BEHAVED`), then pass these requirements into the +a certain kind of array (like :c:data:`NPY_ARRAY_C_CONTIGUOUS` and +:c:data:`NPY_ARRAY_BEHAVED`), then pass these requirements into the PyArray_FromAny function. @@ -1318,12 +1318,12 @@ In versions 1.6 and earlier of NumPy, the following flags did not have the _ARRAY_ macro namespace in them. That form of the constant names is deprecated in 1.7. -.. cvar:: NPY_ARRAY_C_CONTIGUOUS +.. c:var:: NPY_ARRAY_C_CONTIGUOUS The data area is in C-style contiguous order (last index varies the fastest). -.. cvar:: NPY_ARRAY_F_CONTIGUOUS +.. c:var:: NPY_ARRAY_F_CONTIGUOUS The data area is in Fortran-style contiguous order (first index varies the fastest). @@ -1344,184 +1344,184 @@ of the constant names is deprecated in 1.7. .. seealso:: :ref:`Internal memory layout of an ndarray <arrays.ndarray>` -.. cvar:: NPY_ARRAY_OWNDATA +.. c:var:: NPY_ARRAY_OWNDATA The data area is owned by this array. -.. cvar:: NPY_ARRAY_ALIGNED +.. c:var:: NPY_ARRAY_ALIGNED The data area and all array elements are aligned appropriately. -.. cvar:: NPY_ARRAY_WRITEABLE +.. c:var:: NPY_ARRAY_WRITEABLE The data area can be written to. Notice that the above 3 flags are are defined so that a new, well- behaved array has these flags defined as true. -.. cvar:: NPY_ARRAY_UPDATEIFCOPY +.. c:var:: NPY_ARRAY_UPDATEIFCOPY The data area represents a (well-behaved) copy whose information should be transferred back to the original when this array is deleted. This is a special flag that is set if this array represents a copy made because a user required certain flags in - :cfunc:`PyArray_FromAny` and a copy had to be made of some other + :c:func:`PyArray_FromAny` and a copy had to be made of some other array (and the user asked for this flag to be set in such a situation). The base attribute then points to the "misbehaved" array (which is set read_only). When the array with this flag set is deallocated, it will copy its contents back to the "misbehaved" array (casting if necessary) and will reset the "misbehaved" array - to :cdata:`NPY_ARRAY_WRITEABLE`. If the "misbehaved" array was not - :cdata:`NPY_ARRAY_WRITEABLE` to begin with then :cfunc:`PyArray_FromAny` - would have returned an error because :cdata:`NPY_ARRAY_UPDATEIFCOPY` + to :c:data:`NPY_ARRAY_WRITEABLE`. If the "misbehaved" array was not + :c:data:`NPY_ARRAY_WRITEABLE` to begin with then :c:func:`PyArray_FromAny` + would have returned an error because :c:data:`NPY_ARRAY_UPDATEIFCOPY` would not have been possible. -:cfunc:`PyArray_UpdateFlags` (obj, flags) will update the ``obj->flags`` -for ``flags`` which can be any of :cdata:`NPY_ARRAY_C_CONTIGUOUS`, -:cdata:`NPY_ARRAY_F_CONTIGUOUS`, :cdata:`NPY_ARRAY_ALIGNED`, or -:cdata:`NPY_ARRAY_WRITEABLE`. +:c:func:`PyArray_UpdateFlags` (obj, flags) will update the ``obj->flags`` +for ``flags`` which can be any of :c:data:`NPY_ARRAY_C_CONTIGUOUS`, +:c:data:`NPY_ARRAY_F_CONTIGUOUS`, :c:data:`NPY_ARRAY_ALIGNED`, or +:c:data:`NPY_ARRAY_WRITEABLE`. Combinations of array flags ^^^^^^^^^^^^^^^^^^^^^^^^^^^ -.. cvar:: NPY_ARRAY_BEHAVED +.. c:var:: NPY_ARRAY_BEHAVED - :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_WRITEABLE` + :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE` -.. cvar:: NPY_ARRAY_CARRAY +.. c:var:: NPY_ARRAY_CARRAY - :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_BEHAVED` + :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED` -.. cvar:: NPY_ARRAY_CARRAY_RO +.. c:var:: NPY_ARRAY_CARRAY_RO - :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED` + :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED` -.. cvar:: NPY_ARRAY_FARRAY +.. c:var:: NPY_ARRAY_FARRAY - :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_BEHAVED` + :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_BEHAVED` -.. cvar:: NPY_ARRAY_FARRAY_RO +.. c:var:: NPY_ARRAY_FARRAY_RO - :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED` + :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED` -.. cvar:: NPY_ARRAY_DEFAULT +.. c:var:: NPY_ARRAY_DEFAULT - :cdata:`NPY_ARRAY_CARRAY` + :c:data:`NPY_ARRAY_CARRAY` -.. cvar:: NPY_ARRAY_UPDATE_ALL +.. c:var:: NPY_ARRAY_UPDATE_ALL - :cdata:`NPY_ARRAY_C_CONTIGUOUS` \| :cdata:`NPY_ARRAY_F_CONTIGUOUS` \| :cdata:`NPY_ARRAY_ALIGNED` + :c:data:`NPY_ARRAY_C_CONTIGUOUS` \| :c:data:`NPY_ARRAY_F_CONTIGUOUS` \| :c:data:`NPY_ARRAY_ALIGNED` Flag-like constants ^^^^^^^^^^^^^^^^^^^ -These constants are used in :cfunc:`PyArray_FromAny` (and its macro forms) to +These constants are used in :c:func:`PyArray_FromAny` (and its macro forms) to specify desired properties of the new array. -.. cvar:: NPY_ARRAY_FORCECAST +.. c:var:: NPY_ARRAY_FORCECAST Cast to the desired type, even if it can't be done without losing information. -.. cvar:: NPY_ARRAY_ENSURECOPY +.. c:var:: NPY_ARRAY_ENSURECOPY Make sure the resulting array is a copy of the original. -.. cvar:: NPY_ARRAY_ENSUREARRAY +.. c:var:: NPY_ARRAY_ENSUREARRAY Make sure the resulting object is an actual ndarray (or bigndarray), and not a sub-class. -.. cvar:: NPY_ARRAY_NOTSWAPPED +.. c:var:: NPY_ARRAY_NOTSWAPPED - Only used in :cfunc:`PyArray_CheckFromAny` to over-ride the byteorder + Only used in :c:func:`PyArray_CheckFromAny` to over-ride the byteorder of the data-type object passed in. -.. cvar:: NPY_ARRAY_BEHAVED_NS +.. c:var:: NPY_ARRAY_BEHAVED_NS - :cdata:`NPY_ARRAY_ALIGNED` \| :cdata:`NPY_ARRAY_WRITEABLE` \| :cdata:`NPY_ARRAY_NOTSWAPPED` + :c:data:`NPY_ARRAY_ALIGNED` \| :c:data:`NPY_ARRAY_WRITEABLE` \| :c:data:`NPY_ARRAY_NOTSWAPPED` Flag checking ^^^^^^^^^^^^^ For all of these macros *arr* must be an instance of a (subclass of) -:cdata:`PyArray_Type`, but no checking is done. +:c:data:`PyArray_Type`, but no checking is done. -.. cfunction:: PyArray_CHKFLAGS(arr, flags) +.. c:function:: PyArray_CHKFLAGS(arr, flags) The first parameter, arr, must be an ndarray or subclass. The parameter, *flags*, should be an integer consisting of bitwise combinations of the possible flags an array can have: - :cdata:`NPY_ARRAY_C_CONTIGUOUS`, :cdata:`NPY_ARRAY_F_CONTIGUOUS`, - :cdata:`NPY_ARRAY_OWNDATA`, :cdata:`NPY_ARRAY_ALIGNED`, - :cdata:`NPY_ARRAY_WRITEABLE`, :cdata:`NPY_ARRAY_UPDATEIFCOPY`. + :c:data:`NPY_ARRAY_C_CONTIGUOUS`, :c:data:`NPY_ARRAY_F_CONTIGUOUS`, + :c:data:`NPY_ARRAY_OWNDATA`, :c:data:`NPY_ARRAY_ALIGNED`, + :c:data:`NPY_ARRAY_WRITEABLE`, :c:data:`NPY_ARRAY_UPDATEIFCOPY`. -.. cfunction:: PyArray_IS_C_CONTIGUOUS(arr) +.. c:function:: PyArray_IS_C_CONTIGUOUS(arr) Evaluates true if *arr* is C-style contiguous. -.. cfunction:: PyArray_IS_F_CONTIGUOUS(arr) +.. c:function:: PyArray_IS_F_CONTIGUOUS(arr) Evaluates true if *arr* is Fortran-style contiguous. -.. cfunction:: PyArray_ISFORTRAN(arr) +.. c:function:: PyArray_ISFORTRAN(arr) Evaluates true if *arr* is Fortran-style contiguous and *not* - C-style contiguous. :cfunc:`PyArray_IS_F_CONTIGUOUS` + C-style contiguous. :c:func:`PyArray_IS_F_CONTIGUOUS` is the correct way to test for Fortran-style contiguity. -.. cfunction:: PyArray_ISWRITEABLE(arr) +.. c:function:: PyArray_ISWRITEABLE(arr) Evaluates true if the data area of *arr* can be written to -.. cfunction:: PyArray_ISALIGNED(arr) +.. c:function:: PyArray_ISALIGNED(arr) Evaluates true if the data area of *arr* is properly aligned on the machine. -.. cfunction:: PyArray_ISBEHAVED(arr) +.. c:function:: PyArray_ISBEHAVED(arr) Evalutes true if the data area of *arr* is aligned and writeable and in machine byte-order according to its descriptor. -.. cfunction:: PyArray_ISBEHAVED_RO(arr) +.. c:function:: PyArray_ISBEHAVED_RO(arr) Evaluates true if the data area of *arr* is aligned and in machine byte-order. -.. cfunction:: PyArray_ISCARRAY(arr) +.. c:function:: PyArray_ISCARRAY(arr) Evaluates true if the data area of *arr* is C-style contiguous, - and :cfunc:`PyArray_ISBEHAVED` (*arr*) is true. + and :c:func:`PyArray_ISBEHAVED` (*arr*) is true. -.. cfunction:: PyArray_ISFARRAY(arr) +.. c:function:: PyArray_ISFARRAY(arr) Evaluates true if the data area of *arr* is Fortran-style - contiguous and :cfunc:`PyArray_ISBEHAVED` (*arr*) is true. + contiguous and :c:func:`PyArray_ISBEHAVED` (*arr*) is true. -.. cfunction:: PyArray_ISCARRAY_RO(arr) +.. c:function:: PyArray_ISCARRAY_RO(arr) Evaluates true if the data area of *arr* is C-style contiguous, aligned, and in machine byte-order. -.. cfunction:: PyArray_ISFARRAY_RO(arr) +.. c:function:: PyArray_ISFARRAY_RO(arr) Evaluates true if the data area of *arr* is Fortran-style contiguous, aligned, and in machine byte-order **.** -.. cfunction:: PyArray_ISONESEGMENT(arr) +.. c:function:: PyArray_ISONESEGMENT(arr) Evaluates true if the data area of *arr* consists of a single (C-style or Fortran-style) contiguous segment. -.. cfunction:: void PyArray_UpdateFlags(PyArrayObject* arr, int flagmask) +.. c:function:: void PyArray_UpdateFlags(PyArrayObject* arr, int flagmask) - The :cdata:`NPY_ARRAY_C_CONTIGUOUS`, :cdata:`NPY_ARRAY_ALIGNED`, and - :cdata:`NPY_ARRAY_F_CONTIGUOUS` array flags can be "calculated" from the + The :c:data:`NPY_ARRAY_C_CONTIGUOUS`, :c:data:`NPY_ARRAY_ALIGNED`, and + :c:data:`NPY_ARRAY_F_CONTIGUOUS` array flags can be "calculated" from the array object itself. This routine updates one or more of these flags of *arr* as specified in *flagmask* by performing the required calculation. @@ -1530,7 +1530,7 @@ For all of these macros *arr* must be an instance of a (subclass of) .. warning:: It is important to keep the flags updated (using - :cfunc:`PyArray_UpdateFlags` can help) whenever a manipulation with an + :c:func:`PyArray_UpdateFlags` can help) whenever a manipulation with an array is performed that might cause them to change. Later calculations in NumPy that rely on the state of these flags do not repeat the calculation to update them. @@ -1543,7 +1543,7 @@ Array method alternative API Conversion ^^^^^^^^^^ -.. cfunction:: PyObject* PyArray_GetField(PyArrayObject* self, PyArray_Descr* dtype, int offset) +.. c:function:: PyObject* PyArray_GetField(PyArrayObject* self, PyArray_Descr* dtype, int offset) Equivalent to :meth:`ndarray.getfield` (*self*, *dtype*, *offset*). Return a new array of the given *dtype* using the data in the current @@ -1555,7 +1555,7 @@ Conversion be used to select specific bytes or groups of bytes from any array type. -.. cfunction:: int PyArray_SetField(PyArrayObject* self, PyArray_Descr* dtype, int offset, PyObject* val) +.. c:function:: int PyArray_SetField(PyArrayObject* self, PyArray_Descr* dtype, int offset, PyObject* val) Equivalent to :meth:`ndarray.setfield` (*self*, *val*, *dtype*, *offset* ). Set the field starting at *offset* in bytes and of the given @@ -1567,35 +1567,35 @@ Conversion destination must be an integer multiple of the number of elements in *val*. -.. cfunction:: PyObject* PyArray_Byteswap(PyArrayObject* self, Bool inplace) +.. c:function:: PyObject* PyArray_Byteswap(PyArrayObject* self, Bool inplace) Equivalent to :meth:`ndarray.byteswap` (*self*, *inplace*). Return an array whose data area is byteswapped. If *inplace* is non-zero, then do the byteswap inplace and return a reference to self. Otherwise, create a byteswapped copy and leave self unchanged. -.. cfunction:: PyObject* PyArray_NewCopy(PyArrayObject* old, NPY_ORDER order) +.. c:function:: PyObject* PyArray_NewCopy(PyArrayObject* old, NPY_ORDER order) Equivalent to :meth:`ndarray.copy` (*self*, *fortran*). Make a copy of the *old* array. The returned array is always aligned and writeable with data interpreted the same as the old array. If *order* is - :cdata:`NPY_CORDER`, then a C-style contiguous array is returned. If - *order* is :cdata:`NPY_FORTRANORDER`, then a Fortran-style contiguous - array is returned. If *order is* :cdata:`NPY_ANYORDER`, then the array + :c:data:`NPY_CORDER`, then a C-style contiguous array is returned. If + *order* is :c:data:`NPY_FORTRANORDER`, then a Fortran-style contiguous + array is returned. If *order is* :c:data:`NPY_ANYORDER`, then the array returned is Fortran-style contiguous only if the old one is; otherwise, it is C-style contiguous. -.. cfunction:: PyObject* PyArray_ToList(PyArrayObject* self) +.. c:function:: PyObject* PyArray_ToList(PyArrayObject* self) Equivalent to :meth:`ndarray.tolist` (*self*). Return a nested Python list from *self*. -.. cfunction:: PyObject* PyArray_ToString(PyArrayObject* self, NPY_ORDER order) +.. c:function:: PyObject* PyArray_ToString(PyArrayObject* self, NPY_ORDER order) Equivalent to :meth:`ndarray.tobytes` (*self*, *order*). Return the bytes of this array in a Python string. -.. cfunction:: PyObject* PyArray_ToFile(PyArrayObject* self, FILE* fp, char* sep, char* format) +.. c:function:: PyObject* PyArray_ToFile(PyArrayObject* self, FILE* fp, char* sep, char* format) Write the contents of *self* to the file pointer *fp* in C-style contiguous fashion. Write the data as binary bytes if *sep* is the @@ -1605,7 +1605,7 @@ Conversion "", then it is a Python print statement format string showing how the items are to be written. -.. cfunction:: int PyArray_Dump(PyObject* self, PyObject* file, int protocol) +.. c:function:: int PyArray_Dump(PyObject* self, PyObject* file, int protocol) Pickle the object in *self* to the given *file* (either a string or a Python file object). If *file* is a Python string it is @@ -1614,20 +1614,20 @@ Conversion the highest available is used). This is a simple wrapper around cPickle.dump(*self*, *file*, *protocol*). -.. cfunction:: PyObject* PyArray_Dumps(PyObject* self, int protocol) +.. c:function:: PyObject* PyArray_Dumps(PyObject* self, int protocol) Pickle the object in *self* to a Python string and return it. Use the Pickle *protocol* provided (or the highest available if *protocol* is negative). -.. cfunction:: int PyArray_FillWithScalar(PyArrayObject* arr, PyObject* obj) +.. c:function:: int PyArray_FillWithScalar(PyArrayObject* arr, PyObject* obj) Fill the array, *arr*, with the given scalar object, *obj*. The object is first converted to the data type of *arr*, and then copied into every location. A -1 is returned if an error occurs, otherwise 0 is returned. -.. cfunction:: PyObject* PyArray_View(PyArrayObject* self, PyArray_Descr* dtype, PyTypeObject *ptype) +.. c:function:: PyObject* PyArray_View(PyArrayObject* self, PyArray_Descr* dtype, PyTypeObject *ptype) Equivalent to :meth:`ndarray.view` (*self*, *dtype*). Return a new view of the array *self* as possibly a different data-type, *dtype*, @@ -1646,7 +1646,7 @@ Conversion Shape Manipulation ^^^^^^^^^^^^^^^^^^ -.. cfunction:: PyObject* PyArray_Newshape(PyArrayObject* self, PyArray_Dims* newshape, NPY_ORDER order) +.. c:function:: PyObject* PyArray_Newshape(PyArrayObject* self, PyArray_Dims* newshape, NPY_ORDER order) Result will be a new array (pointing to the same memory location as *self* if possible), but having a shape given by *newshape*. @@ -1654,14 +1654,14 @@ Shape Manipulation then a copy of the array with the new specified shape will be returned. -.. cfunction:: PyObject* PyArray_Reshape(PyArrayObject* self, PyObject* shape) +.. c:function:: PyObject* PyArray_Reshape(PyArrayObject* self, PyObject* shape) Equivalent to :meth:`ndarray.reshape` (*self*, *shape*) where *shape* is a - sequence. Converts *shape* to a :ctype:`PyArray_Dims` structure and - calls :cfunc:`PyArray_Newshape` internally. + sequence. Converts *shape* to a :c:type:`PyArray_Dims` structure and + calls :c:func:`PyArray_Newshape` internally. For back-ward compatability -- Not recommended -.. cfunction:: PyObject* PyArray_Squeeze(PyArrayObject* self) +.. c:function:: PyObject* PyArray_Squeeze(PyArrayObject* self) Equivalent to :meth:`ndarray.squeeze` (*self*). Return a new view of *self* with all of the dimensions of length 1 removed from the shape. @@ -1669,15 +1669,15 @@ Shape Manipulation .. warning:: matrix objects are always 2-dimensional. Therefore, - :cfunc:`PyArray_Squeeze` has no effect on arrays of matrix sub-class. + :c:func:`PyArray_Squeeze` has no effect on arrays of matrix sub-class. -.. cfunction:: PyObject* PyArray_SwapAxes(PyArrayObject* self, int a1, int a2) +.. c:function:: PyObject* PyArray_SwapAxes(PyArrayObject* self, int a1, int a2) Equivalent to :meth:`ndarray.swapaxes` (*self*, *a1*, *a2*). The returned array is a new view of the data in *self* with the given axes, *a1* and *a2*, swapped. -.. cfunction:: PyObject* PyArray_Resize(PyArrayObject* self, PyArray_Dims* newshape, int refcheck, NPY_ORDER fortran) +.. c:function:: PyObject* PyArray_Resize(PyArrayObject* self, PyArray_Dims* newshape, int refcheck, NPY_ORDER fortran) Equivalent to :meth:`ndarray.resize` (*self*, *newshape*, refcheck ``=`` *refcheck*, order= fortran ). This function only works on @@ -1688,12 +1688,12 @@ Shape Manipulation *self* - ``>base==NULL``, have *self* - ``>weakrefs==NULL``, and (unless refcheck is 0) not be referenced by any other array. A reference to the new array is returned. The fortran argument can - be :cdata:`NPY_ANYORDER`, :cdata:`NPY_CORDER`, or - :cdata:`NPY_FORTRANORDER`. It currently has no effect. Eventually + be :c:data:`NPY_ANYORDER`, :c:data:`NPY_CORDER`, or + :c:data:`NPY_FORTRANORDER`. It currently has no effect. Eventually it could be used to determine how the resize operation should view the data when constructing a differently-dimensioned array. -.. cfunction:: PyObject* PyArray_Transpose(PyArrayObject* self, PyArray_Dims* permute) +.. c:function:: PyObject* PyArray_Transpose(PyArrayObject* self, PyArray_Dims* permute) Equivalent to :meth:`ndarray.transpose` (*self*, *permute*). Permute the axes of the ndarray object *self* according to the data structure @@ -1704,21 +1704,21 @@ Shape Manipulation *permute* is ``NULL``, the shape of the result is :math:`30\times20\times10.` -.. cfunction:: PyObject* PyArray_Flatten(PyArrayObject* self, NPY_ORDER order) +.. c:function:: PyObject* PyArray_Flatten(PyArrayObject* self, NPY_ORDER order) Equivalent to :meth:`ndarray.flatten` (*self*, *order*). Return a 1-d copy - of the array. If *order* is :cdata:`NPY_FORTRANORDER` the elements are + of the array. If *order* is :c:data:`NPY_FORTRANORDER` the elements are scanned out in Fortran order (first-dimension varies the - fastest). If *order* is :cdata:`NPY_CORDER`, the elements of ``self`` + fastest). If *order* is :c:data:`NPY_CORDER`, the elements of ``self`` are scanned in C-order (last dimension varies the fastest). If - *order* :cdata:`NPY_ANYORDER`, then the result of - :cfunc:`PyArray_ISFORTRAN` (*self*) is used to determine which order + *order* :c:data:`NPY_ANYORDER`, then the result of + :c:func:`PyArray_ISFORTRAN` (*self*) is used to determine which order to flatten. -.. cfunction:: PyObject* PyArray_Ravel(PyArrayObject* self, NPY_ORDER order) +.. c:function:: PyObject* PyArray_Ravel(PyArrayObject* self, NPY_ORDER order) Equivalent to *self*.ravel(*order*). Same basic functionality - as :cfunc:`PyArray_Flatten` (*self*, *order*) except if *order* is 0 + as :c:func:`PyArray_Flatten` (*self*, *order*) except if *order* is 0 and *self* is C-style contiguous, the shape is altered but no copy is performed. @@ -1726,32 +1726,32 @@ Shape Manipulation Item selection and manipulation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -.. cfunction:: PyObject* PyArray_TakeFrom(PyArrayObject* self, PyObject* indices, int axis, PyArrayObject* ret, NPY_CLIPMODE clipmode) +.. c:function:: PyObject* PyArray_TakeFrom(PyArrayObject* self, PyObject* indices, int axis, PyArrayObject* ret, NPY_CLIPMODE clipmode) Equivalent to :meth:`ndarray.take` (*self*, *indices*, *axis*, *ret*, *clipmode*) except *axis* =None in Python is obtained by setting - *axis* = :cdata:`NPY_MAXDIMS` in C. Extract the items from self + *axis* = :c:data:`NPY_MAXDIMS` in C. Extract the items from self indicated by the integer-valued *indices* along the given *axis.* - The clipmode argument can be :cdata:`NPY_RAISE`, :cdata:`NPY_WRAP`, or - :cdata:`NPY_CLIP` to indicate what to do with out-of-bound indices. The + The clipmode argument can be :c:data:`NPY_RAISE`, :c:data:`NPY_WRAP`, or + :c:data:`NPY_CLIP` to indicate what to do with out-of-bound indices. The *ret* argument can specify an output array rather than having one created internally. -.. cfunction:: PyObject* PyArray_PutTo(PyArrayObject* self, PyObject* values, PyObject* indices, NPY_CLIPMODE clipmode) +.. c:function:: PyObject* PyArray_PutTo(PyArrayObject* self, PyObject* values, PyObject* indices, NPY_CLIPMODE clipmode) Equivalent to *self*.put(*values*, *indices*, *clipmode* ). Put *values* into *self* at the corresponding (flattened) *indices*. If *values* is too small it will be repeated as necessary. -.. cfunction:: PyObject* PyArray_PutMask(PyArrayObject* self, PyObject* values, PyObject* mask) +.. c:function:: PyObject* PyArray_PutMask(PyArrayObject* self, PyObject* values, PyObject* mask) Place the *values* in *self* wherever corresponding positions (using a flattened context) in *mask* are true. The *mask* and *self* arrays must have the same total number of elements. If *values* is too small, it will be repeated as necessary. -.. cfunction:: PyObject* PyArray_Repeat(PyArrayObject* self, PyObject* op, int axis) +.. c:function:: PyObject* PyArray_Repeat(PyArrayObject* self, PyObject* op, int axis) Equivalent to :meth:`ndarray.repeat` (*self*, *op*, *axis*). Copy the elements of *self*, *op* times along the given *axis*. Either @@ -1759,7 +1759,7 @@ Item selection and manipulation ->dimensions[ *axis* ] indicating how many times to repeat each item along the axis. -.. cfunction:: PyObject* PyArray_Choose(PyArrayObject* self, PyObject* op, PyArrayObject* ret, NPY_CLIPMODE clipmode) +.. c:function:: PyObject* PyArray_Choose(PyArrayObject* self, PyObject* op, PyArrayObject* ret, NPY_CLIPMODE clipmode) Equivalent to :meth:`ndarray.choose` (*self*, *op*, *ret*, *clipmode*). Create a new array by selecting elements from the sequence of @@ -1770,26 +1770,26 @@ Item selection and manipulation created. The *clipmode* argument determines behavior for when entries in *self* are not between 0 and len(*op*). - .. cvar:: NPY_RAISE + .. c:var:: NPY_RAISE raise a ValueError; - .. cvar:: NPY_WRAP + .. c:var:: NPY_WRAP wrap values < 0 by adding len(*op*) and values >=len(*op*) by subtracting len(*op*) until they are in range; - .. cvar:: NPY_CLIP + .. c:var:: NPY_CLIP all values are clipped to the region [0, len(*op*) ). -.. cfunction:: PyObject* PyArray_Sort(PyArrayObject* self, int axis) +.. c:function:: PyObject* PyArray_Sort(PyArrayObject* self, int axis) Equivalent to :meth:`ndarray.sort` (*self*, *axis*). Return an array with the items of *self* sorted along *axis*. -.. cfunction:: PyObject* PyArray_ArgSort(PyArrayObject* self, int axis) +.. c:function:: PyObject* PyArray_ArgSort(PyArrayObject* self, int axis) Equivalent to :meth:`ndarray.argsort` (*self*, *axis*). Return an array of indices such that selection of these indices along the given @@ -1801,10 +1801,10 @@ Item selection and manipulation a new data-type with a different order of names and construct a view of the array with that new data-type. -.. cfunction:: PyObject* PyArray_LexSort(PyObject* sort_keys, int axis) +.. c:function:: PyObject* PyArray_LexSort(PyObject* sort_keys, int axis) Given a sequence of arrays (*sort_keys*) of the same shape, - return an array of indices (similar to :cfunc:`PyArray_ArgSort` (...)) + return an array of indices (similar to :c:func:`PyArray_ArgSort` (...)) that would sort the arrays lexicographically. A lexicographic sort specifies that when two keys are found to be equal, the order is based on comparison of subsequent keys. A merge sort (which leaves @@ -1817,10 +1817,10 @@ Item selection and manipulation the order you would use when comparing two elements). If these arrays are all collected in a structured array, then - :cfunc:`PyArray_Sort` (...) can also be used to sort the array + :c:func:`PyArray_Sort` (...) can also be used to sort the array directly. -.. cfunction:: PyObject* PyArray_SearchSorted(PyArrayObject* self, PyObject* values, NPY_SEARCHSIDE side, PyObject* perm) +.. c:function:: PyObject* PyArray_SearchSorted(PyArrayObject* self, PyObject* values, NPY_SEARCHSIDE side, PyObject* perm) Equivalent to :meth:`ndarray.searchsorted` (*self*, *values*, *side*, *perm*). Assuming *self* is a 1-d array in ascending order, then the @@ -1830,15 +1830,15 @@ Item selection and manipulation in ascending order. The *side* argument indicates whther the index returned should be that of - the first suitable location (if :cdata:`NPY_SEARCHLEFT`) or of the last - (if :cdata:`NPY_SEARCHRIGHT`). + the first suitable location (if :c:data:`NPY_SEARCHLEFT`) or of the last + (if :c:data:`NPY_SEARCHRIGHT`). The *sorter* argument, if not ``NULL``, must be a 1D array of integer indices the same length as *self*, that sorts it into ascending order. - This is typically the result of a call to :cfunc:`PyArray_ArgSort` (...) + This is typically the result of a call to :c:func:`PyArray_ArgSort` (...) Binary search is used to find the required insertion points. -.. cfunction:: int PyArray_Partition(PyArrayObject *self, PyArrayObject * ktharray, int axis, NPY_SELECTKIND which) +.. c:function:: int PyArray_Partition(PyArrayObject *self, PyArrayObject * ktharray, int axis, NPY_SELECTKIND which) Equivalent to :meth:`ndarray.partition` (*self*, *ktharray*, *axis*, *kind*). Partitions the array so that the values of the element indexed by @@ -1853,33 +1853,33 @@ Item selection and manipulation order of names and construct a view of the array with that new data-type. Returns zero on success and -1 on failure. -.. cfunction:: PyObject* PyArray_ArgPartition(PyArrayObject *op, PyArrayObject * ktharray, int axis, NPY_SELECTKIND which) +.. c:function:: PyObject* PyArray_ArgPartition(PyArrayObject *op, PyArrayObject * ktharray, int axis, NPY_SELECTKIND which) Equivalent to :meth:`ndarray.argpartition` (*self*, *ktharray*, *axis*, *kind*). Return an array of indices such that selection of these indices along the given ``axis`` would return a partitioned version of *self*. -.. cfunction:: PyObject* PyArray_Diagonal(PyArrayObject* self, int offset, int axis1, int axis2) +.. c:function:: PyObject* PyArray_Diagonal(PyArrayObject* self, int offset, int axis1, int axis2) Equivalent to :meth:`ndarray.diagonal` (*self*, *offset*, *axis1*, *axis2* ). Return the *offset* diagonals of the 2-d arrays defined by *axis1* and *axis2*. -.. cfunction:: npy_intp PyArray_CountNonzero(PyArrayObject* self) +.. c:function:: npy_intp PyArray_CountNonzero(PyArrayObject* self) .. versionadded:: 1.6 Counts the number of non-zero elements in the array object *self*. -.. cfunction:: PyObject* PyArray_Nonzero(PyArrayObject* self) +.. c:function:: PyObject* PyArray_Nonzero(PyArrayObject* self) Equivalent to :meth:`ndarray.nonzero` (*self*). Returns a tuple of index arrays that select elements of *self* that are nonzero. If (nd= - :cfunc:`PyArray_NDIM` ( ``self`` ))==1, then a single index array is - returned. The index arrays have data type :cdata:`NPY_INTP`. If a + :c:func:`PyArray_NDIM` ( ``self`` ))==1, then a single index array is + returned. The index arrays have data type :c:data:`NPY_INTP`. If a tuple is returned (nd :math:`\neq` 1), then its length is nd. -.. cfunction:: PyObject* PyArray_Compress(PyArrayObject* self, PyObject* condition, int axis, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Compress(PyArrayObject* self, PyObject* condition, int axis, PyArrayObject* out) Equivalent to :meth:`ndarray.compress` (*self*, *condition*, *axis* ). Return the elements along *axis* corresponding to elements of @@ -1891,16 +1891,16 @@ Calculation .. tip:: - Pass in :cdata:`NPY_MAXDIMS` for axis in order to achieve the same + Pass in :c:data:`NPY_MAXDIMS` for axis in order to achieve the same effect that is obtained by passing in *axis* = :const:`None` in Python (treating the array as a 1-d array). -.. cfunction:: PyObject* PyArray_ArgMax(PyArrayObject* self, int axis, PyArrayObject* out) +.. c:function:: PyObject* PyArray_ArgMax(PyArrayObject* self, int axis, PyArrayObject* out) Equivalent to :meth:`ndarray.argmax` (*self*, *axis*). Return the index of the largest element of *self* along *axis*. -.. cfunction:: PyObject* PyArray_ArgMin(PyArrayObject* self, int axis, PyArrayObject* out) +.. c:function:: PyObject* PyArray_ArgMin(PyArrayObject* self, int axis, PyArrayObject* out) Equivalent to :meth:`ndarray.argmin` (*self*, *axis*). Return the index of the smallest element of *self* along *axis*. @@ -1917,17 +1917,17 @@ Calculation is not NULL. The caller of the routine has the responsability to ``DECREF`` out if not NULL or a memory-leak will occur. -.. cfunction:: PyObject* PyArray_Max(PyArrayObject* self, int axis, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Max(PyArrayObject* self, int axis, PyArrayObject* out) Equivalent to :meth:`ndarray.max` (*self*, *axis*). Return the largest element of *self* along the given *axis*. -.. cfunction:: PyObject* PyArray_Min(PyArrayObject* self, int axis, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Min(PyArrayObject* self, int axis, PyArrayObject* out) Equivalent to :meth:`ndarray.min` (*self*, *axis*). Return the smallest element of *self* along the given *axis*. -.. cfunction:: PyObject* PyArray_Ptp(PyArrayObject* self, int axis, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Ptp(PyArrayObject* self, int axis, PyArrayObject* out) Equivalent to :meth:`ndarray.ptp` (*self*, *axis*). Return the difference between the largest element of *self* along *axis* and the @@ -1940,18 +1940,18 @@ Calculation The rtype argument specifies the data-type the reduction should take place over. This is important if the data-type of the array is not "large" enough to handle the output. By default, all - integer data-types are made at least as large as :cdata:`NPY_LONG` + integer data-types are made at least as large as :c:data:`NPY_LONG` for the "add" and "multiply" ufuncs (which form the basis for mean, sum, cumsum, prod, and cumprod functions). -.. cfunction:: PyObject* PyArray_Mean(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Mean(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) Equivalent to :meth:`ndarray.mean` (*self*, *axis*, *rtype*). Returns the mean of the elements along the given *axis*, using the enumerated type *rtype* as the data type to sum in. Default sum behavior is - obtained using :cdata:`NPY_NOTYPE` for *rtype*. + obtained using :c:data:`NPY_NOTYPE` for *rtype*. -.. cfunction:: PyObject* PyArray_Trace(PyArrayObject* self, int offset, int axis1, int axis2, int rtype, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Trace(PyArrayObject* self, int offset, int axis1, int axis2, int rtype, PyArrayObject* out) Equivalent to :meth:`ndarray.trace` (*self*, *offset*, *axis1*, *axis2*, *rtype*). Return the sum (using *rtype* as the data type of @@ -1960,62 +1960,62 @@ Calculation chooses diagonals above the main diagonal. A negative offset selects diagonals below the main diagonal. -.. cfunction:: PyObject* PyArray_Clip(PyArrayObject* self, PyObject* min, PyObject* max) +.. c:function:: PyObject* PyArray_Clip(PyArrayObject* self, PyObject* min, PyObject* max) Equivalent to :meth:`ndarray.clip` (*self*, *min*, *max*). Clip an array, *self*, so that values larger than *max* are fixed to *max* and values less than *min* are fixed to *min*. -.. cfunction:: PyObject* PyArray_Conjugate(PyArrayObject* self) +.. c:function:: PyObject* PyArray_Conjugate(PyArrayObject* self) Equivalent to :meth:`ndarray.conjugate` (*self*). Return the complex conjugate of *self*. If *self* is not of complex data type, then return *self* with an reference. -.. cfunction:: PyObject* PyArray_Round(PyArrayObject* self, int decimals, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Round(PyArrayObject* self, int decimals, PyArrayObject* out) Equivalent to :meth:`ndarray.round` (*self*, *decimals*, *out*). Returns the array with elements rounded to the nearest decimal place. The decimal place is defined as the :math:`10^{-\textrm{decimals}}` digit so that negative *decimals* cause rounding to the nearest 10's, 100's, etc. If out is ``NULL``, then the output array is created, otherwise the output is placed in *out* which must be the correct size and type. -.. cfunction:: PyObject* PyArray_Std(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Std(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) Equivalent to :meth:`ndarray.std` (*self*, *axis*, *rtype*). Return the standard deviation using data along *axis* converted to data type *rtype*. -.. cfunction:: PyObject* PyArray_Sum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Sum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) Equivalent to :meth:`ndarray.sum` (*self*, *axis*, *rtype*). Return 1-d vector sums of elements in *self* along *axis*. Perform the sum after converting data to data type *rtype*. -.. cfunction:: PyObject* PyArray_CumSum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) +.. c:function:: PyObject* PyArray_CumSum(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) Equivalent to :meth:`ndarray.cumsum` (*self*, *axis*, *rtype*). Return cumulative 1-d sums of elements in *self* along *axis*. Perform the sum after converting data to data type *rtype*. -.. cfunction:: PyObject* PyArray_Prod(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Prod(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) Equivalent to :meth:`ndarray.prod` (*self*, *axis*, *rtype*). Return 1-d products of elements in *self* along *axis*. Perform the product after converting data to data type *rtype*. -.. cfunction:: PyObject* PyArray_CumProd(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) +.. c:function:: PyObject* PyArray_CumProd(PyArrayObject* self, int axis, int rtype, PyArrayObject* out) Equivalent to :meth:`ndarray.cumprod` (*self*, *axis*, *rtype*). Return 1-d cumulative products of elements in ``self`` along ``axis``. Perform the product after converting data to data type ``rtype``. -.. cfunction:: PyObject* PyArray_All(PyArrayObject* self, int axis, PyArrayObject* out) +.. c:function:: PyObject* PyArray_All(PyArrayObject* self, int axis, PyArrayObject* out) Equivalent to :meth:`ndarray.all` (*self*, *axis*). Return an array with True elements for every 1-d sub-array of ``self`` defined by ``axis`` in which all the elements are True. -.. cfunction:: PyObject* PyArray_Any(PyArrayObject* self, int axis, PyArrayObject* out) +.. c:function:: PyObject* PyArray_Any(PyArrayObject* self, int axis, PyArrayObject* out) Equivalent to :meth:`ndarray.any` (*self*, *axis*). Return an array with True elements for every 1-d sub-array of *self* defined by *axis* @@ -2028,7 +2028,7 @@ Functions Array Functions ^^^^^^^^^^^^^^^ -.. cfunction:: int PyArray_AsCArray(PyObject** op, void* ptr, npy_intp* dims, int nd, int typenum, int itemsize) +.. c:function:: int PyArray_AsCArray(PyObject** op, void* ptr, npy_intp* dims, int nd, int typenum, int itemsize) Sometimes it is useful to access a multidimensional array as a C-style multi-dimensional array so that algorithms can be @@ -2075,30 +2075,30 @@ Array Functions arrays. To pass to functions requiring those kind of inputs, you must statically define the required array and copy data. -.. cfunction:: int PyArray_Free(PyObject* op, void* ptr) +.. c:function:: int PyArray_Free(PyObject* op, void* ptr) Must be called with the same objects and memory locations returned - from :cfunc:`PyArray_AsCArray` (...). This function cleans up memory + from :c:func:`PyArray_AsCArray` (...). This function cleans up memory that otherwise would get leaked. -.. cfunction:: PyObject* PyArray_Concatenate(PyObject* obj, int axis) +.. c:function:: PyObject* PyArray_Concatenate(PyObject* obj, int axis) Join the sequence of objects in *obj* together along *axis* into a single array. If the dimensions or types are not compatible an error is raised. -.. cfunction:: PyObject* PyArray_InnerProduct(PyObject* obj1, PyObject* obj2) +.. c:function:: PyObject* PyArray_InnerProduct(PyObject* obj1, PyObject* obj2) Compute a product-sum over the last dimensions of *obj1* and *obj2*. Neither array is conjugated. -.. cfunction:: PyObject* PyArray_MatrixProduct(PyObject* obj1, PyObject* obj) +.. c:function:: PyObject* PyArray_MatrixProduct(PyObject* obj1, PyObject* obj) Compute a product-sum over the last dimension of *obj1* and the second-to-last dimension of *obj2*. For 2-d arrays this is a matrix-product. Neither array is conjugated. -.. cfunction:: PyObject* PyArray_MatrixProduct2(PyObject* obj1, PyObject* obj, PyObject* out) +.. c:function:: PyObject* PyArray_MatrixProduct2(PyObject* obj1, PyObject* obj, PyObject* out) .. versionadded:: 1.6 @@ -2106,7 +2106,7 @@ Array Functions output array must have the correct shape, type, and be C-contiguous, or an exception is raised. -.. cfunction:: PyObject* PyArray_EinsteinSum(char* subscripts, npy_intp nop, PyArrayObject** op_in, PyArray_Descr* dtype, NPY_ORDER order, NPY_CASTING casting, PyArrayObject* out) +.. c:function:: PyObject* PyArray_EinsteinSum(char* subscripts, npy_intp nop, PyArrayObject** op_in, PyArray_Descr* dtype, NPY_ORDER order, NPY_CASTING casting, PyArrayObject* out) .. versionadded:: 1.6 @@ -2116,17 +2116,17 @@ Array Functions letters. The number of operands is in *nop*, and *op_in* is an array containing those operands. The data type of the output can be forced with *dtype*, the output order can be forced with *order* - (:cdata:`NPY_KEEPORDER` is recommended), and when *dtype* is specified, + (:c:data:`NPY_KEEPORDER` is recommended), and when *dtype* is specified, *casting* indicates how permissive the data conversion should be. See the :func:`einsum` function for more details. -.. cfunction:: PyObject* PyArray_CopyAndTranspose(PyObject \* op) +.. c:function:: PyObject* PyArray_CopyAndTranspose(PyObject \* op) A specialized copy and transpose function that works only for 2-d arrays. The returned array is a transposed copy of *op*. -.. cfunction:: PyObject* PyArray_Correlate(PyObject* op1, PyObject* op2, int mode) +.. c:function:: PyObject* PyArray_Correlate(PyObject* op1, PyObject* op2, int mode) Compute the 1-d correlation of the 1-d arrays *op1* and *op2* . The correlation is computed at each output point by multiplying @@ -2144,7 +2144,7 @@ Array Functions arguments are swapped, and the conjugate is never taken for complex arrays. See PyArray_Correlate2 for the usual signal processing correlation. -.. cfunction:: PyObject* PyArray_Correlate2(PyObject* op1, PyObject* op2, int mode) +.. c:function:: PyObject* PyArray_Correlate2(PyObject* op1, PyObject* op2, int mode) Updated version of PyArray_Correlate, which uses the usual definition of correlation for 1d arrays. The correlation is computed at each output point @@ -2161,10 +2161,10 @@ Array Functions z[k] = sum_n op1[n] * conj(op2[n+k]) -.. cfunction:: PyObject* PyArray_Where(PyObject* condition, PyObject* x, PyObject* y) +.. c:function:: PyObject* PyArray_Where(PyObject* condition, PyObject* x, PyObject* y) If both ``x`` and ``y`` are ``NULL``, then return - :cfunc:`PyArray_Nonzero` (*condition*). Otherwise, both *x* and *y* + :c:func:`PyArray_Nonzero` (*condition*). Otherwise, both *x* and *y* must be given and the object returned is shaped like *condition* and has elements of *x* and *y* where *condition* is respectively True or False. @@ -2173,7 +2173,7 @@ Array Functions Other functions ^^^^^^^^^^^^^^^ -.. cfunction:: Bool PyArray_CheckStrides(int elsize, int nd, npy_intp numbytes, npy_intp* dims, npy_intp* newstrides) +.. c:function:: Bool PyArray_CheckStrides(int elsize, int nd, npy_intp numbytes, npy_intp* dims, npy_intp* newstrides) Determine if *newstrides* is a strides array consistent with the memory of an *nd* -dimensional array with shape ``dims`` and @@ -2182,17 +2182,17 @@ Other functions ever mean jumping more than *numbytes* which is the assumed size of the available memory segment. If *numbytes* is 0, then an equivalent *numbytes* is computed assuming *nd*, *dims*, and - *elsize* refer to a single-segment array. Return :cdata:`NPY_TRUE` if - *newstrides* is acceptable, otherwise return :cdata:`NPY_FALSE`. + *elsize* refer to a single-segment array. Return :c:data:`NPY_TRUE` if + *newstrides* is acceptable, otherwise return :c:data:`NPY_FALSE`. -.. cfunction:: npy_intp PyArray_MultiplyList(npy_intp* seq, int n) +.. c:function:: npy_intp PyArray_MultiplyList(npy_intp* seq, int n) -.. cfunction:: int PyArray_MultiplyIntList(int* seq, int n) +.. c:function:: int PyArray_MultiplyIntList(int* seq, int n) Both of these routines multiply an *n* -length array, *seq*, of integers and return the result. No overflow checking is performed. -.. cfunction:: int PyArray_CompareLists(npy_intp* l1, npy_intp* l2, int n) +.. c:function:: int PyArray_CompareLists(npy_intp* l1, npy_intp* l2, int n) Given two *n* -length arrays of integers, *l1*, and *l2*, return 1 if the lists are identical; otherwise, return 0. @@ -2203,15 +2203,15 @@ Auxiliary Data With Object Semantics .. versionadded:: 1.7.0 -.. ctype:: NpyAuxData +.. c:type:: NpyAuxData When working with more complex dtypes which are composed of other dtypes, such as the struct dtype, creating inner loops that manipulate the dtypes requires carrying along additional data. NumPy supports this idea -through a struct :ctype:`NpyAuxData`, mandating a few conventions so that +through a struct :c:type:`NpyAuxData`, mandating a few conventions so that it is possible to do this. -Defining an :ctype:`NpyAuxData` is similar to defining a class in C++, +Defining an :c:type:`NpyAuxData` is similar to defining a class in C++, but the object semantics have to be tracked manually since the API is in C. Here's an example for a function which doubles up an element using an element copier function as a primitive.:: @@ -2268,22 +2268,22 @@ an element copier function as a primitive.:: return (NpyAuxData *)ret; } -.. ctype:: NpyAuxData_FreeFunc +.. c:type:: NpyAuxData_FreeFunc The function pointer type for NpyAuxData free functions. -.. ctype:: NpyAuxData_CloneFunc +.. c:type:: NpyAuxData_CloneFunc The function pointer type for NpyAuxData clone functions. These functions should never set the Python exception on error, because they may be called from a multi-threaded context. -.. cfunction:: NPY_AUXDATA_FREE(auxdata) +.. c:function:: NPY_AUXDATA_FREE(auxdata) A macro which calls the auxdata's free function appropriately, does nothing if auxdata is NULL. -.. cfunction:: NPY_AUXDATA_CLONE(auxdata) +.. c:function:: NPY_AUXDATA_CLONE(auxdata) A macro which calls the auxdata's clone function appropriately, returning a deep copy of the auxiliary data. @@ -2292,69 +2292,69 @@ Array Iterators --------------- As of Numpy 1.6, these array iterators are superceded by -the new array iterator, :ctype:`NpyIter`. +the new array iterator, :c:type:`NpyIter`. An array iterator is a simple way to access the elements of an N-dimensional array quickly and efficiently. Section `2 <#sec-array-iterator>`__ provides more description and examples of this useful approach to looping over an array. -.. cfunction:: PyObject* PyArray_IterNew(PyObject* arr) +.. c:function:: PyObject* PyArray_IterNew(PyObject* arr) Return an array iterator object from the array, *arr*. This is equivalent to *arr*. **flat**. The array iterator object makes it easy to loop over an N-dimensional non-contiguous array in C-style contiguous fashion. -.. cfunction:: PyObject* PyArray_IterAllButAxis(PyObject* arr, int \*axis) +.. c:function:: PyObject* PyArray_IterAllButAxis(PyObject* arr, int \*axis) Return an array iterator that will iterate over all axes but the one provided in *\*axis*. The returned iterator cannot be used - with :cfunc:`PyArray_ITER_GOTO1D`. This iterator could be used to + with :c:func:`PyArray_ITER_GOTO1D`. This iterator could be used to write something similar to what ufuncs do wherein the loop over the largest axis is done by a separate sub-routine. If *\*axis* is negative then *\*axis* will be set to the axis having the smallest stride and that axis will be used. -.. cfunction:: PyObject *PyArray_BroadcastToShape(PyObject* arr, npy_intp *dimensions, int nd) +.. c:function:: PyObject *PyArray_BroadcastToShape(PyObject* arr, npy_intp *dimensions, int nd) Return an array iterator that is broadcast to iterate as an array of the shape provided by *dimensions* and *nd*. -.. cfunction:: int PyArrayIter_Check(PyObject* op) +.. c:function:: int PyArrayIter_Check(PyObject* op) Evaluates true if *op* is an array iterator (or instance of a subclass of the array iterator type). -.. cfunction:: void PyArray_ITER_RESET(PyObject* iterator) +.. c:function:: void PyArray_ITER_RESET(PyObject* iterator) Reset an *iterator* to the beginning of the array. -.. cfunction:: void PyArray_ITER_NEXT(PyObject* iterator) +.. c:function:: void PyArray_ITER_NEXT(PyObject* iterator) Incremement the index and the dataptr members of the *iterator* to point to the next element of the array. If the array is not (C-style) contiguous, also increment the N-dimensional coordinates array. -.. cfunction:: void *PyArray_ITER_DATA(PyObject* iterator) +.. c:function:: void *PyArray_ITER_DATA(PyObject* iterator) A pointer to the current element of the array. -.. cfunction:: void PyArray_ITER_GOTO(PyObject* iterator, npy_intp* destination) +.. c:function:: void PyArray_ITER_GOTO(PyObject* iterator, npy_intp* destination) Set the *iterator* index, dataptr, and coordinates members to the location in the array indicated by the N-dimensional c-array, *destination*, which must have size at least *iterator* ->nd_m1+1. -.. cfunction:: PyArray_ITER_GOTO1D(PyObject* iterator, npy_intp index) +.. c:function:: PyArray_ITER_GOTO1D(PyObject* iterator, npy_intp index) Set the *iterator* index and dataptr to the location in the array indicated by the integer *index* which points to an element in the C-styled flattened array. -.. cfunction:: int PyArray_ITER_NOTDONE(PyObject* iterator) +.. c:function:: int PyArray_ITER_NOTDONE(PyObject* iterator) Evaluates TRUE as long as the iterator has not looped through all of the elements, otherwise it evaluates FALSE. @@ -2363,55 +2363,55 @@ this useful approach to looping over an array. Broadcasting (multi-iterators) ------------------------------ -.. cfunction:: PyObject* PyArray_MultiIterNew(int num, ...) +.. c:function:: PyObject* PyArray_MultiIterNew(int num, ...) A simplified interface to broadcasting. This function takes the - number of arrays to broadcast and then *num* extra ( :ctype:`PyObject *` + number of arrays to broadcast and then *num* extra ( :c:type:`PyObject *` ) arguments. These arguments are converted to arrays and iterators - are created. :cfunc:`PyArray_Broadcast` is then called on the resulting + are created. :c:func:`PyArray_Broadcast` is then called on the resulting multi-iterator object. The resulting, broadcasted mult-iterator object is then returned. A broadcasted operation can then be - performed using a single loop and using :cfunc:`PyArray_MultiIter_NEXT` + performed using a single loop and using :c:func:`PyArray_MultiIter_NEXT` (..) -.. cfunction:: void PyArray_MultiIter_RESET(PyObject* multi) +.. c:function:: void PyArray_MultiIter_RESET(PyObject* multi) Reset all the iterators to the beginning in a multi-iterator object, *multi*. -.. cfunction:: void PyArray_MultiIter_NEXT(PyObject* multi) +.. c:function:: void PyArray_MultiIter_NEXT(PyObject* multi) Advance each iterator in a multi-iterator object, *multi*, to its next (broadcasted) element. -.. cfunction:: void *PyArray_MultiIter_DATA(PyObject* multi, int i) +.. c:function:: void *PyArray_MultiIter_DATA(PyObject* multi, int i) Return the data-pointer of the *i* :math:`^{\textrm{th}}` iterator in a multi-iterator object. -.. cfunction:: void PyArray_MultiIter_NEXTi(PyObject* multi, int i) +.. c:function:: void PyArray_MultiIter_NEXTi(PyObject* multi, int i) Advance the pointer of only the *i* :math:`^{\textrm{th}}` iterator. -.. cfunction:: void PyArray_MultiIter_GOTO(PyObject* multi, npy_intp* destination) +.. c:function:: void PyArray_MultiIter_GOTO(PyObject* multi, npy_intp* destination) Advance each iterator in a multi-iterator object, *multi*, to the given :math:`N` -dimensional *destination* where :math:`N` is the number of dimensions in the broadcasted array. -.. cfunction:: void PyArray_MultiIter_GOTO1D(PyObject* multi, npy_intp index) +.. c:function:: void PyArray_MultiIter_GOTO1D(PyObject* multi, npy_intp index) Advance each iterator in a multi-iterator object, *multi*, to the corresponding location of the *index* into the flattened broadcasted array. -.. cfunction:: int PyArray_MultiIter_NOTDONE(PyObject* multi) +.. c:function:: int PyArray_MultiIter_NOTDONE(PyObject* multi) Evaluates TRUE as long as the multi-iterator has not looped through all of the elements (of the broadcasted result), otherwise it evaluates FALSE. -.. cfunction:: int PyArray_Broadcast(PyArrayMultiIterObject* mit) +.. c:function:: int PyArray_Broadcast(PyArrayMultiIterObject* mit) This function encapsulates the broadcasting rules. The *mit* container should already contain iterators for all the arrays that @@ -2419,7 +2419,7 @@ Broadcasting (multi-iterators) so that iteration over each simultaneously will accomplish the broadcasting. A negative number is returned if an error occurs. -.. cfunction:: int PyArray_RemoveSmallest(PyArrayMultiIterObject* mit) +.. c:function:: int PyArray_RemoveSmallest(PyArrayMultiIterObject* mit) This function takes a multi-iterator object that has been previously "broadcasted," finds the dimension with the smallest @@ -2446,7 +2446,7 @@ hypercube. Neighborhood iterator automatically handle boundaries, thus making this kind of code much easier to write than manual boundaries handling, at the cost of a slight overhead. -.. cfunction:: PyObject* PyArray_NeighborhoodIterNew(PyArrayIterObject* iter, npy_intp bounds, int mode, PyArrayObject* fill_value) +.. c:function:: PyObject* PyArray_NeighborhoodIterNew(PyArrayIterObject* iter, npy_intp bounds, int mode, PyArrayObject* fill_value) This function creates a new neighborhood iterator from an existing iterator. The neighborhood will be computed relatively to the position @@ -2513,13 +2513,13 @@ cost of a slight overhead. PyArrayNeighborhoodIter_Reset(neigh_iter); } -.. cfunction:: int PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter) +.. c:function:: int PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter) Reset the iterator position to the first point of the neighborhood. This should be called whenever the iter argument given at PyArray_NeighborhoodIterObject is changed (see example) -.. cfunction:: int PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter) +.. c:function:: int PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter) After this call, iter->dataptr points to the next point of the neighborhood. Calling this function after every point of the @@ -2528,7 +2528,7 @@ cost of a slight overhead. Array Scalars ------------- -.. cfunction:: PyObject* PyArray_Return(PyArrayObject* arr) +.. c:function:: PyObject* PyArray_Return(PyArrayObject* arr) This function steals a reference to *arr*. @@ -2536,7 +2536,7 @@ Array Scalars if so, returns the appropriate array scalar. It should be used whenever 0-dimensional arrays could be returned to Python. -.. cfunction:: PyObject* PyArray_Scalar(void* data, PyArray_Descr* dtype, PyObject* itemsize) +.. c:function:: PyObject* PyArray_Scalar(void* data, PyArray_Descr* dtype, PyObject* itemsize) Return an array scalar object of the given enumerated *typenum* and *itemsize* by **copying** from memory pointed to by *data* @@ -2544,20 +2544,20 @@ Array Scalars if appropriate to the data-type because array scalars are always in correct machine-byte order. -.. cfunction:: PyObject* PyArray_ToScalar(void* data, PyArrayObject* arr) +.. c:function:: PyObject* PyArray_ToScalar(void* data, PyArrayObject* arr) Return an array scalar object of the type and itemsize indicated by the array object *arr* copied from the memory pointed to by *data* and swapping if the data in *arr* is not in machine byte-order. -.. cfunction:: PyObject* PyArray_FromScalar(PyObject* scalar, PyArray_Descr* outcode) +.. c:function:: PyObject* PyArray_FromScalar(PyObject* scalar, PyArray_Descr* outcode) Return a 0-dimensional array of type determined by *outcode* from *scalar* which should be an array-scalar object. If *outcode* is NULL, then the type is determined from *scalar*. -.. cfunction:: void PyArray_ScalarAsCtype(PyObject* scalar, void* ctypeptr) +.. c:function:: void PyArray_ScalarAsCtype(PyObject* scalar, void* ctypeptr) Return in *ctypeptr* a pointer to the actual value in an array scalar. There is no error checking so *scalar* must be an @@ -2566,45 +2566,45 @@ Array Scalars is copied into the memory of *ctypeptr*, for all other types, the actual data is copied into the address pointed to by *ctypeptr*. -.. cfunction:: void PyArray_CastScalarToCtype(PyObject* scalar, void* ctypeptr, PyArray_Descr* outcode) +.. c:function:: void PyArray_CastScalarToCtype(PyObject* scalar, void* ctypeptr, PyArray_Descr* outcode) Return the data (cast to the data type indicated by *outcode*) from the array-scalar, *scalar*, into the memory pointed to by *ctypeptr* (which must be large enough to handle the incoming memory). -.. cfunction:: PyObject* PyArray_TypeObjectFromType(int type) +.. c:function:: PyObject* PyArray_TypeObjectFromType(int type) Returns a scalar type-object from a type-number, *type* - . Equivalent to :cfunc:`PyArray_DescrFromType` (*type*)->typeobj + . Equivalent to :c:func:`PyArray_DescrFromType` (*type*)->typeobj except for reference counting and error-checking. Returns a new reference to the typeobject on success or ``NULL`` on failure. -.. cfunction:: NPY_SCALARKIND PyArray_ScalarKind(int typenum, PyArrayObject** arr) +.. c:function:: NPY_SCALARKIND PyArray_ScalarKind(int typenum, PyArrayObject** arr) - See the function :cfunc:`PyArray_MinScalarType` for an alternative + See the function :c:func:`PyArray_MinScalarType` for an alternative mechanism introduced in NumPy 1.6.0. Return the kind of scalar represented by *typenum* and the array in *\*arr* (if *arr* is not ``NULL`` ). The array is assumed to be rank-0 and only used if *typenum* represents a signed integer. If *arr* is not ``NULL`` and the first element is negative then - :cdata:`NPY_INTNEG_SCALAR` is returned, otherwise - :cdata:`NPY_INTPOS_SCALAR` is returned. The possible return values - are :cdata:`NPY_{kind}_SCALAR` where ``{kind}`` can be **INTPOS**, + :c:data:`NPY_INTNEG_SCALAR` is returned, otherwise + :c:data:`NPY_INTPOS_SCALAR` is returned. The possible return values + are :c:data:`NPY_{kind}_SCALAR` where ``{kind}`` can be **INTPOS**, **INTNEG**, **FLOAT**, **COMPLEX**, **BOOL**, or **OBJECT**. - :cdata:`NPY_NOSCALAR` is also an enumerated value - :ctype:`NPY_SCALARKIND` variables can take on. + :c:data:`NPY_NOSCALAR` is also an enumerated value + :c:type:`NPY_SCALARKIND` variables can take on. -.. cfunction:: int PyArray_CanCoerceScalar(char thistype, char neededtype, NPY_SCALARKIND scalar) +.. c:function:: int PyArray_CanCoerceScalar(char thistype, char neededtype, NPY_SCALARKIND scalar) - See the function :cfunc:`PyArray_ResultType` for details of + See the function :c:func:`PyArray_ResultType` for details of NumPy type promotion, updated in NumPy 1.6.0. Implements the rules for scalar coercion. Scalars are only silently coerced from thistype to neededtype if this function - returns nonzero. If scalar is :cdata:`NPY_NOSCALAR`, then this - function is equivalent to :cfunc:`PyArray_CanCastSafely`. The rule is + returns nonzero. If scalar is :c:data:`NPY_NOSCALAR`, then this + function is equivalent to :c:func:`PyArray_CanCastSafely`. The rule is that scalars of the same KIND can be coerced into arrays of the same KIND. This rule means that high-precision scalars will never cause low-precision arrays of the same KIND to be upcast. @@ -2620,78 +2620,78 @@ Data-type descriptors Data-type objects must be reference counted so be aware of the action on the data-type reference of different C-API calls. The standard rule is that when a data-type object is returned it is a - new reference. Functions that take :ctype:`PyArray_Descr *` objects and + new reference. Functions that take :c:type:`PyArray_Descr *` objects and return arrays steal references to the data-type their inputs unless otherwise noted. Therefore, you must own a reference to any data-type object used as input to such a function. -.. cfunction:: int PyArray_DescrCheck(PyObject* obj) +.. c:function:: int PyArray_DescrCheck(PyObject* obj) - Evaluates as true if *obj* is a data-type object ( :ctype:`PyArray_Descr *` ). + Evaluates as true if *obj* is a data-type object ( :c:type:`PyArray_Descr *` ). -.. cfunction:: PyArray_Descr* PyArray_DescrNew(PyArray_Descr* obj) +.. c:function:: PyArray_Descr* PyArray_DescrNew(PyArray_Descr* obj) Return a new data-type object copied from *obj* (the fields reference is just updated so that the new object points to the same fields dictionary if any). -.. cfunction:: PyArray_Descr* PyArray_DescrNewFromType(int typenum) +.. c:function:: PyArray_Descr* PyArray_DescrNewFromType(int typenum) Create a new data-type object from the built-in (or user-registered) data-type indicated by *typenum*. All builtin types should not have any of their fields changed. This creates a - new copy of the :ctype:`PyArray_Descr` structure so that you can fill + new copy of the :c:type:`PyArray_Descr` structure so that you can fill it in as appropriate. This function is especially needed for flexible data-types which need to have a new elsize member in order to be meaningful in array construction. -.. cfunction:: PyArray_Descr* PyArray_DescrNewByteorder(PyArray_Descr* obj, char newendian) +.. c:function:: PyArray_Descr* PyArray_DescrNewByteorder(PyArray_Descr* obj, char newendian) Create a new data-type object with the byteorder set according to *newendian*. All referenced data-type objects (in subdescr and fields members of the data-type object) are also changed - (recursively). If a byteorder of :cdata:`NPY_IGNORE` is encountered it - is left alone. If newendian is :cdata:`NPY_SWAP`, then all byte-orders - are swapped. Other valid newendian values are :cdata:`NPY_NATIVE`, - :cdata:`NPY_LITTLE`, and :cdata:`NPY_BIG` which all cause the returned + (recursively). If a byteorder of :c:data:`NPY_IGNORE` is encountered it + is left alone. If newendian is :c:data:`NPY_SWAP`, then all byte-orders + are swapped. Other valid newendian values are :c:data:`NPY_NATIVE`, + :c:data:`NPY_LITTLE`, and :c:data:`NPY_BIG` which all cause the returned data-typed descriptor (and all it's referenced data-type descriptors) to have the corresponding byte- order. -.. cfunction:: PyArray_Descr* PyArray_DescrFromObject(PyObject* op, PyArray_Descr* mintype) +.. c:function:: PyArray_Descr* PyArray_DescrFromObject(PyObject* op, PyArray_Descr* mintype) Determine an appropriate data-type object from the object *op* (which should be a "nested" sequence object) and the minimum data-type descriptor mintype (which can be ``NULL`` ). Similar in behavior to array(*op*).dtype. Don't confuse this function with - :cfunc:`PyArray_DescrConverter`. This function essentially looks at + :c:func:`PyArray_DescrConverter`. This function essentially looks at all the objects in the (nested) sequence and determines the data-type from the elements it finds. -.. cfunction:: PyArray_Descr* PyArray_DescrFromScalar(PyObject* scalar) +.. c:function:: PyArray_Descr* PyArray_DescrFromScalar(PyObject* scalar) Return a data-type object from an array-scalar object. No checking is done to be sure that *scalar* is an array scalar. If no suitable data-type can be determined, then a data-type of - :cdata:`NPY_OBJECT` is returned by default. + :c:data:`NPY_OBJECT` is returned by default. -.. cfunction:: PyArray_Descr* PyArray_DescrFromType(int typenum) +.. c:function:: PyArray_Descr* PyArray_DescrFromType(int typenum) Returns a data-type object corresponding to *typenum*. The *typenum* can be one of the enumerated types, a character code for one of the enumerated types, or a user-defined type. -.. cfunction:: int PyArray_DescrConverter(PyObject* obj, PyArray_Descr** dtype) +.. c:function:: int PyArray_DescrConverter(PyObject* obj, PyArray_Descr** dtype) Convert any compatible Python object, *obj*, to a data-type object in *dtype*. A large number of Python objects can be converted to data-type objects. See :ref:`arrays.dtypes` for a complete description. This version of the converter converts None objects - to a :cdata:`NPY_DEFAULT_TYPE` data-type object. This function can - be used with the "O&" character code in :cfunc:`PyArg_ParseTuple` + to a :c:data:`NPY_DEFAULT_TYPE` data-type object. This function can + be used with the "O&" character code in :c:func:`PyArg_ParseTuple` processing. -.. cfunction:: int PyArray_DescrConverter2(PyObject* obj, PyArray_Descr** dtype) +.. c:function:: int PyArray_DescrConverter2(PyObject* obj, PyArray_Descr** dtype) Convert any compatible Python object, *obj*, to a data-type object in *dtype*. This version of the converter converts None @@ -2699,34 +2699,34 @@ Data-type descriptors can also be used with the "O&" character in PyArg_ParseTuple processing. -.. cfunction:: int Pyarray_DescrAlignConverter(PyObject* obj, PyArray_Descr** dtype) +.. c:function:: int Pyarray_DescrAlignConverter(PyObject* obj, PyArray_Descr** dtype) - Like :cfunc:`PyArray_DescrConverter` except it aligns C-struct-like + Like :c:func:`PyArray_DescrConverter` except it aligns C-struct-like objects on word-boundaries as the compiler would. -.. cfunction:: int Pyarray_DescrAlignConverter2(PyObject* obj, PyArray_Descr** dtype) +.. c:function:: int Pyarray_DescrAlignConverter2(PyObject* obj, PyArray_Descr** dtype) - Like :cfunc:`PyArray_DescrConverter2` except it aligns C-struct-like + Like :c:func:`PyArray_DescrConverter2` except it aligns C-struct-like objects on word-boundaries as the compiler would. -.. cfunction:: PyObject *PyArray_FieldNames(PyObject* dict) +.. c:function:: PyObject *PyArray_FieldNames(PyObject* dict) Take the fields dictionary, *dict*, such as the one attached to a data-type object and construct an ordered-list of field names such - as is stored in the names field of the :ctype:`PyArray_Descr` object. + as is stored in the names field of the :c:type:`PyArray_Descr` object. Conversion Utilities -------------------- -For use with :cfunc:`PyArg_ParseTuple` +For use with :c:func:`PyArg_ParseTuple` ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -All of these functions can be used in :cfunc:`PyArg_ParseTuple` (...) with +All of these functions can be used in :c:func:`PyArg_ParseTuple` (...) with the "O&" format specifier to automatically convert any Python object to the required C-object. All of these functions return -:cdata:`NPY_SUCCEED` if successful and :cdata:`NPY_FAIL` if not. The first +:c:data:`NPY_SUCCEED` if successful and :c:data:`NPY_FAIL` if not. The first argument to all of these function is a Python object. The second argument is the **address** of the C-type to convert the Python object to. @@ -2739,27 +2739,27 @@ to. require freeing memory, and/or altering the reference counts of specific objects based on your use. -.. cfunction:: int PyArray_Converter(PyObject* obj, PyObject** address) +.. c:function:: int PyArray_Converter(PyObject* obj, PyObject** address) - Convert any Python object to a :ctype:`PyArrayObject`. If - :cfunc:`PyArray_Check` (*obj*) is TRUE then its reference count is + Convert any Python object to a :c:type:`PyArrayObject`. If + :c:func:`PyArray_Check` (*obj*) is TRUE then its reference count is incremented and a reference placed in *address*. If *obj* is not - an array, then convert it to an array using :cfunc:`PyArray_FromAny` + an array, then convert it to an array using :c:func:`PyArray_FromAny` . No matter what is returned, you must DECREF the object returned by this routine in *address* when you are done with it. -.. cfunction:: int PyArray_OutputConverter(PyObject* obj, PyArrayObject** address) +.. c:function:: int PyArray_OutputConverter(PyObject* obj, PyArrayObject** address) This is a default converter for output arrays given to - functions. If *obj* is :cdata:`Py_None` or ``NULL``, then *\*address* - will be ``NULL`` but the call will succeed. If :cfunc:`PyArray_Check` ( + functions. If *obj* is :c:data:`Py_None` or ``NULL``, then *\*address* + will be ``NULL`` but the call will succeed. If :c:func:`PyArray_Check` ( *obj*) is TRUE then it is returned in *\*address* without incrementing its reference count. -.. cfunction:: int PyArray_IntpConverter(PyObject* obj, PyArray_Dims* seq) +.. c:function:: int PyArray_IntpConverter(PyObject* obj, PyArray_Dims* seq) - Convert any Python sequence, *obj*, smaller than :cdata:`NPY_MAXDIMS` - to a C-array of :ctype:`npy_intp`. The Python object could also be a + Convert any Python sequence, *obj*, smaller than :c:data:`NPY_MAXDIMS` + to a C-array of :c:type:`npy_intp`. The Python object could also be a single number. The *seq* variable is a pointer to a structure with members ptr and len. On successful return, *seq* ->ptr contains a pointer to memory that must be freed to avoid a memory leak. The @@ -2767,83 +2767,83 @@ to. conveniently used for sequences intended to be interpreted as array shapes. -.. cfunction:: int PyArray_BufferConverter(PyObject* obj, PyArray_Chunk* buf) +.. c:function:: int PyArray_BufferConverter(PyObject* obj, PyArray_Chunk* buf) Convert any Python object, *obj*, with a (single-segment) buffer interface to a variable with members that detail the object's use of its chunk of memory. The *buf* variable is a pointer to a structure with base, ptr, len, and flags members. The - :ctype:`PyArray_Chunk` structure is binary compatibile with the + :c:type:`PyArray_Chunk` structure is binary compatibile with the Python's buffer object (through its len member on 32-bit platforms and its ptr member on 64-bit platforms or in Python 2.5). On return, the base member is set to *obj* (or its base if *obj* is already a buffer object pointing to another object). If you need to hold on to the memory be sure to INCREF the base member. The chunk of memory is pointed to by *buf* ->ptr member and has length - *buf* ->len. The flags member of *buf* is :cdata:`NPY_BEHAVED_RO` with - the :cdata:`NPY_ARRAY_WRITEABLE` flag set if *obj* has a writeable buffer + *buf* ->len. The flags member of *buf* is :c:data:`NPY_BEHAVED_RO` with + the :c:data:`NPY_ARRAY_WRITEABLE` flag set if *obj* has a writeable buffer interface. -.. cfunction:: int PyArray_AxisConverter(PyObject \* obj, int* axis) +.. c:function:: int PyArray_AxisConverter(PyObject \* obj, int* axis) Convert a Python object, *obj*, representing an axis argument to the proper value for passing to the functions that take an integer axis. Specifically, if *obj* is None, *axis* is set to - :cdata:`NPY_MAXDIMS` which is interpreted correctly by the C-API + :c:data:`NPY_MAXDIMS` which is interpreted correctly by the C-API functions that take axis arguments. -.. cfunction:: int PyArray_BoolConverter(PyObject* obj, Bool* value) +.. c:function:: int PyArray_BoolConverter(PyObject* obj, Bool* value) - Convert any Python object, *obj*, to :cdata:`NPY_TRUE` or - :cdata:`NPY_FALSE`, and place the result in *value*. + Convert any Python object, *obj*, to :c:data:`NPY_TRUE` or + :c:data:`NPY_FALSE`, and place the result in *value*. -.. cfunction:: int PyArray_ByteorderConverter(PyObject* obj, char* endian) +.. c:function:: int PyArray_ByteorderConverter(PyObject* obj, char* endian) Convert Python strings into the corresponding byte-order character: '>', '<', 's', '=', or '\|'. -.. cfunction:: int PyArray_SortkindConverter(PyObject* obj, NPY_SORTKIND* sort) +.. c:function:: int PyArray_SortkindConverter(PyObject* obj, NPY_SORTKIND* sort) - Convert Python strings into one of :cdata:`NPY_QUICKSORT` (starts - with 'q' or 'Q') , :cdata:`NPY_HEAPSORT` (starts with 'h' or 'H'), - or :cdata:`NPY_MERGESORT` (starts with 'm' or 'M'). + Convert Python strings into one of :c:data:`NPY_QUICKSORT` (starts + with 'q' or 'Q') , :c:data:`NPY_HEAPSORT` (starts with 'h' or 'H'), + or :c:data:`NPY_MERGESORT` (starts with 'm' or 'M'). -.. cfunction:: int PyArray_SearchsideConverter(PyObject* obj, NPY_SEARCHSIDE* side) +.. c:function:: int PyArray_SearchsideConverter(PyObject* obj, NPY_SEARCHSIDE* side) - Convert Python strings into one of :cdata:`NPY_SEARCHLEFT` (starts with 'l' - or 'L'), or :cdata:`NPY_SEARCHRIGHT` (starts with 'r' or 'R'). + Convert Python strings into one of :c:data:`NPY_SEARCHLEFT` (starts with 'l' + or 'L'), or :c:data:`NPY_SEARCHRIGHT` (starts with 'r' or 'R'). -.. cfunction:: int PyArray_OrderConverter(PyObject* obj, NPY_ORDER* order) +.. c:function:: int PyArray_OrderConverter(PyObject* obj, NPY_ORDER* order) - Convert the Python strings 'C', 'F', 'A', and 'K' into the :ctype:`NPY_ORDER` - enumeration :cdata:`NPY_CORDER`, :cdata:`NPY_FORTRANORDER`, - :cdata:`NPY_ANYORDER`, and :cdata:`NPY_KEEPORDER`. + Convert the Python strings 'C', 'F', 'A', and 'K' into the :c:type:`NPY_ORDER` + enumeration :c:data:`NPY_CORDER`, :c:data:`NPY_FORTRANORDER`, + :c:data:`NPY_ANYORDER`, and :c:data:`NPY_KEEPORDER`. -.. cfunction:: int PyArray_CastingConverter(PyObject* obj, NPY_CASTING* casting) +.. c:function:: int PyArray_CastingConverter(PyObject* obj, NPY_CASTING* casting) Convert the Python strings 'no', 'equiv', 'safe', 'same_kind', and - 'unsafe' into the :ctype:`NPY_CASTING` enumeration :cdata:`NPY_NO_CASTING`, - :cdata:`NPY_EQUIV_CASTING`, :cdata:`NPY_SAFE_CASTING`, - :cdata:`NPY_SAME_KIND_CASTING`, and :cdata:`NPY_UNSAFE_CASTING`. + 'unsafe' into the :c:type:`NPY_CASTING` enumeration :c:data:`NPY_NO_CASTING`, + :c:data:`NPY_EQUIV_CASTING`, :c:data:`NPY_SAFE_CASTING`, + :c:data:`NPY_SAME_KIND_CASTING`, and :c:data:`NPY_UNSAFE_CASTING`. -.. cfunction:: int PyArray_ClipmodeConverter(PyObject* object, NPY_CLIPMODE* val) +.. c:function:: int PyArray_ClipmodeConverter(PyObject* object, NPY_CLIPMODE* val) Convert the Python strings 'clip', 'wrap', and 'raise' into the - :ctype:`NPY_CLIPMODE` enumeration :cdata:`NPY_CLIP`, :cdata:`NPY_WRAP`, - and :cdata:`NPY_RAISE`. + :c:type:`NPY_CLIPMODE` enumeration :c:data:`NPY_CLIP`, :c:data:`NPY_WRAP`, + and :c:data:`NPY_RAISE`. -.. cfunction:: int PyArray_ConvertClipmodeSequence(PyObject* object, NPY_CLIPMODE* modes, int n) +.. c:function:: int PyArray_ConvertClipmodeSequence(PyObject* object, NPY_CLIPMODE* modes, int n) Converts either a sequence of clipmodes or a single clipmode into - a C array of :ctype:`NPY_CLIPMODE` values. The number of clipmodes *n* + a C array of :c:type:`NPY_CLIPMODE` values. The number of clipmodes *n* must be known before calling this function. This function is provided to help functions allow a different clipmode for each dimension. Other conversions ^^^^^^^^^^^^^^^^^ -.. cfunction:: int PyArray_PyIntAsInt(PyObject* op) +.. c:function:: int PyArray_PyIntAsInt(PyObject* op) Convert all kinds of Python objects (including arrays and array scalars) to a standard integer. On error, -1 is returned and an @@ -2853,27 +2853,27 @@ Other conversions #define error_converting(x) (((x) == -1) && PyErr_Occurred() -.. cfunction:: npy_intp PyArray_PyIntAsIntp(PyObject* op) +.. c:function:: npy_intp PyArray_PyIntAsIntp(PyObject* op) Convert all kinds of Python objects (including arrays and array scalars) to a (platform-pointer-sized) integer. On error, -1 is returned and an exception set. -.. cfunction:: int PyArray_IntpFromSequence(PyObject* seq, npy_intp* vals, int maxvals) +.. c:function:: int PyArray_IntpFromSequence(PyObject* seq, npy_intp* vals, int maxvals) Convert any Python sequence (or single Python number) passed in as *seq* to (up to) *maxvals* pointer-sized integers and place them in the *vals* array. The sequence can be smaller then *maxvals* as the number of converted objects is returned. -.. cfunction:: int PyArray_TypestrConvert(int itemsize, int gentype) +.. c:function:: int PyArray_TypestrConvert(int itemsize, int gentype) Convert typestring characters (with *itemsize*) to basic enumerated data types. The typestring character corresponding to signed and unsigned integers, floating point numbers, and complex-floating point numbers are recognized and converted. Other values of gentype are returned. This function can be used to - convert, for example, the string 'f4' to :cdata:`NPY_FLOAT32`. + convert, for example, the string 'f4' to :c:data:`NPY_FLOAT32`. Miscellaneous @@ -2889,25 +2889,25 @@ self-contained in a single .c file, then that is all that needs to be done. If, however, the extension module involves multiple files where the C-API is needed then some additional steps must be taken. -.. cfunction:: void import_array(void) +.. c:function:: void import_array(void) This function must be called in the initialization section of a module that will make use of the C-API. It imports the module where the function-pointer table is stored and points the correct variable to it. -.. cmacro:: PY_ARRAY_UNIQUE_SYMBOL +.. c:macro:: PY_ARRAY_UNIQUE_SYMBOL -.. cmacro:: NO_IMPORT_ARRAY +.. c:macro:: NO_IMPORT_ARRAY Using these #defines you can use the C-API in multiple files for a single extension module. In each file you must define - :cmacro:`PY_ARRAY_UNIQUE_SYMBOL` to some name that will hold the + :c:macro:`PY_ARRAY_UNIQUE_SYMBOL` to some name that will hold the C-API (*e.g.* myextension_ARRAY_API). This must be done **before** including the numpy/arrayobject.h file. In the module intialization routine you call ``import_array`` (). In addition, in the files that do not have the module initialization - sub_routine define :cmacro:`NO_IMPORT_ARRAY` prior to including + sub_routine define :c:macro:`NO_IMPORT_ARRAY` prior to including numpy/arrayobject.h. Suppose I have two files coolmodule.c and coolhelper.c which need @@ -2942,18 +2942,18 @@ even runtime. For example, if you build an extension using a function available only for numpy >= 1.3.0, and you import the extension later with numpy 1.2, you will not get an import error (but almost certainly a segmentation fault when calling the function). That's why several functions are provided to check for -numpy versions. The macros :cdata:`NPY_VERSION` and -:cdata:`NPY_FEATURE_VERSION` corresponds to the numpy version used to build the +numpy versions. The macros :c:data:`NPY_VERSION` and +:c:data:`NPY_FEATURE_VERSION` corresponds to the numpy version used to build the extension, whereas the versions returned by the functions PyArray_GetNDArrayCVersion and PyArray_GetNDArrayCFeatureVersion corresponds to the runtime numpy's version. The rules for ABI and API compatibilities can be summarized as follows: - * Whenever :cdata:`NPY_VERSION` != PyArray_GetNDArrayCVersion, the + * Whenever :c:data:`NPY_VERSION` != PyArray_GetNDArrayCVersion, the extension has to be recompiled (ABI incompatibility). - * :cdata:`NPY_VERSION` == PyArray_GetNDArrayCVersion and - :cdata:`NPY_FEATURE_VERSION` <= PyArray_GetNDArrayCFeatureVersion means + * :c:data:`NPY_VERSION` == PyArray_GetNDArrayCVersion and + :c:data:`NPY_FEATURE_VERSION` <= PyArray_GetNDArrayCFeatureVersion means backward compatible changes. ABI incompatibility is automatically detected in every numpy's version. API @@ -2961,27 +2961,27 @@ incompatibility detection was added in numpy 1.4.0. If you want to supported many different numpy versions with one extension binary, you have to build your extension with the lowest NPY_FEATURE_VERSION as possible. -.. cfunction:: unsigned int PyArray_GetNDArrayCVersion(void) +.. c:function:: unsigned int PyArray_GetNDArrayCVersion(void) - This just returns the value :cdata:`NPY_VERSION`. :cdata:`NPY_VERSION` + This just returns the value :c:data:`NPY_VERSION`. :c:data:`NPY_VERSION` changes whenever a backward incompatible change at the ABI level. Because it is in the C-API, however, comparing the output of this function from the value defined in the current header gives a way to test if the C-API has changed thus requiring a re-compilation of extension modules that use the C-API. This is automatically checked in the function import_array. -.. cfunction:: unsigned int PyArray_GetNDArrayCFeatureVersion(void) +.. c:function:: unsigned int PyArray_GetNDArrayCFeatureVersion(void) .. versionadded:: 1.4.0 - This just returns the value :cdata:`NPY_FEATURE_VERSION`. - :cdata:`NPY_FEATURE_VERSION` changes whenever the API changes (e.g. a + This just returns the value :c:data:`NPY_FEATURE_VERSION`. + :c:data:`NPY_FEATURE_VERSION` changes whenever the API changes (e.g. a function is added). A changed value does not always require a recompile. Internal Flexibility ^^^^^^^^^^^^^^^^^^^^ -.. cfunction:: int PyArray_SetNumericOps(PyObject* dict) +.. c:function:: int PyArray_SetNumericOps(PyObject* dict) NumPy stores an internal table of Python callable objects that are used to implement arithmetic operations for arrays as well as @@ -3012,13 +3012,13 @@ Internal Flexibility setting a Python Error) if one of the objects being assigned is not callable. -.. cfunction:: PyObject* PyArray_GetNumericOps(void) +.. c:function:: PyObject* PyArray_GetNumericOps(void) Return a Python dictionary containing the callable Python objects stored in the the internal arithmetic operation table. The keys of - this dictionary are given in the explanation for :cfunc:`PyArray_SetNumericOps`. + this dictionary are given in the explanation for :c:func:`PyArray_SetNumericOps`. -.. cfunction:: void PyArray_SetStringFunction(PyObject* op, int repr) +.. c:function:: void PyArray_SetStringFunction(PyObject* op, int repr) This function allows you to alter the tp_str and tp_repr methods of the array object to any Python function. Thus you can alter @@ -3034,39 +3034,39 @@ Internal Flexibility Memory management ^^^^^^^^^^^^^^^^^ -.. cfunction:: char* PyDataMem_NEW(size_t nbytes) +.. c:function:: char* PyDataMem_NEW(size_t nbytes) -.. cfunction:: PyDataMem_FREE(char* ptr) +.. c:function:: PyDataMem_FREE(char* ptr) -.. cfunction:: char* PyDataMem_RENEW(void * ptr, size_t newbytes) +.. c:function:: char* PyDataMem_RENEW(void * ptr, size_t newbytes) Macros to allocate, free, and reallocate memory. These macros are used internally to create arrays. -.. cfunction:: npy_intp* PyDimMem_NEW(nd) +.. c:function:: npy_intp* PyDimMem_NEW(nd) -.. cfunction:: PyDimMem_FREE(npy_intp* ptr) +.. c:function:: PyDimMem_FREE(npy_intp* ptr) -.. cfunction:: npy_intp* PyDimMem_RENEW(npy_intp* ptr, npy_intp newnd) +.. c:function:: npy_intp* PyDimMem_RENEW(npy_intp* ptr, npy_intp newnd) Macros to allocate, free, and reallocate dimension and strides memory. -.. cfunction:: PyArray_malloc(nbytes) +.. c:function:: PyArray_malloc(nbytes) -.. cfunction:: PyArray_free(ptr) +.. c:function:: PyArray_free(ptr) -.. cfunction:: PyArray_realloc(ptr, nbytes) +.. c:function:: PyArray_realloc(ptr, nbytes) These macros use different memory allocators, depending on the - constant :cdata:`NPY_USE_PYMEM`. The system malloc is used when - :cdata:`NPY_USE_PYMEM` is 0, if :cdata:`NPY_USE_PYMEM` is 1, then + constant :c:data:`NPY_USE_PYMEM`. The system malloc is used when + :c:data:`NPY_USE_PYMEM` is 0, if :c:data:`NPY_USE_PYMEM` is 1, then the Python memory allocator is used. Threading support ^^^^^^^^^^^^^^^^^ -These macros are only meaningful if :cdata:`NPY_ALLOW_THREADS` +These macros are only meaningful if :c:data:`NPY_ALLOW_THREADS` evaluates True during compilation of the extension module. Otherwise, these macros are equivalent to whitespace. Python uses a single Global Interpreter Lock (GIL) for each Python process so that only a single @@ -3077,10 +3077,10 @@ variables), the GIL should be released so that other Python threads can run while the time-consuming calculations are performed. This can be accomplished using two groups of macros. Typically, if one macro in a group is used in a code block, all of them must be used in the same -code block. Currently, :cdata:`NPY_ALLOW_THREADS` is defined to the -python-defined :cdata:`WITH_THREADS` constant unless the environment -variable :cdata:`NPY_NOSMP` is set in which case -:cdata:`NPY_ALLOW_THREADS` is defined to be 0. +code block. Currently, :c:data:`NPY_ALLOW_THREADS` is defined to the +python-defined :c:data:`WITH_THREADS` constant unless the environment +variable :c:data:`NPY_NOSMP` is set in which case +:c:data:`NPY_ALLOW_THREADS` is defined to be 0. Group 1 """"""" @@ -3089,51 +3089,51 @@ Group 1 use any Python C-API calls. Thus, the GIL should be released during its calculation. - .. cmacro:: NPY_BEGIN_ALLOW_THREADS + .. c:macro:: NPY_BEGIN_ALLOW_THREADS - Equivalent to :cmacro:`Py_BEGIN_ALLOW_THREADS` except it uses - :cdata:`NPY_ALLOW_THREADS` to determine if the macro if + Equivalent to :c:macro:`Py_BEGIN_ALLOW_THREADS` except it uses + :c:data:`NPY_ALLOW_THREADS` to determine if the macro if replaced with white-space or not. - .. cmacro:: NPY_END_ALLOW_THREADS + .. c:macro:: NPY_END_ALLOW_THREADS - Equivalent to :cmacro:`Py_END_ALLOW_THREADS` except it uses - :cdata:`NPY_ALLOW_THREADS` to determine if the macro if + Equivalent to :c:macro:`Py_END_ALLOW_THREADS` except it uses + :c:data:`NPY_ALLOW_THREADS` to determine if the macro if replaced with white-space or not. - .. cmacro:: NPY_BEGIN_THREADS_DEF + .. c:macro:: NPY_BEGIN_THREADS_DEF Place in the variable declaration area. This macro sets up the variable needed for storing the Python state. - .. cmacro:: NPY_BEGIN_THREADS + .. c:macro:: NPY_BEGIN_THREADS Place right before code that does not need the Python interpreter (no Python C-API calls). This macro saves the Python state and releases the GIL. - .. cmacro:: NPY_END_THREADS + .. c:macro:: NPY_END_THREADS Place right after code that does not need the Python interpreter. This macro acquires the GIL and restores the Python state from the saved variable. - .. cfunction:: NPY_BEGIN_THREADS_DESCR(PyArray_Descr *dtype) + .. c:function:: NPY_BEGIN_THREADS_DESCR(PyArray_Descr *dtype) Useful to release the GIL only if *dtype* does not contain arbitrary Python objects which may need the Python interpreter during execution of the loop. Equivalent to - .. cfunction:: NPY_END_THREADS_DESCR(PyArray_Descr *dtype) + .. c:function:: NPY_END_THREADS_DESCR(PyArray_Descr *dtype) Useful to regain the GIL in situations where it was released using the BEGIN form of this macro. - .. cfunction:: NPY_BEGIN_THREADS_THRESHOLDED(int loop_size) + .. c:function:: NPY_BEGIN_THREADS_THRESHOLDED(int loop_size) Useful to release the GIL only if *loop_size* exceeds a minimum threshold, currently set to 500. Should be matched - with a .. cmacro::`NPY_END_THREADS` to regain the GIL. + with a .. c:macro::`NPY_END_THREADS` to regain the GIL. Group 2 """"""" @@ -3146,17 +3146,17 @@ Group 2 essentially a reverse of the previous three (acquire the LOCK saving what state it had) and then re-release it with the saved state. - .. cmacro:: NPY_ALLOW_C_API_DEF + .. c:macro:: NPY_ALLOW_C_API_DEF Place in the variable declaration area to set up the necessary variable. - .. cmacro:: NPY_ALLOW_C_API + .. c:macro:: NPY_ALLOW_C_API Place before code that needs to call the Python C-API (when it is known that the GIL has already been released). - .. cmacro:: NPY_DISABLE_C_API + .. c:macro:: NPY_DISABLE_C_API Place after code that needs to call the Python C-API (to re-release the GIL). @@ -3169,38 +3169,38 @@ Group 2 Priority ^^^^^^^^ -.. cvar:: NPY_PRIORITY +.. c:var:: NPY_PRIORITY Default priority for arrays. -.. cvar:: NPY_SUBTYPE_PRIORITY +.. c:var:: NPY_SUBTYPE_PRIORITY Default subtype priority. -.. cvar:: NPY_SCALAR_PRIORITY +.. c:var:: NPY_SCALAR_PRIORITY Default scalar priority (very small) -.. cfunction:: double PyArray_GetPriority(PyObject* obj, double def) +.. c:function:: double PyArray_GetPriority(PyObject* obj, double def) Return the :obj:`__array_priority__` attribute (converted to a double) of *obj* or *def* if no attribute of that name exists. Fast returns that avoid the attribute lookup are provided - for objects of type :cdata:`PyArray_Type`. + for objects of type :c:data:`PyArray_Type`. Default buffers ^^^^^^^^^^^^^^^ -.. cvar:: NPY_BUFSIZE +.. c:var:: NPY_BUFSIZE Default size of the user-settable internal buffers. -.. cvar:: NPY_MIN_BUFSIZE +.. c:var:: NPY_MIN_BUFSIZE Smallest size of user-settable internal buffers. -.. cvar:: NPY_MAX_BUFSIZE +.. c:var:: NPY_MAX_BUFSIZE Largest size allowed for the user-settable buffers. @@ -3208,158 +3208,158 @@ Default buffers Other constants ^^^^^^^^^^^^^^^ -.. cvar:: NPY_NUM_FLOATTYPE +.. c:var:: NPY_NUM_FLOATTYPE The number of floating-point types -.. cvar:: NPY_MAXDIMS +.. c:var:: NPY_MAXDIMS The maximum number of dimensions allowed in arrays. -.. cvar:: NPY_VERSION +.. c:var:: NPY_VERSION The current version of the ndarray object (check to see if this variable is defined to guarantee the numpy/arrayobject.h header is being used). -.. cvar:: NPY_FALSE +.. c:var:: NPY_FALSE Defined as 0 for use with Bool. -.. cvar:: NPY_TRUE +.. c:var:: NPY_TRUE Defined as 1 for use with Bool. -.. cvar:: NPY_FAIL +.. c:var:: NPY_FAIL The return value of failed converter functions which are called using - the "O&" syntax in :cfunc:`PyArg_ParseTuple`-like functions. + the "O&" syntax in :c:func:`PyArg_ParseTuple`-like functions. -.. cvar:: NPY_SUCCEED +.. c:var:: NPY_SUCCEED The return value of successful converter functions which are called - using the "O&" syntax in :cfunc:`PyArg_ParseTuple`-like functions. + using the "O&" syntax in :c:func:`PyArg_ParseTuple`-like functions. Miscellaneous Macros ^^^^^^^^^^^^^^^^^^^^ -.. cfunction:: PyArray_SAMESHAPE(a1, a2) +.. c:function:: PyArray_SAMESHAPE(a1, a2) Evaluates as True if arrays *a1* and *a2* have the same shape. -.. cfunction:: PyArray_MAX(a,b) +.. c:function:: PyArray_MAX(a,b) Returns the maximum of *a* and *b*. If (*a*) or (*b*) are expressions they are evaluated twice. -.. cfunction:: PyArray_MIN(a,b) +.. c:function:: PyArray_MIN(a,b) Returns the minimum of *a* and *b*. If (*a*) or (*b*) are expressions they are evaluated twice. -.. cfunction:: PyArray_CLT(a,b) +.. c:function:: PyArray_CLT(a,b) -.. cfunction:: PyArray_CGT(a,b) +.. c:function:: PyArray_CGT(a,b) -.. cfunction:: PyArray_CLE(a,b) +.. c:function:: PyArray_CLE(a,b) -.. cfunction:: PyArray_CGE(a,b) +.. c:function:: PyArray_CGE(a,b) -.. cfunction:: PyArray_CEQ(a,b) +.. c:function:: PyArray_CEQ(a,b) -.. cfunction:: PyArray_CNE(a,b) +.. c:function:: PyArray_CNE(a,b) Implements the complex comparisons between two complex numbers (structures with a real and imag member) using NumPy's definition of the ordering which is lexicographic: comparing the real parts first and then the complex parts if the real parts are equal. -.. cfunction:: PyArray_REFCOUNT(PyObject* op) +.. c:function:: PyArray_REFCOUNT(PyObject* op) Returns the reference count of any Python object. -.. cfunction:: PyArray_XDECREF_ERR(PyObject \*obj) +.. c:function:: PyArray_XDECREF_ERR(PyObject \*obj) - DECREF's an array object which may have the :cdata:`NPY_ARRAY_UPDATEIFCOPY` + DECREF's an array object which may have the :c:data:`NPY_ARRAY_UPDATEIFCOPY` flag set without causing the contents to be copied back into the - original array. Resets the :cdata:`NPY_ARRAY_WRITEABLE` flag on the base + original array. Resets the :c:data:`NPY_ARRAY_WRITEABLE` flag on the base object. This is useful for recovering from an error condition when - :cdata:`NPY_ARRAY_UPDATEIFCOPY` is used. + :c:data:`NPY_ARRAY_UPDATEIFCOPY` is used. Enumerated Types ^^^^^^^^^^^^^^^^ -.. ctype:: NPY_SORTKIND +.. c:type:: NPY_SORTKIND - A special variable-type which can take on the values :cdata:`NPY_{KIND}` + A special variable-type which can take on the values :c:data:`NPY_{KIND}` where ``{KIND}`` is **QUICKSORT**, **HEAPSORT**, **MERGESORT** - .. cvar:: NPY_NSORTS + .. c:var:: NPY_NSORTS Defined to be the number of sorts. -.. ctype:: NPY_SCALARKIND +.. c:type:: NPY_SCALARKIND A special variable type indicating the number of "kinds" of scalars distinguished in determining scalar-coercion rules. This - variable can take on the values :cdata:`NPY_{KIND}` where ``{KIND}`` can be + variable can take on the values :c:data:`NPY_{KIND}` where ``{KIND}`` can be **NOSCALAR**, **BOOL_SCALAR**, **INTPOS_SCALAR**, **INTNEG_SCALAR**, **FLOAT_SCALAR**, **COMPLEX_SCALAR**, **OBJECT_SCALAR** - .. cvar:: NPY_NSCALARKINDS + .. c:var:: NPY_NSCALARKINDS Defined to be the number of scalar kinds - (not including :cdata:`NPY_NOSCALAR`). + (not including :c:data:`NPY_NOSCALAR`). -.. ctype:: NPY_ORDER +.. c:type:: NPY_ORDER An enumeration type indicating the element order that an array should be interpreted in. When a brand new array is created, generally only **NPY_CORDER** and **NPY_FORTRANORDER** are used, whereas when one or more inputs are provided, the order can be based on them. - .. cvar:: NPY_ANYORDER + .. c:var:: NPY_ANYORDER Fortran order if all the inputs are Fortran, C otherwise. - .. cvar:: NPY_CORDER + .. c:var:: NPY_CORDER C order. - .. cvar:: NPY_FORTRANORDER + .. c:var:: NPY_FORTRANORDER Fortran order. - .. cvar:: NPY_KEEPORDER + .. c:var:: NPY_KEEPORDER An order as close to the order of the inputs as possible, even if the input is in neither C nor Fortran order. -.. ctype:: NPY_CLIPMODE +.. c:type:: NPY_CLIPMODE A variable type indicating the kind of clipping that should be applied in certain functions. - .. cvar:: NPY_RAISE + .. c:var:: NPY_RAISE The default for most operations, raises an exception if an index is out of bounds. - .. cvar:: NPY_CLIP + .. c:var:: NPY_CLIP Clips an index to the valid range if it is out of bounds. - .. cvar:: NPY_WRAP + .. c:var:: NPY_WRAP Wraps an index to the valid range if it is out of bounds. -.. ctype:: NPY_CASTING +.. c:type:: NPY_CASTING .. versionadded:: 1.6 @@ -3367,25 +3367,25 @@ Enumerated Types be. This is used by the iterator added in NumPy 1.6, and is intended to be used more broadly in a future version. - .. cvar:: NPY_NO_CASTING + .. c:var:: NPY_NO_CASTING Only allow identical types. - .. cvar:: NPY_EQUIV_CASTING + .. c:var:: NPY_EQUIV_CASTING Allow identical and casts involving byte swapping. - .. cvar:: NPY_SAFE_CASTING + .. c:var:: NPY_SAFE_CASTING Only allow casts which will not cause values to be rounded, truncated, or otherwise changed. - .. cvar:: NPY_SAME_KIND_CASTING + .. c:var:: NPY_SAME_KIND_CASTING Allow any safe casts, and casts between types of the same kind. For example, float64 -> float32 is permitted with this rule. - .. cvar:: NPY_UNSAFE_CASTING + .. c:var:: NPY_UNSAFE_CASTING Allow any cast, no matter what kind of data loss may occur. diff --git a/doc/source/reference/c-api.config.rst b/doc/source/reference/c-api.config.rst index 972a78596..17d7f557d 100644 --- a/doc/source/reference/c-api.config.rst +++ b/doc/source/reference/c-api.config.rst @@ -19,42 +19,42 @@ avoid namespace pollution. Data type sizes --------------- -The :cdata:`NPY_SIZEOF_{CTYPE}` constants are defined so that sizeof +The :c:data:`NPY_SIZEOF_{CTYPE}` constants are defined so that sizeof information is available to the pre-processor. -.. cvar:: NPY_SIZEOF_SHORT +.. c:var:: NPY_SIZEOF_SHORT sizeof(short) -.. cvar:: NPY_SIZEOF_INT +.. c:var:: NPY_SIZEOF_INT sizeof(int) -.. cvar:: NPY_SIZEOF_LONG +.. c:var:: NPY_SIZEOF_LONG sizeof(long) -.. cvar:: NPY_SIZEOF_LONGLONG +.. c:var:: NPY_SIZEOF_LONGLONG sizeof(longlong) where longlong is defined appropriately on the platform. -.. cvar:: NPY_SIZEOF_PY_LONG_LONG +.. c:var:: NPY_SIZEOF_PY_LONG_LONG -.. cvar:: NPY_SIZEOF_FLOAT +.. c:var:: NPY_SIZEOF_FLOAT sizeof(float) -.. cvar:: NPY_SIZEOF_DOUBLE +.. c:var:: NPY_SIZEOF_DOUBLE sizeof(double) -.. cvar:: NPY_SIZEOF_LONG_DOUBLE +.. c:var:: NPY_SIZEOF_LONG_DOUBLE sizeof(longdouble) (A macro defines **NPY_SIZEOF_LONGDOUBLE** as well.) -.. cvar:: NPY_SIZEOF_PY_INTPTR_T +.. c:var:: NPY_SIZEOF_PY_INTPTR_T Size of a pointer on this platform (sizeof(void \*)) (A macro defines NPY_SIZEOF_INTP as well.) @@ -63,15 +63,15 @@ information is available to the pre-processor. Platform information -------------------- -.. cvar:: NPY_CPU_X86 -.. cvar:: NPY_CPU_AMD64 -.. cvar:: NPY_CPU_IA64 -.. cvar:: NPY_CPU_PPC -.. cvar:: NPY_CPU_PPC64 -.. cvar:: NPY_CPU_SPARC -.. cvar:: NPY_CPU_SPARC64 -.. cvar:: NPY_CPU_S390 -.. cvar:: NPY_CPU_PARISC +.. c:var:: NPY_CPU_X86 +.. c:var:: NPY_CPU_AMD64 +.. c:var:: NPY_CPU_IA64 +.. c:var:: NPY_CPU_PPC +.. c:var:: NPY_CPU_PPC64 +.. c:var:: NPY_CPU_SPARC +.. c:var:: NPY_CPU_SPARC64 +.. c:var:: NPY_CPU_S390 +.. c:var:: NPY_CPU_PARISC .. versionadded:: 1.3.0 @@ -80,24 +80,24 @@ Platform information Defined in ``numpy/npy_cpu.h`` -.. cvar:: NPY_LITTLE_ENDIAN +.. c:var:: NPY_LITTLE_ENDIAN -.. cvar:: NPY_BIG_ENDIAN +.. c:var:: NPY_BIG_ENDIAN -.. cvar:: NPY_BYTE_ORDER +.. c:var:: NPY_BYTE_ORDER .. versionadded:: 1.3.0 Portable alternatives to the ``endian.h`` macros of GNU Libc. - If big endian, :cdata:`NPY_BYTE_ORDER` == :cdata:`NPY_BIG_ENDIAN`, and + If big endian, :c:data:`NPY_BYTE_ORDER` == :c:data:`NPY_BIG_ENDIAN`, and similarly for little endian architectures. Defined in ``numpy/npy_endian.h``. -.. cfunction:: PyArray_GetEndianness() +.. c:function:: PyArray_GetEndianness() .. versionadded:: 1.3.0 Returns the endianness of the current platform. - One of :cdata:`NPY_CPU_BIG`, :cdata:`NPY_CPU_LITTLE`, - or :cdata:`NPY_CPU_UNKNOWN_ENDIAN`. + One of :c:data:`NPY_CPU_BIG`, :c:data:`NPY_CPU_LITTLE`, + or :c:data:`NPY_CPU_UNKNOWN_ENDIAN`. diff --git a/doc/source/reference/c-api.coremath.rst b/doc/source/reference/c-api.coremath.rst index 5c76bd601..08b1adb3a 100644 --- a/doc/source/reference/c-api.coremath.rst +++ b/doc/source/reference/c-api.coremath.rst @@ -24,52 +24,52 @@ in doubt. Floating point classification ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.. cvar:: NPY_NAN +.. c:var:: NPY_NAN This macro is defined to a NaN (Not a Number), and is guaranteed to have the signbit unset ('positive' NaN). The corresponding single and extension precision macro are available with the suffix F and L. -.. cvar:: NPY_INFINITY +.. c:var:: NPY_INFINITY This macro is defined to a positive inf. The corresponding single and extension precision macro are available with the suffix F and L. -.. cvar:: NPY_PZERO +.. c:var:: NPY_PZERO This macro is defined to positive zero. The corresponding single and extension precision macro are available with the suffix F and L. -.. cvar:: NPY_NZERO +.. c:var:: NPY_NZERO This macro is defined to negative zero (that is with the sign bit set). The corresponding single and extension precision macro are available with the suffix F and L. -.. cfunction:: int npy_isnan(x) +.. c:function:: int npy_isnan(x) This is a macro, and is equivalent to C99 isnan: works for single, double and extended precision, and return a non 0 value is x is a NaN. -.. cfunction:: int npy_isfinite(x) +.. c:function:: int npy_isfinite(x) This is a macro, and is equivalent to C99 isfinite: works for single, double and extended precision, and return a non 0 value is x is neither a NaN nor an infinity. -.. cfunction:: int npy_isinf(x) +.. c:function:: int npy_isinf(x) This is a macro, and is equivalent to C99 isinf: works for single, double and extended precision, and return a non 0 value is x is infinite (positive and negative). -.. cfunction:: int npy_signbit(x) +.. c:function:: int npy_signbit(x) This is a macro, and is equivalent to C99 signbit: works for single, double and extended precision, and return a non 0 value is x has the signbit set (that is the number is negative). -.. cfunction:: double npy_copysign(double x, double y) +.. c:function:: double npy_copysign(double x, double y) This is a function equivalent to C99 copysign: return x with the same sign as y. Works for any value, including inf and nan. Single and extended @@ -83,47 +83,47 @@ Useful math constants The following math constants are available in npy_math.h. Single and extended precision are also available by adding the F and L suffixes respectively. -.. cvar:: NPY_E +.. c:var:: NPY_E Base of natural logarithm (:math:`e`) -.. cvar:: NPY_LOG2E +.. c:var:: NPY_LOG2E Logarithm to base 2 of the Euler constant (:math:`\frac{\ln(e)}{\ln(2)}`) -.. cvar:: NPY_LOG10E +.. c:var:: NPY_LOG10E Logarithm to base 10 of the Euler constant (:math:`\frac{\ln(e)}{\ln(10)}`) -.. cvar:: NPY_LOGE2 +.. c:var:: NPY_LOGE2 Natural logarithm of 2 (:math:`\ln(2)`) -.. cvar:: NPY_LOGE10 +.. c:var:: NPY_LOGE10 Natural logarithm of 10 (:math:`\ln(10)`) -.. cvar:: NPY_PI +.. c:var:: NPY_PI Pi (:math:`\pi`) -.. cvar:: NPY_PI_2 +.. c:var:: NPY_PI_2 Pi divided by 2 (:math:`\frac{\pi}{2}`) -.. cvar:: NPY_PI_4 +.. c:var:: NPY_PI_4 Pi divided by 4 (:math:`\frac{\pi}{4}`) -.. cvar:: NPY_1_PI +.. c:var:: NPY_1_PI Reciprocal of pi (:math:`\frac{1}{\pi}`) -.. cvar:: NPY_2_PI +.. c:var:: NPY_2_PI Two times the reciprocal of pi (:math:`\frac{2}{\pi}`) -.. cvar:: NPY_EULER +.. c:var:: NPY_EULER The Euler constant :math:`\lim_{n\rightarrow\infty}({\sum_{k=1}^n{\frac{1}{k}}-\ln n})` @@ -133,7 +133,7 @@ Low-level floating point manipulation Those can be useful for precise floating point comparison. -.. cfunction:: double npy_nextafter(double x, double y) +.. c:function:: double npy_nextafter(double x, double y) This is a function equivalent to C99 nextafter: return next representable floating point value from x in the direction of y. Single and extended @@ -141,7 +141,7 @@ Those can be useful for precise floating point comparison. .. versionadded:: 1.4.0 -.. cfunction:: double npy_spacing(double x) +.. c:function:: double npy_spacing(double x) This is a function equivalent to Fortran intrinsic. Return distance between x and next representable floating point value from x, e.g. spacing(1) == @@ -150,31 +150,31 @@ Those can be useful for precise floating point comparison. .. versionadded:: 1.4.0 -.. cfunction:: void npy_set_floatstatus_divbyzero() +.. c:function:: void npy_set_floatstatus_divbyzero() Set the divide by zero floating point exception .. versionadded:: 1.6.0 -.. cfunction:: void npy_set_floatstatus_overflow() +.. c:function:: void npy_set_floatstatus_overflow() Set the overflow floating point exception .. versionadded:: 1.6.0 -.. cfunction:: void npy_set_floatstatus_underflow() +.. c:function:: void npy_set_floatstatus_underflow() Set the underflow floating point exception .. versionadded:: 1.6.0 -.. cfunction:: void npy_set_floatstatus_invalid() +.. c:function:: void npy_set_floatstatus_invalid() Set the invalid floating point exception .. versionadded:: 1.6.0 -.. cfunction:: int npy_get_floatstatus() +.. c:function:: int npy_get_floatstatus() Get floating point status. Returns a bitmask with following possible flags: @@ -185,7 +185,7 @@ Those can be useful for precise floating point comparison. .. versionadded:: 1.9.0 -.. cfunction:: int npy_clear_floatstatus() +.. c:function:: int npy_clear_floatstatus() Clears the floating point status. Returns the previous status mask. @@ -270,151 +270,151 @@ __ http://en.wikipedia.org/wiki/Half_precision_floating-point_format __ http://www.opengl.org/registry/specs/ARB/half_float_pixel.txt __ http://www.openexr.com/about.html -.. cvar:: NPY_HALF_ZERO +.. c:var:: NPY_HALF_ZERO This macro is defined to positive zero. -.. cvar:: NPY_HALF_PZERO +.. c:var:: NPY_HALF_PZERO This macro is defined to positive zero. -.. cvar:: NPY_HALF_NZERO +.. c:var:: NPY_HALF_NZERO This macro is defined to negative zero. -.. cvar:: NPY_HALF_ONE +.. c:var:: NPY_HALF_ONE This macro is defined to 1.0. -.. cvar:: NPY_HALF_NEGONE +.. c:var:: NPY_HALF_NEGONE This macro is defined to -1.0. -.. cvar:: NPY_HALF_PINF +.. c:var:: NPY_HALF_PINF This macro is defined to +inf. -.. cvar:: NPY_HALF_NINF +.. c:var:: NPY_HALF_NINF This macro is defined to -inf. -.. cvar:: NPY_HALF_NAN +.. c:var:: NPY_HALF_NAN This macro is defined to a NaN value, guaranteed to have its sign bit unset. -.. cfunction:: float npy_half_to_float(npy_half h) +.. c:function:: float npy_half_to_float(npy_half h) Converts a half-precision float to a single-precision float. -.. cfunction:: double npy_half_to_double(npy_half h) +.. c:function:: double npy_half_to_double(npy_half h) Converts a half-precision float to a double-precision float. -.. cfunction:: npy_half npy_float_to_half(float f) +.. c:function:: npy_half npy_float_to_half(float f) Converts a single-precision float to a half-precision float. The value is rounded to the nearest representable half, with ties going to the nearest even. If the value is too small or too big, the system's floating point underflow or overflow bit will be set. -.. cfunction:: npy_half npy_double_to_half(double d) +.. c:function:: npy_half npy_double_to_half(double d) Converts a double-precision float to a half-precision float. The value is rounded to the nearest representable half, with ties going to the nearest even. If the value is too small or too big, the system's floating point underflow or overflow bit will be set. -.. cfunction:: int npy_half_eq(npy_half h1, npy_half h2) +.. c:function:: int npy_half_eq(npy_half h1, npy_half h2) Compares two half-precision floats (h1 == h2). -.. cfunction:: int npy_half_ne(npy_half h1, npy_half h2) +.. c:function:: int npy_half_ne(npy_half h1, npy_half h2) Compares two half-precision floats (h1 != h2). -.. cfunction:: int npy_half_le(npy_half h1, npy_half h2) +.. c:function:: int npy_half_le(npy_half h1, npy_half h2) Compares two half-precision floats (h1 <= h2). -.. cfunction:: int npy_half_lt(npy_half h1, npy_half h2) +.. c:function:: int npy_half_lt(npy_half h1, npy_half h2) Compares two half-precision floats (h1 < h2). -.. cfunction:: int npy_half_ge(npy_half h1, npy_half h2) +.. c:function:: int npy_half_ge(npy_half h1, npy_half h2) Compares two half-precision floats (h1 >= h2). -.. cfunction:: int npy_half_gt(npy_half h1, npy_half h2) +.. c:function:: int npy_half_gt(npy_half h1, npy_half h2) Compares two half-precision floats (h1 > h2). -.. cfunction:: int npy_half_eq_nonan(npy_half h1, npy_half h2) +.. c:function:: int npy_half_eq_nonan(npy_half h1, npy_half h2) Compares two half-precision floats that are known to not be NaN (h1 == h2). If a value is NaN, the result is undefined. -.. cfunction:: int npy_half_lt_nonan(npy_half h1, npy_half h2) +.. c:function:: int npy_half_lt_nonan(npy_half h1, npy_half h2) Compares two half-precision floats that are known to not be NaN (h1 < h2). If a value is NaN, the result is undefined. -.. cfunction:: int npy_half_le_nonan(npy_half h1, npy_half h2) +.. c:function:: int npy_half_le_nonan(npy_half h1, npy_half h2) Compares two half-precision floats that are known to not be NaN (h1 <= h2). If a value is NaN, the result is undefined. -.. cfunction:: int npy_half_iszero(npy_half h) +.. c:function:: int npy_half_iszero(npy_half h) Tests whether the half-precision float has a value equal to zero. This may be slightly faster than calling npy_half_eq(h, NPY_ZERO). -.. cfunction:: int npy_half_isnan(npy_half h) +.. c:function:: int npy_half_isnan(npy_half h) Tests whether the half-precision float is a NaN. -.. cfunction:: int npy_half_isinf(npy_half h) +.. c:function:: int npy_half_isinf(npy_half h) Tests whether the half-precision float is plus or minus Inf. -.. cfunction:: int npy_half_isfinite(npy_half h) +.. c:function:: int npy_half_isfinite(npy_half h) Tests whether the half-precision float is finite (not NaN or Inf). -.. cfunction:: int npy_half_signbit(npy_half h) +.. c:function:: int npy_half_signbit(npy_half h) Returns 1 is h is negative, 0 otherwise. -.. cfunction:: npy_half npy_half_copysign(npy_half x, npy_half y) +.. c:function:: npy_half npy_half_copysign(npy_half x, npy_half y) Returns the value of x with the sign bit copied from y. Works for any value, including Inf and NaN. -.. cfunction:: npy_half npy_half_spacing(npy_half h) +.. c:function:: npy_half npy_half_spacing(npy_half h) This is the same for half-precision float as npy_spacing and npy_spacingf described in the low-level floating point section. -.. cfunction:: npy_half npy_half_nextafter(npy_half x, npy_half y) +.. c:function:: npy_half npy_half_nextafter(npy_half x, npy_half y) This is the same for half-precision float as npy_nextafter and npy_nextafterf described in the low-level floating point section. -.. cfunction:: npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f) +.. c:function:: npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f) Low-level function which converts a 32-bit single-precision float, stored as a uint32, into a 16-bit half-precision float. -.. cfunction:: npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d) +.. c:function:: npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d) Low-level function which converts a 64-bit double-precision float, stored as a uint64, into a 16-bit half-precision float. -.. cfunction:: npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h) +.. c:function:: npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h) Low-level function which converts a 16-bit half-precision float into a 32-bit single-precision float, stored as a uint32. -.. cfunction:: npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h) +.. c:function:: npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h) Low-level function which converts a 16-bit half-precision float into a 64-bit double-precision float, stored as a uint64. diff --git a/doc/source/reference/c-api.dtype.rst b/doc/source/reference/c-api.dtype.rst index a757dc651..8af3a9080 100644 --- a/doc/source/reference/c-api.dtype.rst +++ b/doc/source/reference/c-api.dtype.rst @@ -16,7 +16,7 @@ select the precision desired. The names for the types in c code follows c naming conventions more closely. The Python names for these types follow Python - conventions. Thus, :cdata:`NPY_FLOAT` picks up a 32-bit float in + conventions. Thus, :c:data:`NPY_FLOAT` picks up a 32-bit float in C, but :class:`numpy.float_` in Python corresponds to a 64-bit double. The bit-width names can be used in both Python and C for clarity. @@ -28,176 +28,176 @@ Enumerated Types There is a list of enumerated types defined providing the basic 24 data types plus some useful generic names. Whenever the code requires a type number, one of these enumerated types is requested. The types -are all called :cdata:`NPY_{NAME}`: +are all called :c:data:`NPY_{NAME}`: -.. cvar:: NPY_BOOL +.. c:var:: NPY_BOOL The enumeration value for the boolean type, stored as one byte. It may only be set to the values 0 and 1. -.. cvar:: NPY_BYTE -.. cvar:: NPY_INT8 +.. c:var:: NPY_BYTE +.. c:var:: NPY_INT8 The enumeration value for an 8-bit/1-byte signed integer. -.. cvar:: NPY_SHORT -.. cvar:: NPY_INT16 +.. c:var:: NPY_SHORT +.. c:var:: NPY_INT16 The enumeration value for a 16-bit/2-byte signed integer. -.. cvar:: NPY_INT -.. cvar:: NPY_INT32 +.. c:var:: NPY_INT +.. c:var:: NPY_INT32 The enumeration value for a 32-bit/4-byte signed integer. -.. cvar:: NPY_LONG +.. c:var:: NPY_LONG Equivalent to either NPY_INT or NPY_LONGLONG, depending on the platform. -.. cvar:: NPY_LONGLONG -.. cvar:: NPY_INT64 +.. c:var:: NPY_LONGLONG +.. c:var:: NPY_INT64 The enumeration value for a 64-bit/8-byte signed integer. -.. cvar:: NPY_UBYTE -.. cvar:: NPY_UINT8 +.. c:var:: NPY_UBYTE +.. c:var:: NPY_UINT8 The enumeration value for an 8-bit/1-byte unsigned integer. -.. cvar:: NPY_USHORT -.. cvar:: NPY_UINT16 +.. c:var:: NPY_USHORT +.. c:var:: NPY_UINT16 The enumeration value for a 16-bit/2-byte unsigned integer. -.. cvar:: NPY_UINT -.. cvar:: NPY_UINT32 +.. c:var:: NPY_UINT +.. c:var:: NPY_UINT32 The enumeration value for a 32-bit/4-byte unsigned integer. -.. cvar:: NPY_ULONG +.. c:var:: NPY_ULONG Equivalent to either NPY_UINT or NPY_ULONGLONG, depending on the platform. -.. cvar:: NPY_ULONGLONG -.. cvar:: NPY_UINT64 +.. c:var:: NPY_ULONGLONG +.. c:var:: NPY_UINT64 The enumeration value for a 64-bit/8-byte unsigned integer. -.. cvar:: NPY_HALF -.. cvar:: NPY_FLOAT16 +.. c:var:: NPY_HALF +.. c:var:: NPY_FLOAT16 The enumeration value for a 16-bit/2-byte IEEE 754-2008 compatible floating point type. -.. cvar:: NPY_FLOAT -.. cvar:: NPY_FLOAT32 +.. c:var:: NPY_FLOAT +.. c:var:: NPY_FLOAT32 The enumeration value for a 32-bit/4-byte IEEE 754 compatible floating point type. -.. cvar:: NPY_DOUBLE -.. cvar:: NPY_FLOAT64 +.. c:var:: NPY_DOUBLE +.. c:var:: NPY_FLOAT64 The enumeration value for a 64-bit/8-byte IEEE 754 compatible floating point type. -.. cvar:: NPY_LONGDOUBLE +.. c:var:: NPY_LONGDOUBLE The enumeration value for a platform-specific floating point type which is at least as large as NPY_DOUBLE, but larger on many platforms. -.. cvar:: NPY_CFLOAT -.. cvar:: NPY_COMPLEX64 +.. c:var:: NPY_CFLOAT +.. c:var:: NPY_COMPLEX64 The enumeration value for a 64-bit/8-byte complex type made up of two NPY_FLOAT values. -.. cvar:: NPY_CDOUBLE -.. cvar:: NPY_COMPLEX128 +.. c:var:: NPY_CDOUBLE +.. c:var:: NPY_COMPLEX128 The enumeration value for a 128-bit/16-byte complex type made up of two NPY_DOUBLE values. -.. cvar:: NPY_CLONGDOUBLE +.. c:var:: NPY_CLONGDOUBLE The enumeration value for a platform-specific complex floating point type which is made up of two NPY_LONGDOUBLE values. -.. cvar:: NPY_DATETIME +.. c:var:: NPY_DATETIME The enumeration value for a data type which holds dates or datetimes with a precision based on selectable date or time units. -.. cvar:: NPY_TIMEDELTA +.. c:var:: NPY_TIMEDELTA The enumeration value for a data type which holds lengths of times in integers of selectable date or time units. -.. cvar:: NPY_STRING +.. c:var:: NPY_STRING The enumeration value for ASCII strings of a selectable size. The strings have a fixed maximum size within a given array. -.. cvar:: NPY_UNICODE +.. c:var:: NPY_UNICODE The enumeration value for UCS4 strings of a selectable size. The strings have a fixed maximum size within a given array. -.. cvar:: NPY_OBJECT +.. c:var:: NPY_OBJECT The enumeration value for references to arbitrary Python objects. -.. cvar:: NPY_VOID +.. c:var:: NPY_VOID Primarily used to hold struct dtypes, but can contain arbitrary binary data. Some useful aliases of the above types are -.. cvar:: NPY_INTP +.. c:var:: NPY_INTP The enumeration value for a signed integer type which is the same size as a (void \*) pointer. This is the type used by all arrays of indices. -.. cvar:: NPY_UINTP +.. c:var:: NPY_UINTP The enumeration value for an unsigned integer type which is the same size as a (void \*) pointer. -.. cvar:: NPY_MASK +.. c:var:: NPY_MASK The enumeration value of the type used for masks, such as with - the :cdata:`NPY_ITER_ARRAYMASK` iterator flag. This is equivalent - to :cdata:`NPY_UINT8`. + the :c:data:`NPY_ITER_ARRAYMASK` iterator flag. This is equivalent + to :c:data:`NPY_UINT8`. -.. cvar:: NPY_DEFAULT_TYPE +.. c:var:: NPY_DEFAULT_TYPE The default type to use when no dtype is explicitly specified, for example when calling np.zero(shape). This is equivalent to - :cdata:`NPY_DOUBLE`. + :c:data:`NPY_DOUBLE`. Other useful related constants are -.. cvar:: NPY_NTYPES +.. c:var:: NPY_NTYPES The total number of built-in NumPy types. The enumeration covers the range from 0 to NPY_NTYPES-1. -.. cvar:: NPY_NOTYPE +.. c:var:: NPY_NOTYPE A signal value guaranteed not to be a valid type enumeration number. -.. cvar:: NPY_USERDEF +.. c:var:: NPY_USERDEF The start of type numbers used for Custom Data types. The various character codes indicating certain types are also part of an enumerated list. References to type characters (should they be needed at all) should always use these enumerations. The form of them -is :cdata:`NPY_{NAME}LTR` where ``{NAME}`` can be +is :c:data:`NPY_{NAME}LTR` where ``{NAME}`` can be **BOOL**, **BYTE**, **UBYTE**, **SHORT**, **USHORT**, **INT**, **UINT**, **LONG**, **ULONG**, **LONGLONG**, **ULONGLONG**, @@ -219,23 +219,23 @@ Defines Max and min values for integers ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -.. cvar:: NPY_MAX_INT{bits} +.. c:var:: NPY_MAX_INT{bits} -.. cvar:: NPY_MAX_UINT{bits} +.. c:var:: NPY_MAX_UINT{bits} -.. cvar:: NPY_MIN_INT{bits} +.. c:var:: NPY_MIN_INT{bits} These are defined for ``{bits}`` = 8, 16, 32, 64, 128, and 256 and provide the maximum (minimum) value of the corresponding (unsigned) integer type. Note: the actual integer type may not be available on all platforms (i.e. 128-bit and 256-bit integers are rare). -.. cvar:: NPY_MIN_{type} +.. c:var:: NPY_MIN_{type} This is defined for ``{type}`` = **BYTE**, **SHORT**, **INT**, **LONG**, **LONGLONG**, **INTP** -.. cvar:: NPY_MAX_{type} +.. c:var:: NPY_MAX_{type} This is defined for all defined for ``{type}`` = **BYTE**, **UBYTE**, **SHORT**, **USHORT**, **INT**, **UINT**, **LONG**, **ULONG**, @@ -245,8 +245,8 @@ Max and min values for integers Number of bits in data types ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -All :cdata:`NPY_SIZEOF_{CTYPE}` constants have corresponding -:cdata:`NPY_BITSOF_{CTYPE}` constants defined. The :cdata:`NPY_BITSOF_{CTYPE}` +All :c:data:`NPY_SIZEOF_{CTYPE}` constants have corresponding +:c:data:`NPY_BITSOF_{CTYPE}` constants defined. The :c:data:`NPY_BITSOF_{CTYPE}` constants provide the number of bits in the data type. Specifically, the available ``{CTYPE}s`` are @@ -261,7 +261,7 @@ All of the numeric data types (integer, floating point, and complex) have constants that are defined to be a specific enumerated type number. Exactly which enumerated type a bit-width type refers to is platform dependent. In particular, the constants available are -:cdata:`PyArray_{NAME}{BITS}` where ``{NAME}`` is **INT**, **UINT**, +:c:data:`PyArray_{NAME}{BITS}` where ``{NAME}`` is **INT**, **UINT**, **FLOAT**, **COMPLEX** and ``{BITS}`` can be 8, 16, 32, 64, 80, 96, 128, 160, 192, 256, and 512. Obviously not all bit-widths are available on all platforms for all the kinds of numeric types. Commonly 8-, 16-, @@ -290,10 +290,10 @@ types. Boolean ^^^^^^^ -.. ctype:: npy_bool +.. c:type:: npy_bool - unsigned char; The constants :cdata:`NPY_FALSE` and - :cdata:`NPY_TRUE` are also defined. + unsigned char; The constants :c:data:`NPY_FALSE` and + :c:data:`NPY_TRUE` are also defined. (Un)Signed Integer @@ -302,27 +302,27 @@ Boolean Unsigned versions of the integers can be defined by pre-pending a 'u' to the front of the integer name. -.. ctype:: npy_(u)byte +.. c:type:: npy_(u)byte (unsigned) char -.. ctype:: npy_(u)short +.. c:type:: npy_(u)short (unsigned) short -.. ctype:: npy_(u)int +.. c:type:: npy_(u)int (unsigned) int -.. ctype:: npy_(u)long +.. c:type:: npy_(u)long (unsigned) long int -.. ctype:: npy_(u)longlong +.. c:type:: npy_(u)longlong (unsigned long long int) -.. ctype:: npy_(u)intp +.. c:type:: npy_(u)intp (unsigned) Py_intptr_t (an integer that is the size of a pointer on the platform). @@ -331,15 +331,15 @@ to the front of the integer name. (Complex) Floating point ^^^^^^^^^^^^^^^^^^^^^^^^ -.. ctype:: npy_(c)float +.. c:type:: npy_(c)float float -.. ctype:: npy_(c)double +.. c:type:: npy_(c)double double -.. ctype:: npy_(c)longdouble +.. c:type:: npy_(c)longdouble long double @@ -354,8 +354,8 @@ There are also typedefs for signed integers, unsigned integers, floating point, and complex floating point types of specific bit- widths. The available type names are - :ctype:`npy_int{bits}`, :ctype:`npy_uint{bits}`, :ctype:`npy_float{bits}`, - and :ctype:`npy_complex{bits}` + :c:type:`npy_int{bits}`, :c:type:`npy_uint{bits}`, :c:type:`npy_float{bits}`, + and :c:type:`npy_complex{bits}` where ``{bits}`` is the number of bits in the type and can be **8**, **16**, **32**, **64**, 128, and 256 for integer types; 16, **32** @@ -371,6 +371,6 @@ Printf Formatting For help in printing, the following strings are defined as the correct format specifier in printf and related commands. - :cdata:`NPY_LONGLONG_FMT`, :cdata:`NPY_ULONGLONG_FMT`, - :cdata:`NPY_INTP_FMT`, :cdata:`NPY_UINTP_FMT`, - :cdata:`NPY_LONGDOUBLE_FMT` + :c:data:`NPY_LONGLONG_FMT`, :c:data:`NPY_ULONGLONG_FMT`, + :c:data:`NPY_INTP_FMT`, :c:data:`NPY_UINTP_FMT`, + :c:data:`NPY_LONGDOUBLE_FMT` diff --git a/doc/source/reference/c-api.iterator.rst b/doc/source/reference/c-api.iterator.rst index 1d90ce302..ce1210737 100644 --- a/doc/source/reference/c-api.iterator.rst +++ b/doc/source/reference/c-api.iterator.rst @@ -31,7 +31,7 @@ Simple Iteration Example The best way to become familiar with the iterator is to look at its usage within the NumPy codebase itself. For example, here is a slightly -tweaked version of the code for :cfunc:`PyArray_CountNonzero`, which counts the +tweaked version of the code for :c:func:`PyArray_CountNonzero`, which counts the number of non-zero elements in an array. .. code-block:: c @@ -120,7 +120,7 @@ Simple Multi-Iteration Example Here is a simple copy function using the iterator. The ``order`` parameter is used to control the memory layout of the allocated result, typically -:cdata:`NPY_KEEPORDER` is desired. +:c:data:`NPY_KEEPORDER` is desired. .. code-block:: c @@ -209,52 +209,52 @@ Iterator Data Types The iterator layout is an internal detail, and user code only sees an incomplete struct. -.. ctype:: NpyIter +.. c:type:: NpyIter This is an opaque pointer type for the iterator. Access to its contents can only be done through the iterator API. -.. ctype:: NpyIter_Type +.. c:type:: NpyIter_Type This is the type which exposes the iterator to Python. Currently, no API is exposed which provides access to the values of a Python-created iterator. If an iterator is created in Python, it must be used in Python and vice versa. Such an API will likely be created in a future version. -.. ctype:: NpyIter_IterNextFunc +.. c:type:: NpyIter_IterNextFunc This is a function pointer for the iteration loop, returned by - :cfunc:`NpyIter_GetIterNext`. + :c:func:`NpyIter_GetIterNext`. -.. ctype:: NpyIter_GetMultiIndexFunc +.. c:type:: NpyIter_GetMultiIndexFunc This is a function pointer for getting the current iterator multi-index, - returned by :cfunc:`NpyIter_GetGetMultiIndex`. + returned by :c:func:`NpyIter_GetGetMultiIndex`. Construction and Destruction ---------------------------- -.. cfunction:: NpyIter* NpyIter_New(PyArrayObject* op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting, PyArray_Descr* dtype) +.. c:function:: NpyIter* NpyIter_New(PyArrayObject* op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting, PyArray_Descr* dtype) Creates an iterator for the given numpy array object ``op``. Flags that may be passed in ``flags`` are any combination of the global and per-operand flags documented in - :cfunc:`NpyIter_MultiNew`, except for :cdata:`NPY_ITER_ALLOCATE`. + :c:func:`NpyIter_MultiNew`, except for :c:data:`NPY_ITER_ALLOCATE`. - Any of the :ctype:`NPY_ORDER` enum values may be passed to ``order``. For - efficient iteration, :ctype:`NPY_KEEPORDER` is the best option, and + Any of the :c:type:`NPY_ORDER` enum values may be passed to ``order``. For + efficient iteration, :c:type:`NPY_KEEPORDER` is the best option, and the other orders enforce the particular iteration pattern. - Any of the :ctype:`NPY_CASTING` enum values may be passed to ``casting``. - The values include :cdata:`NPY_NO_CASTING`, :cdata:`NPY_EQUIV_CASTING`, - :cdata:`NPY_SAFE_CASTING`, :cdata:`NPY_SAME_KIND_CASTING`, and - :cdata:`NPY_UNSAFE_CASTING`. To allow the casts to occur, copying or + Any of the :c:type:`NPY_CASTING` enum values may be passed to ``casting``. + The values include :c:data:`NPY_NO_CASTING`, :c:data:`NPY_EQUIV_CASTING`, + :c:data:`NPY_SAFE_CASTING`, :c:data:`NPY_SAME_KIND_CASTING`, and + :c:data:`NPY_UNSAFE_CASTING`. To allow the casts to occur, copying or buffering must also be enabled. If ``dtype`` isn't ``NULL``, then it requires that data type. If copying is allowed, it will make a temporary copy if the data - is castable. If :cdata:`NPY_ITER_UPDATEIFCOPY` is enabled, it will + is castable. If :c:data:`NPY_ITER_UPDATEIFCOPY` is enabled, it will also copy the data back with another cast upon iterator destruction. Returns NULL if there is an error, otherwise returns the allocated @@ -282,22 +282,22 @@ Construction and Destruction dtype); Py_DECREF(dtype); -.. cfunction:: NpyIter* NpyIter_MultiNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting, npy_uint32* op_flags, PyArray_Descr** op_dtypes) +.. c:function:: NpyIter* NpyIter_MultiNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting, npy_uint32* op_flags, PyArray_Descr** op_dtypes) Creates an iterator for broadcasting the ``nop`` array objects provided in ``op``, using regular NumPy broadcasting rules. - Any of the :ctype:`NPY_ORDER` enum values may be passed to ``order``. For - efficient iteration, :cdata:`NPY_KEEPORDER` is the best option, and the + Any of the :c:type:`NPY_ORDER` enum values may be passed to ``order``. For + efficient iteration, :c:data:`NPY_KEEPORDER` is the best option, and the other orders enforce the particular iteration pattern. When using - :cdata:`NPY_KEEPORDER`, if you also want to ensure that the iteration is + :c:data:`NPY_KEEPORDER`, if you also want to ensure that the iteration is not reversed along an axis, you should pass the flag - :cdata:`NPY_ITER_DONT_NEGATE_STRIDES`. + :c:data:`NPY_ITER_DONT_NEGATE_STRIDES`. - Any of the :ctype:`NPY_CASTING` enum values may be passed to ``casting``. - The values include :cdata:`NPY_NO_CASTING`, :cdata:`NPY_EQUIV_CASTING`, - :cdata:`NPY_SAFE_CASTING`, :cdata:`NPY_SAME_KIND_CASTING`, and - :cdata:`NPY_UNSAFE_CASTING`. To allow the casts to occur, copying or + Any of the :c:type:`NPY_CASTING` enum values may be passed to ``casting``. + The values include :c:data:`NPY_NO_CASTING`, :c:data:`NPY_EQUIV_CASTING`, + :c:data:`NPY_SAFE_CASTING`, :c:data:`NPY_SAME_KIND_CASTING`, and + :c:data:`NPY_UNSAFE_CASTING`. To allow the casts to occur, copying or buffering must also be enabled. If ``op_dtypes`` isn't ``NULL``, it specifies a data type or ``NULL`` @@ -309,17 +309,17 @@ Construction and Destruction Flags that may be passed in ``flags``, applying to the whole iterator, are: - .. cvar:: NPY_ITER_C_INDEX + .. c:var:: NPY_ITER_C_INDEX Causes the iterator to track a raveled flat index matching C - order. This option cannot be used with :cdata:`NPY_ITER_F_INDEX`. + order. This option cannot be used with :c:data:`NPY_ITER_F_INDEX`. - .. cvar:: NPY_ITER_F_INDEX + .. c:var:: NPY_ITER_F_INDEX Causes the iterator to track a raveled flat index matching Fortran - order. This option cannot be used with :cdata:`NPY_ITER_C_INDEX`. + order. This option cannot be used with :c:data:`NPY_ITER_C_INDEX`. - .. cvar:: NPY_ITER_MULTI_INDEX + .. c:var:: NPY_ITER_MULTI_INDEX Causes the iterator to track a multi-index. This prevents the iterator from coalescing axes to @@ -332,26 +332,26 @@ Construction and Destruction However, it is possible to remove axes again and use the iterator normally if the size is small enough after removal. - .. cvar:: NPY_ITER_EXTERNAL_LOOP + .. c:var:: NPY_ITER_EXTERNAL_LOOP Causes the iterator to skip iteration of the innermost loop, requiring the user of the iterator to handle it. - This flag is incompatible with :cdata:`NPY_ITER_C_INDEX`, - :cdata:`NPY_ITER_F_INDEX`, and :cdata:`NPY_ITER_MULTI_INDEX`. + This flag is incompatible with :c:data:`NPY_ITER_C_INDEX`, + :c:data:`NPY_ITER_F_INDEX`, and :c:data:`NPY_ITER_MULTI_INDEX`. - .. cvar:: NPY_ITER_DONT_NEGATE_STRIDES + .. c:var:: NPY_ITER_DONT_NEGATE_STRIDES - This only affects the iterator when :ctype:`NPY_KEEPORDER` is + This only affects the iterator when :c:type:`NPY_KEEPORDER` is specified for the order parameter. By default with - :ctype:`NPY_KEEPORDER`, the iterator reverses axes which have + :c:type:`NPY_KEEPORDER`, the iterator reverses axes which have negative strides, so that memory is traversed in a forward direction. This disables this step. Use this flag if you want to use the underlying memory-ordering of the axes, but don't want an axis reversed. This is the behavior of ``numpy.ravel(a, order='K')``, for instance. - .. cvar:: NPY_ITER_COMMON_DTYPE + .. c:var:: NPY_ITER_COMMON_DTYPE Causes the iterator to convert all the operands to a common data type, calculated based on the ufunc type promotion rules. @@ -360,16 +360,16 @@ Construction and Destruction If the common data type is known ahead of time, don't use this flag. Instead, set the requested dtype for all the operands. - .. cvar:: NPY_ITER_REFS_OK + .. c:var:: NPY_ITER_REFS_OK Indicates that arrays with reference types (object arrays or structured arrays containing an object type) may be accepted and used in the iterator. If this flag is enabled, the caller must be sure to check whether - :cfunc:`NpyIter_IterationNeedsAPI`(iter) is true, in which case + :c:func:`NpyIter_IterationNeedsAPI(iter)` is true, in which case it may not release the GIL during iteration. - .. cvar:: NPY_ITER_ZEROSIZE_OK + .. c:var:: NPY_ITER_ZEROSIZE_OK Indicates that arrays with a size of zero should be permitted. Since the typical iteration loop does not naturally work with @@ -377,7 +377,7 @@ Construction and Destruction than zero before entering the iteration loop. Currently only the operands are checked, not a forced shape. - .. cvar:: NPY_ITER_REDUCE_OK + .. c:var:: NPY_ITER_REDUCE_OK Permits writeable operands with a dimension with zero stride and size greater than one. Note that such operands @@ -388,56 +388,56 @@ Construction and Destruction not trample on values being reduced. Note that if you want to do a reduction on an automatically - allocated output, you must use :cfunc:`NpyIter_GetOperandArray` + allocated output, you must use :c:func:`NpyIter_GetOperandArray` to get its reference, then set every value to the reduction unit before doing the iteration loop. In the case of a buffered reduction, this means you must also specify the - flag :cdata:`NPY_ITER_DELAY_BUFALLOC`, then reset the iterator + flag :c:data:`NPY_ITER_DELAY_BUFALLOC`, then reset the iterator after initializing the allocated operand to prepare the buffers. - .. cvar:: NPY_ITER_RANGED + .. c:var:: NPY_ITER_RANGED Enables support for iteration of sub-ranges of the full ``iterindex`` range ``[0, NpyIter_IterSize(iter))``. Use - the function :cfunc:`NpyIter_ResetToIterIndexRange` to specify + the function :c:func:`NpyIter_ResetToIterIndexRange` to specify a range for iteration. - This flag can only be used with :cdata:`NPY_ITER_EXTERNAL_LOOP` - when :cdata:`NPY_ITER_BUFFERED` is enabled. This is because + This flag can only be used with :c:data:`NPY_ITER_EXTERNAL_LOOP` + when :c:data:`NPY_ITER_BUFFERED` is enabled. This is because without buffering, the inner loop is always the size of the innermost iteration dimension, and allowing it to get cut up would require special handling, effectively making it more like the buffered version. - .. cvar:: NPY_ITER_BUFFERED + .. c:var:: NPY_ITER_BUFFERED Causes the iterator to store buffering data, and use buffering to satisfy data type, alignment, and byte-order requirements. - To buffer an operand, do not specify the :cdata:`NPY_ITER_COPY` - or :cdata:`NPY_ITER_UPDATEIFCOPY` flags, because they will + To buffer an operand, do not specify the :c:data:`NPY_ITER_COPY` + or :c:data:`NPY_ITER_UPDATEIFCOPY` flags, because they will override buffering. Buffering is especially useful for Python code using the iterator, allowing for larger chunks of data at once to amortize the Python interpreter overhead. - If used with :cdata:`NPY_ITER_EXTERNAL_LOOP`, the inner loop + If used with :c:data:`NPY_ITER_EXTERNAL_LOOP`, the inner loop for the caller may get larger chunks than would be possible without buffering, because of how the strides are laid out. - Note that if an operand is given the flag :cdata:`NPY_ITER_COPY` - or :cdata:`NPY_ITER_UPDATEIFCOPY`, a copy will be made in preference + Note that if an operand is given the flag :c:data:`NPY_ITER_COPY` + or :c:data:`NPY_ITER_UPDATEIFCOPY`, a copy will be made in preference to buffering. Buffering will still occur when the array was broadcast so elements need to be duplicated to get a constant stride. In normal buffering, the size of each inner loop is equal to the buffer size, or possibly larger if - :cdata:`NPY_ITER_GROWINNER` is specified. If - :cdata:`NPY_ITER_REDUCE_OK` is enabled and a reduction occurs, + :c:data:`NPY_ITER_GROWINNER` is specified. If + :c:data:`NPY_ITER_REDUCE_OK` is enabled and a reduction occurs, the inner loops may become smaller depending on the structure of the reduction. - .. cvar:: NPY_ITER_GROWINNER + .. c:var:: NPY_ITER_GROWINNER When buffering is enabled, this allows the size of the inner loop to grow when buffering isn't necessary. This option @@ -445,10 +445,10 @@ Construction and Destruction data, rather than anything with small cache-friendly arrays of temporary values for each inner loop. - .. cvar:: NPY_ITER_DELAY_BUFALLOC + .. c:var:: NPY_ITER_DELAY_BUFALLOC When buffering is enabled, this delays allocation of the - buffers until :cfunc:`NpyIter_Reset` or another reset function is + buffers until :c:func:`NpyIter_Reset` or another reset function is called. This flag exists to avoid wasteful copying of buffer data when making multiple copies of a buffered iterator for multi-threaded iteration. @@ -457,29 +457,29 @@ Construction and Destruction After the iterator is created, and a reduction output is allocated automatically by the iterator (be sure to use READWRITE access), its value may be initialized to the reduction - unit. Use :cfunc:`NpyIter_GetOperandArray` to get the object. - Then, call :cfunc:`NpyIter_Reset` to allocate and fill the buffers + unit. Use :c:func:`NpyIter_GetOperandArray` to get the object. + Then, call :c:func:`NpyIter_Reset` to allocate and fill the buffers with their initial values. Flags that may be passed in ``op_flags[i]``, where ``0 <= i < nop``: - .. cvar:: NPY_ITER_READWRITE - .. cvar:: NPY_ITER_READONLY - .. cvar:: NPY_ITER_WRITEONLY + .. c:var:: NPY_ITER_READWRITE + .. c:var:: NPY_ITER_READONLY + .. c:var:: NPY_ITER_WRITEONLY Indicate how the user of the iterator will read or write to ``op[i]``. Exactly one of these flags must be specified per operand. - .. cvar:: NPY_ITER_COPY + .. c:var:: NPY_ITER_COPY Allow a copy of ``op[i]`` to be made if it does not meet the data type or alignment requirements as specified by the constructor flags and parameters. - .. cvar:: NPY_ITER_UPDATEIFCOPY + .. c:var:: NPY_ITER_UPDATEIFCOPY - Triggers :cdata:`NPY_ITER_COPY`, and when an array operand + Triggers :c:data:`NPY_ITER_COPY`, and when an array operand is flagged for writing and is copied, causes the data in a copy to be copied back to ``op[i]`` when the iterator is destroyed. @@ -489,9 +489,9 @@ Construction and Destruction to back to ``op[i]`` on destruction, instead of doing the unecessary copy operation. - .. cvar:: NPY_ITER_NBO - .. cvar:: NPY_ITER_ALIGNED - .. cvar:: NPY_ITER_CONTIG + .. c:var:: NPY_ITER_NBO + .. c:var:: NPY_ITER_ALIGNED + .. c:var:: NPY_ITER_CONTIG Causes the iterator to provide data for ``op[i]`` that is in native byte order, aligned according to @@ -510,10 +510,10 @@ Construction and Destruction the NBO flag overrides it and the requested data type is converted to be in native byte order. - .. cvar:: NPY_ITER_ALLOCATE + .. c:var:: NPY_ITER_ALLOCATE This is for output arrays, and requires that the flag - :cdata:`NPY_ITER_WRITEONLY` or :cdata:`NPY_ITER_READWRITE` + :c:data:`NPY_ITER_WRITEONLY` or :c:data:`NPY_ITER_READWRITE` be set. If ``op[i]`` is NULL, creates a new array with the final broadcast dimensions, and a layout matching the iteration order of the iterator. @@ -529,50 +529,50 @@ Construction and Destruction output will be in native byte order. After being allocated with this flag, the caller may retrieve - the new array by calling :cfunc:`NpyIter_GetOperandArray` and + the new array by calling :c:func:`NpyIter_GetOperandArray` and getting the i-th object in the returned C array. The caller must call Py_INCREF on it to claim a reference to the array. - .. cvar:: NPY_ITER_NO_SUBTYPE + .. c:var:: NPY_ITER_NO_SUBTYPE - For use with :cdata:`NPY_ITER_ALLOCATE`, this flag disables + For use with :c:data:`NPY_ITER_ALLOCATE`, this flag disables allocating an array subtype for the output, forcing it to be a straight ndarray. TODO: Maybe it would be better to introduce a function ``NpyIter_GetWrappedOutput`` and remove this flag? - .. cvar:: NPY_ITER_NO_BROADCAST + .. c:var:: NPY_ITER_NO_BROADCAST Ensures that the input or output matches the iteration dimensions exactly. - .. cvar:: NPY_ITER_ARRAYMASK + .. c:var:: NPY_ITER_ARRAYMASK .. versionadded:: 1.7 Indicates that this operand is the mask to use for selecting elements when writing to operands which have - the :cdata:`NPY_ITER_WRITEMASKED` flag applied to them. - Only one operand may have :cdata:`NPY_ITER_ARRAYMASK` flag + the :c:data:`NPY_ITER_WRITEMASKED` flag applied to them. + Only one operand may have :c:data:`NPY_ITER_ARRAYMASK` flag applied to it. The data type of an operand with this flag should be either - :cdata:`NPY_BOOL`, :cdata:`NPY_MASK`, or a struct dtype + :c:data:`NPY_BOOL`, :c:data:`NPY_MASK`, or a struct dtype whose fields are all valid mask dtypes. In the latter case, it must match up with a struct operand being WRITEMASKED, as it is specifying a mask for each field of that array. This flag only affects writing from the buffer back to the array. This means that if the operand is also - :cdata:`NPY_ITER_READWRITE` or :cdata:`NPY_ITER_WRITEONLY`, + :c:data:`NPY_ITER_READWRITE` or :c:data:`NPY_ITER_WRITEONLY`, code doing iteration can write to this operand to control which elements will be untouched and which ones will be modified. This is useful when the mask should be a combination of input masks, for example. Mask values can be created - with the :cfunc:`NpyMask_Create` function. + with the :c:func:`NpyMask_Create` function. - .. cvar:: NPY_ITER_WRITEMASKED + .. c:var:: NPY_ITER_WRITEMASKED .. versionadded:: 1.7 @@ -580,24 +580,24 @@ Construction and Destruction the ARRAYMASK flag indicates are intended to be modified by the iteration. In general, the iterator does not enforce this, it is up to the code doing the iteration to follow - that promise. Code can use the :cfunc:`NpyMask_IsExposed` + that promise. Code can use the :c:func:`NpyMask_IsExposed` inline function to test whether the mask at a particular element allows writing. When this flag is used, and this operand is buffered, this changes how data is copied from the buffer into the array. A masked copying routine is used, which only copies the - elements in the buffer for which :cfunc:`NpyMask_IsExposed` + elements in the buffer for which :c:func:`NpyMask_IsExposed` returns true from the corresponding element in the ARRAYMASK operand. -.. cfunction:: NpyIter* NpyIter_AdvancedNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting, npy_uint32* op_flags, PyArray_Descr** op_dtypes, int oa_ndim, int** op_axes, npy_intp* itershape, npy_intp buffersize) +.. c:function:: NpyIter* NpyIter_AdvancedNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags, NPY_ORDER order, NPY_CASTING casting, npy_uint32* op_flags, PyArray_Descr** op_dtypes, int oa_ndim, int** op_axes, npy_intp* itershape, npy_intp buffersize) - Extends :cfunc:`NpyIter_MultiNew` with several advanced options providing + Extends :c:func:`NpyIter_MultiNew` with several advanced options providing more control over broadcasting and buffering. If -1/NULL values are passed to ``oa_ndim``, ``op_axes``, ``itershape``, - and ``buffersize``, it is equivalent to :cfunc:`NpyIter_MultiNew`. + and ``buffersize``, it is equivalent to :c:func:`NpyIter_MultiNew`. The parameter ``oa_ndim``, when not zero or -1, specifies the number of dimensions that will be iterated with customized broadcasting. @@ -615,7 +615,7 @@ Construction and Destruction **Note**: Before NumPy 1.8 ``oa_ndim == 0` was used for signalling that that ``op_axes`` and ``itershape`` are unused. This is deprecated and should be replaced with -1. Better backward compatibility may be - achieved by using :cfunc:`NpyIter_MultiNew` for this case. + achieved by using :c:func:`NpyIter_MultiNew` for this case. .. code-block:: c @@ -640,7 +640,7 @@ Construction and Destruction Returns NULL if there is an error, otherwise returns the allocated iterator. -.. cfunction:: NpyIter* NpyIter_Copy(NpyIter* iter) +.. c:function:: NpyIter* NpyIter_Copy(NpyIter* iter) Makes a copy of the given iterator. This function is provided primarily to enable multi-threaded iteration of the data. @@ -649,29 +649,29 @@ Construction and Destruction The recommended approach to multithreaded iteration is to first create an iterator with the flags - :cdata:`NPY_ITER_EXTERNAL_LOOP`, :cdata:`NPY_ITER_RANGED`, - :cdata:`NPY_ITER_BUFFERED`, :cdata:`NPY_ITER_DELAY_BUFALLOC`, and - possibly :cdata:`NPY_ITER_GROWINNER`. Create a copy of this iterator + :c:data:`NPY_ITER_EXTERNAL_LOOP`, :c:data:`NPY_ITER_RANGED`, + :c:data:`NPY_ITER_BUFFERED`, :c:data:`NPY_ITER_DELAY_BUFALLOC`, and + possibly :c:data:`NPY_ITER_GROWINNER`. Create a copy of this iterator for each thread (minus one for the first iterator). Then, take the iteration index range ``[0, NpyIter_GetIterSize(iter))`` and split it up into tasks, for example using a TBB parallel_for loop. When a thread gets a task to execute, it then uses its copy of - the iterator by calling :cfunc:`NpyIter_ResetToIterIndexRange` and + the iterator by calling :c:func:`NpyIter_ResetToIterIndexRange` and iterating over the full range. When using the iterator in multi-threaded code or in code not holding the Python GIL, care must be taken to only call functions - which are safe in that context. :cfunc:`NpyIter_Copy` cannot be safely + which are safe in that context. :c:func:`NpyIter_Copy` cannot be safely called without the Python GIL, because it increments Python references. The ``Reset*`` and some other functions may be safely called by passing in the ``errmsg`` parameter as non-NULL, so that the functions will pass back errors through it instead of setting a Python exception. -.. cfunction:: int NpyIter_RemoveAxis(NpyIter* iter, int axis)`` +.. c:function:: int NpyIter_RemoveAxis(NpyIter* iter, int axis)`` Removes an axis from iteration. This requires that - :cdata:`NPY_ITER_MULTI_INDEX` was set for iterator creation, and does + :c:data:`NPY_ITER_MULTI_INDEX` was set for iterator creation, and does not work if buffering is enabled or an index is being tracked. This function also resets the iterator to its initial state. @@ -688,7 +688,7 @@ Construction and Destruction Returns ``NPY_SUCCEED`` or ``NPY_FAIL``. -.. cfunction:: int NpyIter_RemoveMultiIndex(NpyIter* iter) +.. c:function:: int NpyIter_RemoveMultiIndex(NpyIter* iter) If the iterator is tracking a multi-index, this strips support for them, and does further iterator optimizations that are possible if multi-indices @@ -699,17 +699,17 @@ Construction and Destruction the iterator. Any cached functions or pointers from the iterator must be retrieved again! - After calling this function, :cfunc:`NpyIter_HasMultiIndex`(iter) will + After calling this function, :c:func:`NpyIter_HasMultiIndex(iter)` will return false. Returns ``NPY_SUCCEED`` or ``NPY_FAIL``. -.. cfunction:: int NpyIter_EnableExternalLoop(NpyIter* iter) +.. c:function:: int NpyIter_EnableExternalLoop(NpyIter* iter) - If :cfunc:`NpyIter_RemoveMultiIndex` was called, you may want to enable the - flag :cdata:`NPY_ITER_EXTERNAL_LOOP`. This flag is not permitted - together with :cdata:`NPY_ITER_MULTI_INDEX`, so this function is provided - to enable the feature after :cfunc:`NpyIter_RemoveMultiIndex` is called. + If :c:func:`NpyIter_RemoveMultiIndex` was called, you may want to enable the + flag :c:data:`NPY_ITER_EXTERNAL_LOOP`. This flag is not permitted + together with :c:data:`NPY_ITER_MULTI_INDEX`, so this function is provided + to enable the feature after :c:func:`NpyIter_RemoveMultiIndex` is called. This function also resets the iterator to its initial state. **WARNING**: This function changes the internal logic of the iterator. @@ -718,14 +718,14 @@ Construction and Destruction Returns ``NPY_SUCCEED`` or ``NPY_FAIL``. -.. cfunction:: int NpyIter_Deallocate(NpyIter* iter) +.. c:function:: int NpyIter_Deallocate(NpyIter* iter) Deallocates the iterator object. This additionally frees any copies made, triggering UPDATEIFCOPY behavior where necessary. Returns ``NPY_SUCCEED`` or ``NPY_FAIL``. -.. cfunction:: int NpyIter_Reset(NpyIter* iter, char** errmsg) +.. c:function:: int NpyIter_Reset(NpyIter* iter, char** errmsg) Resets the iterator back to its initial state, at the beginning of the iteration range. @@ -736,12 +736,12 @@ Construction and Destruction non-NULL, the function may be safely called without holding the Python GIL. -.. cfunction:: int NpyIter_ResetToIterIndexRange(NpyIter* iter, npy_intp istart, npy_intp iend, char** errmsg) +.. c:function:: int NpyIter_ResetToIterIndexRange(NpyIter* iter, npy_intp istart, npy_intp iend, char** errmsg) Resets the iterator and restricts it to the ``iterindex`` range - ``[istart, iend)``. See :cfunc:`NpyIter_Copy` for an explanation of + ``[istart, iend)``. See :c:func:`NpyIter_Copy` for an explanation of how to use this for multi-threaded iteration. This requires that - the flag :cdata:`NPY_ITER_RANGED` was passed to the iterator constructor. + the flag :c:data:`NPY_ITER_RANGED` was passed to the iterator constructor. If you want to reset both the ``iterindex`` range and the base pointers at the same time, you can do the following to avoid @@ -763,7 +763,7 @@ Construction and Destruction non-NULL, the function may be safely called without holding the Python GIL. -.. cfunction:: int NpyIter_ResetBasePointers(NpyIter *iter, char** baseptrs, char** errmsg) +.. c:function:: int NpyIter_ResetBasePointers(NpyIter *iter, char** baseptrs, char** errmsg) Resets the iterator back to its initial state, but using the values in ``baseptrs`` for the data instead of the pointers from the arrays @@ -781,12 +781,12 @@ Construction and Destruction Creating iterators for nested iteration requires some care. All the iterator operands must match exactly, or the calls to - :cfunc:`NpyIter_ResetBasePointers` will be invalid. This means that + :c:func:`NpyIter_ResetBasePointers` will be invalid. This means that automatic copies and output allocation should not be used haphazardly. It is possible to still use the automatic data conversion and casting features of the iterator by creating one of the iterators with all the conversion parameters enabled, then grabbing the allocated - operands with the :cfunc:`NpyIter_GetOperandArray` function and passing + operands with the :c:func:`NpyIter_GetOperandArray` function and passing them into the constructors for the rest of the iterators. **WARNING**: When creating iterators for nested iteration, @@ -825,7 +825,7 @@ Construction and Destruction } while (iternext2(iter2)); } while (iternext1(iter1)); -.. cfunction:: int NpyIter_GotoMultiIndex(NpyIter* iter, npy_intp* multi_index) +.. c:function:: int NpyIter_GotoMultiIndex(NpyIter* iter, npy_intp* multi_index) Adjusts the iterator to point to the ``ndim`` indices pointed to by ``multi_index``. Returns an error if a multi-index @@ -834,19 +834,19 @@ Construction and Destruction Returns ``NPY_SUCCEED`` or ``NPY_FAIL``. -.. cfunction:: int NpyIter_GotoIndex(NpyIter* iter, npy_intp index) +.. c:function:: int NpyIter_GotoIndex(NpyIter* iter, npy_intp index) Adjusts the iterator to point to the ``index`` specified. If the iterator was constructed with the flag - :cdata:`NPY_ITER_C_INDEX`, ``index`` is the C-order index, + :c:data:`NPY_ITER_C_INDEX`, ``index`` is the C-order index, and if the iterator was constructed with the flag - :cdata:`NPY_ITER_F_INDEX`, ``index`` is the Fortran-order + :c:data:`NPY_ITER_F_INDEX`, ``index`` is the Fortran-order index. Returns an error if there is no index being tracked, the index is out of bounds, or inner loop iteration is disabled. Returns ``NPY_SUCCEED`` or ``NPY_FAIL``. -.. cfunction:: npy_intp NpyIter_GetIterSize(NpyIter* iter) +.. c:function:: npy_intp NpyIter_GetIterSize(NpyIter* iter) Returns the number of elements being iterated. This is the product of all the dimensions in the shape. When a multi index is being tracked @@ -855,18 +855,18 @@ Construction and Destruction may become valid after `NpyIter_RemoveAxis` is called. It is not necessary to check for this case. -.. cfunction:: npy_intp NpyIter_GetIterIndex(NpyIter* iter) +.. c:function:: npy_intp NpyIter_GetIterIndex(NpyIter* iter) Gets the ``iterindex`` of the iterator, which is an index matching the iteration order of the iterator. -.. cfunction:: void NpyIter_GetIterIndexRange(NpyIter* iter, npy_intp* istart, npy_intp* iend) +.. c:function:: void NpyIter_GetIterIndexRange(NpyIter* iter, npy_intp* istart, npy_intp* iend) Gets the ``iterindex`` sub-range that is being iterated. If - :cdata:`NPY_ITER_RANGED` was not specified, this always returns the + :c:data:`NPY_ITER_RANGED` was not specified, this always returns the range ``[0, NpyIter_IterSize(iter))``. -.. cfunction:: int NpyIter_GotoIterIndex(NpyIter* iter, npy_intp iterindex) +.. c:function:: int NpyIter_GotoIterIndex(NpyIter* iter, npy_intp iterindex) Adjusts the iterator to point to the ``iterindex`` specified. The IterIndex is an index matching the iteration order of the iterator. @@ -875,97 +875,97 @@ Construction and Destruction Returns ``NPY_SUCCEED`` or ``NPY_FAIL``. -.. cfunction:: npy_bool NpyIter_HasDelayedBufAlloc(NpyIter* iter) +.. c:function:: npy_bool NpyIter_HasDelayedBufAlloc(NpyIter* iter) - Returns 1 if the flag :cdata:`NPY_ITER_DELAY_BUFALLOC` was passed + Returns 1 if the flag :c:data:`NPY_ITER_DELAY_BUFALLOC` was passed to the iterator constructor, and no call to one of the Reset functions has been done yet, 0 otherwise. -.. cfunction:: npy_bool NpyIter_HasExternalLoop(NpyIter* iter) +.. c:function:: npy_bool NpyIter_HasExternalLoop(NpyIter* iter) Returns 1 if the caller needs to handle the inner-most 1-dimensional loop, or 0 if the iterator handles all looping. This is controlled - by the constructor flag :cdata:`NPY_ITER_EXTERNAL_LOOP` or - :cfunc:`NpyIter_EnableExternalLoop`. + by the constructor flag :c:data:`NPY_ITER_EXTERNAL_LOOP` or + :c:func:`NpyIter_EnableExternalLoop`. -.. cfunction:: npy_bool NpyIter_HasMultiIndex(NpyIter* iter) +.. c:function:: npy_bool NpyIter_HasMultiIndex(NpyIter* iter) Returns 1 if the iterator was created with the - :cdata:`NPY_ITER_MULTI_INDEX` flag, 0 otherwise. + :c:data:`NPY_ITER_MULTI_INDEX` flag, 0 otherwise. -.. cfunction:: npy_bool NpyIter_HasIndex(NpyIter* iter) +.. c:function:: npy_bool NpyIter_HasIndex(NpyIter* iter) Returns 1 if the iterator was created with the - :cdata:`NPY_ITER_C_INDEX` or :cdata:`NPY_ITER_F_INDEX` + :c:data:`NPY_ITER_C_INDEX` or :c:data:`NPY_ITER_F_INDEX` flag, 0 otherwise. -.. cfunction:: npy_bool NpyIter_RequiresBuffering(NpyIter* iter) +.. c:function:: npy_bool NpyIter_RequiresBuffering(NpyIter* iter) Returns 1 if the iterator requires buffering, which occurs when an operand needs conversion or alignment and so cannot be used directly. -.. cfunction:: npy_bool NpyIter_IsBuffered(NpyIter* iter) +.. c:function:: npy_bool NpyIter_IsBuffered(NpyIter* iter) Returns 1 if the iterator was created with the - :cdata:`NPY_ITER_BUFFERED` flag, 0 otherwise. + :c:data:`NPY_ITER_BUFFERED` flag, 0 otherwise. -.. cfunction:: npy_bool NpyIter_IsGrowInner(NpyIter* iter) +.. c:function:: npy_bool NpyIter_IsGrowInner(NpyIter* iter) Returns 1 if the iterator was created with the - :cdata:`NPY_ITER_GROWINNER` flag, 0 otherwise. + :c:data:`NPY_ITER_GROWINNER` flag, 0 otherwise. -.. cfunction:: npy_intp NpyIter_GetBufferSize(NpyIter* iter) +.. c:function:: npy_intp NpyIter_GetBufferSize(NpyIter* iter) If the iterator is buffered, returns the size of the buffer being used, otherwise returns 0. -.. cfunction:: int NpyIter_GetNDim(NpyIter* iter) +.. c:function:: int NpyIter_GetNDim(NpyIter* iter) Returns the number of dimensions being iterated. If a multi-index was not requested in the iterator constructor, this value may be smaller than the number of dimensions in the original objects. -.. cfunction:: int NpyIter_GetNOp(NpyIter* iter) +.. c:function:: int NpyIter_GetNOp(NpyIter* iter) Returns the number of operands in the iterator. - When :cdata:`NPY_ITER_USE_MASKNA` is used on an operand, a new + When :c:data:`NPY_ITER_USE_MASKNA` is used on an operand, a new operand is added to the end of the operand list in the iterator to track that operand's NA mask. Thus, this equals the number of construction operands plus the number of operands for - which the flag :cdata:`NPY_ITER_USE_MASKNA` was specified. + which the flag :c:data:`NPY_ITER_USE_MASKNA` was specified. -.. cfunction:: int NpyIter_GetFirstMaskNAOp(NpyIter* iter) +.. c:function:: int NpyIter_GetFirstMaskNAOp(NpyIter* iter) .. versionadded:: 1.7 Returns the index of the first NA mask operand in the array. This value is equal to the number of operands passed into the constructor. -.. cfunction:: npy_intp* NpyIter_GetAxisStrideArray(NpyIter* iter, int axis) +.. c:function:: npy_intp* NpyIter_GetAxisStrideArray(NpyIter* iter, int axis) Gets the array of strides for the specified axis. Requires that the iterator be tracking a multi-index, and that buffering not be enabled. This may be used when you want to match up operand axes in - some fashion, then remove them with :cfunc:`NpyIter_RemoveAxis` to + some fashion, then remove them with :c:func:`NpyIter_RemoveAxis` to handle their processing manually. By calling this function before removing the axes, you can get the strides for the manual processing. Returns ``NULL`` on error. -.. cfunction:: int NpyIter_GetShape(NpyIter* iter, npy_intp* outshape) +.. c:function:: int NpyIter_GetShape(NpyIter* iter, npy_intp* outshape) Returns the broadcast shape of the iterator in ``outshape``. This can only be called on an iterator which is tracking a multi-index. Returns ``NPY_SUCCEED`` or ``NPY_FAIL``. -.. cfunction:: PyArray_Descr** NpyIter_GetDescrArray(NpyIter* iter) +.. c:function:: PyArray_Descr** NpyIter_GetDescrArray(NpyIter* iter) This gives back a pointer to the ``nop`` data type Descrs for the objects being iterated. The result points into ``iter``, @@ -974,26 +974,26 @@ Construction and Destruction This pointer may be cached before the iteration loop, calling ``iternext`` will not change it. -.. cfunction:: PyObject** NpyIter_GetOperandArray(NpyIter* iter) +.. c:function:: PyObject** NpyIter_GetOperandArray(NpyIter* iter) This gives back a pointer to the ``nop`` operand PyObjects that are being iterated. The result points into ``iter``, so the caller does not gain any references to the PyObjects. -.. cfunction:: npy_int8* NpyIter_GetMaskNAIndexArray(NpyIter* iter) +.. c:function:: npy_int8* NpyIter_GetMaskNAIndexArray(NpyIter* iter) .. versionadded:: 1.7 This gives back a pointer to the ``nop`` indices which map - construction operands with :cdata:`NPY_ITER_USE_MASKNA` flagged + construction operands with :c:data:`NPY_ITER_USE_MASKNA` flagged to their corresponding NA mask operands and vice versa. For - operands which were not flagged with :cdata:`NPY_ITER_USE_MASKNA`, + operands which were not flagged with :c:data:`NPY_ITER_USE_MASKNA`, this array contains negative values. -.. cfunction:: PyObject* NpyIter_GetIterView(NpyIter* iter, npy_intp i) +.. c:function:: PyObject* NpyIter_GetIterView(NpyIter* iter, npy_intp i) This gives back a reference to a new ndarray view, which is a view - into the i-th object in the array :cfunc:`NpyIter_GetOperandArray`(), + into the i-th object in the array :c:func:`NpyIter_GetOperandArray()`, whose dimensions and strides match the internal optimized iteration pattern. A C-order iteration of this view is equivalent to the iterator's iteration order. @@ -1003,24 +1003,24 @@ Construction and Destruction collapse it into a single strided iteration, this would return a view that is a one-dimensional array. -.. cfunction:: void NpyIter_GetReadFlags(NpyIter* iter, char* outreadflags) +.. c:function:: void NpyIter_GetReadFlags(NpyIter* iter, char* outreadflags) Fills ``nop`` flags. Sets ``outreadflags[i]`` to 1 if ``op[i]`` can be read from, and to 0 if not. -.. cfunction:: void NpyIter_GetWriteFlags(NpyIter* iter, char* outwriteflags) +.. c:function:: void NpyIter_GetWriteFlags(NpyIter* iter, char* outwriteflags) Fills ``nop`` flags. Sets ``outwriteflags[i]`` to 1 if ``op[i]`` can be written to, and to 0 if not. -.. cfunction:: int NpyIter_CreateCompatibleStrides(NpyIter* iter, npy_intp itemsize, npy_intp* outstrides) +.. c:function:: int NpyIter_CreateCompatibleStrides(NpyIter* iter, npy_intp itemsize, npy_intp* outstrides) Builds a set of strides which are the same as the strides of an - output array created using the :cdata:`NPY_ITER_ALLOCATE` flag, where NULL + output array created using the :c:data:`NPY_ITER_ALLOCATE` flag, where NULL was passed for op_axes. This is for data packed contiguously, but not necessarily in C or Fortran order. This should be used - together with :cfunc:`NpyIter_GetShape` and :cfunc:`NpyIter_GetNDim` - with the flag :cdata:`NPY_ITER_MULTI_INDEX` passed into the constructor. + together with :c:func:`NpyIter_GetShape` and :c:func:`NpyIter_GetNDim` + with the flag :c:data:`NPY_ITER_MULTI_INDEX` passed into the constructor. A use case for this function is to match the shape and layout of the iterator and tack on one or more dimensions. For example, @@ -1031,7 +1031,7 @@ Construction and Destruction the symmetry and pack it into 1 dimension with a particular encoding. This function may only be called if the iterator is tracking a multi-index - and if :cdata:`NPY_ITER_DONT_NEGATE_STRIDES` was used to prevent an axis + and if :c:data:`NPY_ITER_DONT_NEGATE_STRIDES` was used to prevent an axis from being iterated in reverse order. If an array is created with this method, simply adding 'itemsize' @@ -1040,7 +1040,7 @@ Construction and Destruction Returns ``NPY_SUCCEED`` or ``NPY_FAIL``. -.. cfunction:: npy_bool NpyIter_IsFirstVisit(NpyIter* iter, int iop) +.. c:function:: npy_bool NpyIter_IsFirstVisit(NpyIter* iter, int iop) .. versionadded:: 1.7 @@ -1067,7 +1067,7 @@ Construction and Destruction Functions For Iteration ----------------------- -.. cfunction:: NpyIter_IterNextFunc* NpyIter_GetIterNext(NpyIter* iter, char** errmsg) +.. c:function:: NpyIter_IterNextFunc* NpyIter_GetIterNext(NpyIter* iter, char** errmsg) Returns a function pointer for iteration. A specialized version of the function pointer may be calculated by this function @@ -1092,7 +1092,7 @@ Functions For Iteration /* use the addresses dataptr[0], ... dataptr[nop-1] */ } while(iternext(iter)); - When :cdata:`NPY_ITER_EXTERNAL_LOOP` is specified, the typical + When :c:data:`NPY_ITER_EXTERNAL_LOOP` is specified, the typical inner loop construct is as follows. .. code-block:: c @@ -1119,11 +1119,11 @@ Functions For Iteration with fresh values, not incrementally updated. If a compile-time fixed buffer is being used (both flags - :cdata:`NPY_ITER_BUFFERED` and :cdata:`NPY_ITER_EXTERNAL_LOOP`), the + :c:data:`NPY_ITER_BUFFERED` and :c:data:`NPY_ITER_EXTERNAL_LOOP`), the inner size may be used as a signal as well. The size is guaranteed to become zero when ``iternext()`` returns false, enabling the following loop construct. Note that if you use this construct, - you should not pass :cdata:`NPY_ITER_GROWINNER` as a flag, because it + you should not pass :c:data:`NPY_ITER_GROWINNER` as a flag, because it will cause larger sizes under some circumstances. .. code-block:: c @@ -1165,7 +1165,7 @@ Functions For Iteration } } while (iternext()); -.. cfunction:: NpyIter_GetMultiIndexFunc *NpyIter_GetGetMultiIndex(NpyIter* iter, char** errmsg) +.. c:function:: NpyIter_GetMultiIndexFunc *NpyIter_GetGetMultiIndex(NpyIter* iter, char** errmsg) Returns a function pointer for getting the current multi-index of the iterator. Returns NULL if the iterator is not tracking @@ -1179,10 +1179,10 @@ Functions For Iteration non-NULL, the function may be safely called without holding the Python GIL. -.. cfunction:: char** NpyIter_GetDataPtrArray(NpyIter* iter) +.. c:function:: char** NpyIter_GetDataPtrArray(NpyIter* iter) This gives back a pointer to the ``nop`` data pointers. If - :cdata:`NPY_ITER_EXTERNAL_LOOP` was not specified, each data + :c:data:`NPY_ITER_EXTERNAL_LOOP` was not specified, each data pointer points to the current data item of the iterator. If no inner iteration was specified, it points to the first data item of the inner loop. @@ -1191,7 +1191,7 @@ Functions For Iteration ``iternext`` will not change it. This function may be safely called without holding the Python GIL. -.. cfunction:: char** NpyIter_GetInitialDataPtrArray(NpyIter* iter) +.. c:function:: char** NpyIter_GetInitialDataPtrArray(NpyIter* iter) Gets the array of data pointers directly into the arrays (never into the buffers), corresponding to iteration index 0. @@ -1202,18 +1202,18 @@ Functions For Iteration This function may be safely called without holding the Python GIL. -.. cfunction:: npy_intp* NpyIter_GetIndexPtr(NpyIter* iter) +.. c:function:: npy_intp* NpyIter_GetIndexPtr(NpyIter* iter) This gives back a pointer to the index being tracked, or NULL if no index is being tracked. It is only useable if one of - the flags :cdata:`NPY_ITER_C_INDEX` or :cdata:`NPY_ITER_F_INDEX` + the flags :c:data:`NPY_ITER_C_INDEX` or :c:data:`NPY_ITER_F_INDEX` were specified during construction. -When the flag :cdata:`NPY_ITER_EXTERNAL_LOOP` is used, the code +When the flag :c:data:`NPY_ITER_EXTERNAL_LOOP` is used, the code needs to know the parameters for doing the inner loop. These functions provide that information. -.. cfunction:: npy_intp* NpyIter_GetInnerStrideArray(NpyIter* iter) +.. c:function:: npy_intp* NpyIter_GetInnerStrideArray(NpyIter* iter) Returns a pointer to an array of the ``nop`` strides, one for each iterated object, to be used by the inner loop. @@ -1222,7 +1222,7 @@ functions provide that information. ``iternext`` will not change it. This function may be safely called without holding the Python GIL. -.. cfunction:: npy_intp* NpyIter_GetInnerLoopSizePtr(NpyIter* iter) +.. c:function:: npy_intp* NpyIter_GetInnerLoopSizePtr(NpyIter* iter) Returns a pointer to the number of iterations the inner loop should execute. @@ -1232,14 +1232,14 @@ functions provide that information. iteration, in particular if buffering is enabled. This function may be safely called without holding the Python GIL. -.. cfunction:: void NpyIter_GetInnerFixedStrideArray(NpyIter* iter, npy_intp* out_strides) +.. c:function:: void NpyIter_GetInnerFixedStrideArray(NpyIter* iter, npy_intp* out_strides) Gets an array of strides which are fixed, or will not change during the entire iteration. For strides that may change, the value NPY_MAX_INTP is placed in the stride. Once the iterator is prepared for iteration (after a reset if - :cdata:`NPY_DELAY_BUFALLOC` was used), call this to get the strides + :c:data:`NPY_DELAY_BUFALLOC` was used), call this to get the strides which may be used to select a fast inner loop function. For example, if the stride is 0, that means the inner loop can always load its value into a variable once, then use the variable throughout the loop, @@ -1265,33 +1265,33 @@ iterator, which does not have corresponding features in this iterator. Here is a conversion table for which functions to use with the new iterator: -===================================== ============================================= +===================================== =================================================== *Iterator Functions* -:cfunc:`PyArray_IterNew` :cfunc:`NpyIter_New` -:cfunc:`PyArray_IterAllButAxis` :cfunc:`NpyIter_New` + ``axes`` parameter **or** - Iterator flag :cdata:`NPY_ITER_EXTERNAL_LOOP` -:cfunc:`PyArray_BroadcastToShape` **NOT SUPPORTED** (Use the support for +:c:func:`PyArray_IterNew` :c:func:`NpyIter_New` +:c:func:`PyArray_IterAllButAxis` :c:func:`NpyIter_New` + ``axes`` parameter **or** + Iterator flag :c:data:`NPY_ITER_EXTERNAL_LOOP` +:c:func:`PyArray_BroadcastToShape` **NOT SUPPORTED** (Use the support for multiple operands instead.) -:cfunc:`PyArrayIter_Check` Will need to add this in Python exposure -:cfunc:`PyArray_ITER_RESET` :cfunc:`NpyIter_Reset` -:cfunc:`PyArray_ITER_NEXT` Function pointer from :cfunc:`NpyIter_GetIterNext` -:cfunc:`PyArray_ITER_DATA` :cfunc:`NpyIter_GetDataPtrArray` -:cfunc:`PyArray_ITER_GOTO` :cfunc:`NpyIter_GotoMultiIndex` -:cfunc:`PyArray_ITER_GOTO1D` :cfunc:`NpyIter_GotoIndex` or - :cfunc:`NpyIter_GotoIterIndex` -:cfunc:`PyArray_ITER_NOTDONE` Return value of ``iternext`` function pointer +:c:func:`PyArrayIter_Check` Will need to add this in Python exposure +:c:func:`PyArray_ITER_RESET` :c:func:`NpyIter_Reset` +:c:func:`PyArray_ITER_NEXT` Function pointer from :c:func:`NpyIter_GetIterNext` +:c:func:`PyArray_ITER_DATA` c:func:`NpyIter_GetDataPtrArray` +:c:func:`PyArray_ITER_GOTO` :c:func:`NpyIter_GotoMultiIndex` +:c:func:`PyArray_ITER_GOTO1D` :c:func:`NpyIter_GotoIndex` or + :c:func:`NpyIter_GotoIterIndex` +:c:func:`PyArray_ITER_NOTDONE` Return value of ``iternext`` function pointer *Multi-iterator Functions* -:cfunc:`PyArray_MultiIterNew` :cfunc:`NpyIter_MultiNew` -:cfunc:`PyArray_MultiIter_RESET` :cfunc:`NpyIter_Reset` -:cfunc:`PyArray_MultiIter_NEXT` Function pointer from :cfunc:`NpyIter_GetIterNext` -:cfunc:`PyArray_MultiIter_DATA` :cfunc:`NpyIter_GetDataPtrArray` -:cfunc:`PyArray_MultiIter_NEXTi` **NOT SUPPORTED** (always lock-step iteration) -:cfunc:`PyArray_MultiIter_GOTO` :cfunc:`NpyIter_GotoMultiIndex` -:cfunc:`PyArray_MultiIter_GOTO1D` :cfunc:`NpyIter_GotoIndex` or - :cfunc:`NpyIter_GotoIterIndex` -:cfunc:`PyArray_MultiIter_NOTDONE` Return value of ``iternext`` function pointer -:cfunc:`PyArray_Broadcast` Handled by :cfunc:`NpyIter_MultiNew` -:cfunc:`PyArray_RemoveSmallest` Iterator flag :cdata:`NPY_ITER_EXTERNAL_LOOP` +:c:func:`PyArray_MultiIterNew` :c:func:`NpyIter_MultiNew` +:c:func:`PyArray_MultiIter_RESET` :c:func:`NpyIter_Reset` +:c:func:`PyArray_MultiIter_NEXT` Function pointer from :c:func:`NpyIter_GetIterNext` +:c:func:`PyArray_MultiIter_DATA` :c:func:`NpyIter_GetDataPtrArray` +:c:func:`PyArray_MultiIter_NEXTi` **NOT SUPPORTED** (always lock-step iteration) +:c:func:`PyArray_MultiIter_GOTO` :c:func:`NpyIter_GotoMultiIndex` +:c:func:`PyArray_MultiIter_GOTO1D` :c:func:`NpyIter_GotoIndex` or + :c:func:`NpyIter_GotoIterIndex` +:c:func:`PyArray_MultiIter_NOTDONE` Return value of ``iternext`` function pointer +:c:func:`PyArray_Broadcast` Handled by :c:func:`NpyIter_MultiNew` +:c:func:`PyArray_RemoveSmallest` Iterator flag :c:data:`NPY_ITER_EXTERNAL_LOOP` *Other Functions* -:cfunc:`PyArray_ConvertToCommonType` Iterator flag :cdata:`NPY_ITER_COMMON_DTYPE` -===================================== ============================================= +:c:func:`PyArray_ConvertToCommonType` Iterator flag :c:data:`NPY_ITER_COMMON_DTYPE` +===================================== =================================================== diff --git a/doc/source/reference/c-api.types-and-structures.rst b/doc/source/reference/c-api.types-and-structures.rst index 43abe24c7..35ffc2d1e 100644 --- a/doc/source/reference/c-api.types-and-structures.rst +++ b/doc/source/reference/c-api.types-and-structures.rst @@ -6,14 +6,14 @@ Python Types and C-Structures Several new types are defined in the C-code. Most of these are accessible from Python, but a few are not exposed due to their limited -use. Every new Python type has an associated :ctype:`PyObject *` with an +use. Every new Python type has an associated :c:type:`PyObject *` with an internal structure that includes a pointer to a "method table" that defines how the new object behaves in Python. When you receive a Python object into C code, you always get a pointer to a -:ctype:`PyObject` structure. Because a :ctype:`PyObject` structure is -very generic and defines only :cmacro:`PyObject_HEAD`, by itself it +:c:type:`PyObject` structure. Because a :c:type:`PyObject` structure is +very generic and defines only :c:macro:`PyObject_HEAD`, by itself it is not very interesting. However, different objects contain more -details after the :cmacro:`PyObject_HEAD` (but you have to cast to the +details after the :c:macro:`PyObject_HEAD` (but you have to cast to the correct type to access them --- or use accessor functions or macros). @@ -25,12 +25,12 @@ By constructing a new Python type you make available a new object for Python. The ndarray object is an example of a new type defined in C. New types are defined in C by two basic steps: -1. creating a C-structure (usually named :ctype:`Py{Name}Object`) that is - binary- compatible with the :ctype:`PyObject` structure itself but holds +1. creating a C-structure (usually named :c:type:`Py{Name}Object`) that is + binary- compatible with the :c:type:`PyObject` structure itself but holds the additional information needed for that particular object; -2. populating the :ctype:`PyTypeObject` table (pointed to by the ob_type - member of the :ctype:`PyObject` structure) with pointers to functions +2. populating the :c:type:`PyTypeObject` table (pointed to by the ob_type + member of the :c:type:`PyObject` structure) with pointers to functions that implement the desired behavior for the type. Instead of special method names which define behavior for Python @@ -40,16 +40,16 @@ itself has become dynamic which allows C types that can be "sub-typed "from other C-types in C, and sub-classed in Python. The children types inherit the attributes and methods from their parent(s). -There are two major new types: the ndarray ( :cdata:`PyArray_Type` ) -and the ufunc ( :cdata:`PyUFunc_Type` ). Additional types play a -supportive role: the :cdata:`PyArrayIter_Type`, the -:cdata:`PyArrayMultiIter_Type`, and the :cdata:`PyArrayDescr_Type` -. The :cdata:`PyArrayIter_Type` is the type for a flat iterator for an +There are two major new types: the ndarray ( :c:data:`PyArray_Type` ) +and the ufunc ( :c:data:`PyUFunc_Type` ). Additional types play a +supportive role: the :c:data:`PyArrayIter_Type`, the +:c:data:`PyArrayMultiIter_Type`, and the :c:data:`PyArrayDescr_Type` +. The :c:data:`PyArrayIter_Type` is the type for a flat iterator for an ndarray (the object that is returned when getting the flat -attribute). The :cdata:`PyArrayMultiIter_Type` is the type of the +attribute). The :c:data:`PyArrayMultiIter_Type` is the type of the object returned when calling ``broadcast`` (). It handles iteration and broadcasting over a collection of nested sequences. Also, the -:cdata:`PyArrayDescr_Type` is the data-type-descriptor type whose +:c:data:`PyArrayDescr_Type` is the data-type-descriptor type whose instances describe the data. Finally, there are 21 new scalar-array types which are new Python scalars corresponding to each of the fundamental data types available for arrays. An additional 10 other @@ -60,22 +60,22 @@ hierarchy of actual Python types. PyArray_Type ------------ -.. cvar:: PyArray_Type +.. c:var: PyArray_Type - The Python type of the ndarray is :cdata:`PyArray_Type`. In C, every - ndarray is a pointer to a :ctype:`PyArrayObject` structure. The ob_type - member of this structure contains a pointer to the :cdata:`PyArray_Type` + The Python type of the ndarray is :c:data:`PyArray_Type`. In C, every + ndarray is a pointer to a :c:type:`PyArrayObject` structure. The ob_type + member of this structure contains a pointer to the :c:data:`PyArray_Type` typeobject. -.. ctype:: PyArrayObject +.. c:type:: PyArrayObject - The :ctype:`PyArrayObject` C-structure contains all of the required + The :c:type:`PyArrayObject` C-structure contains all of the required information for an array. All instances of an ndarray (and its subclasses) will have this structure. For future compatibility, these structure members should normally be accessed using the provided macros. If you need a shorter name, then you can make use - of :ctype:`NPY_AO` which is defined to be equivalent to - :ctype:`PyArrayObject`. + of :c:type:`NPY_AO` which is defined to be equivalent to + :c:type:`PyArrayObject`. .. code-block:: c @@ -91,7 +91,7 @@ PyArray_Type PyObject *weakreflist; } PyArrayObject; -.. cmacro:: PyArrayObject.PyObject_HEAD +.. c:macro: PyArrayObject.PyObject_HEAD This is needed by all Python objects. It consists of (at least) a reference count member ( ``ob_refcnt`` ) and a pointer to the @@ -101,44 +101,44 @@ PyArray_Type information). The ob_type member points to a Python type object. -.. cmember:: char *PyArrayObject.data +.. c:member:: char *PyArrayObject.data A pointer to the first element of the array. This pointer can (and normally should) be recast to the data type of the array. -.. cmember:: int PyArrayObject.nd +.. c:member:: int PyArrayObject.nd An integer providing the number of dimensions for this array. When nd is 0, the array is sometimes called a rank-0 array. Such arrays have undefined dimensions and strides and - cannot be accessed. :cdata:`NPY_MAXDIMS` is the largest number of + cannot be accessed. :c:data:`NPY_MAXDIMS` is the largest number of dimensions for any array. -.. cmember:: npy_intp PyArrayObject.dimensions +.. c:member:: npy_intp PyArrayObject.dimensions An array of integers providing the shape in each dimension as long as nd :math:`\geq` 1. The integer is always large enough to hold a pointer on the platform, so the dimension size is only limited by memory. -.. cmember:: npy_intp *PyArrayObject.strides +.. c:member:: npy_intp *PyArrayObject.strides An array of integers providing for each dimension the number of bytes that must be skipped to get to the next element in that dimension. -.. cmember:: PyObject *PyArrayObject.base +.. c:member:: PyObject *PyArrayObject.base This member is used to hold a pointer to another Python object that is related to this array. There are two use cases: 1) If this array does not own its own memory, then base points to the Python object that owns it (perhaps another array object), 2) If this array has - the :cdata:`NPY_ARRAY_UPDATEIFCOPY` flag set, then this array is + the :c:data:`NPY_ARRAY_UPDATEIFCOPY` flag set, then this array is a working copy of a "misbehaved" array. As soon as this array is deleted, the array pointed to by base will be updated with the contents of this array. -.. cmember:: PyArray_Descr *PyArrayObject.descr +.. c:member:: PyArray_Descr *PyArrayObject.descr A pointer to a data-type descriptor object (see below). The data-type descriptor object is an instance of a new built-in @@ -148,15 +148,15 @@ PyArray_Type as well as a pointer to a table of function pointers to implement specific functionality. -.. cmember:: int PyArrayObject.flags +.. c:member:: int PyArrayObject.flags Flags indicating how the memory pointed to by data is to be - interpreted. Possible flags are :cdata:`NPY_ARRAY_C_CONTIGUOUS`, - :cdata:`NPY_ARRAY_F_CONTIGUOUS`, :cdata:`NPY_ARRAY_OWNDATA`, - :cdata:`NPY_ARRAY_ALIGNED`, :cdata:`NPY_ARRAY_WRITEABLE`, and - :cdata:`NPY_ARRAY_UPDATEIFCOPY`. + interpreted. Possible flags are :c:data:`NPY_ARRAY_C_CONTIGUOUS`, + :c:data:`NPY_ARRAY_F_CONTIGUOUS`, :c:data:`NPY_ARRAY_OWNDATA`, + :c:data:`NPY_ARRAY_ALIGNED`, :c:data:`NPY_ARRAY_WRITEABLE`, and + :c:data:`NPY_ARRAY_UPDATEIFCOPY`. -.. cmember:: PyObject *PyArrayObject.weakreflist +.. c:member:: PyObject *PyArrayObject.weakreflist This member allows array objects to have weak references (using the weakref module). @@ -165,24 +165,24 @@ PyArray_Type PyArrayDescr_Type ----------------- -.. cvar:: PyArrayDescr_Type +.. c:var: PyArrayDescr_Type - The :cdata:`PyArrayDescr_Type` is the built-in type of the + The :c:data:`PyArrayDescr_Type` is the built-in type of the data-type-descriptor objects used to describe how the bytes comprising the array are to be interpreted. There are 21 statically-defined - :ctype:`PyArray_Descr` objects for the built-in data-types. While these + :c:type:`PyArray_Descr` objects for the built-in data-types. While these participate in reference counting, their reference count should never reach zero. There is also a dynamic table of user-defined - :ctype:`PyArray_Descr` objects that is also maintained. Once a + :c:type:`PyArray_Descr` objects that is also maintained. Once a data-type-descriptor object is "registered" it should never be - deallocated either. The function :cfunc:`PyArray_DescrFromType` (...) can - be used to retrieve a :ctype:`PyArray_Descr` object from an enumerated + deallocated either. The function :c:func:`PyArray_DescrFromType` (...) can + be used to retrieve a :c:type:`PyArray_Descr` object from an enumerated type-number (either built-in or user- defined). -.. ctype:: PyArray_Descr +.. c:type:: PyArray_Descr - The format of the :ctype:`PyArray_Descr` structure that lies at the - heart of the :cdata:`PyArrayDescr_Type` is + The format of the :c:type:`PyArray_Descr` structure that lies at the + heart of the :c:data:`PyArrayDescr_Type` is .. code-block:: c @@ -202,17 +202,17 @@ PyArrayDescr_Type PyArray_ArrFuncs *f; } PyArray_Descr; -.. cmember:: PyTypeObject *PyArray_Descr.typeobj +.. c:member:: PyTypeObject *PyArray_Descr.typeobj Pointer to a typeobject that is the corresponding Python type for the elements of this array. For the builtin types, this points to the corresponding array scalar. For user-defined types, this should point to a user-defined typeobject. This typeobject can either inherit from array scalars or not. If it does not inherit - from array scalars, then the :cdata:`NPY_USE_GETITEM` and - :cdata:`NPY_USE_SETITEM` flags should be set in the ``flags`` member. + from array scalars, then the :c:data:`NPY_USE_GETITEM` and + :c:data:`NPY_USE_SETITEM` flags should be set in the ``flags`` member. -.. cmember:: char PyArray_Descr.kind +.. c:member:: char PyArray_Descr.kind A character code indicating the kind of array (using the array interface typestring notation). A 'b' represents Boolean, a 'i' @@ -221,100 +221,100 @@ PyArrayDescr_Type represents 8-bit character string, 'U' represents 32-bit/character unicode string, and 'V' repesents arbitrary. -.. cmember:: char PyArray_Descr.type +.. c:member:: char PyArray_Descr.type A traditional character code indicating the data type. -.. cmember:: char PyArray_Descr.byteorder +.. c:member:: char PyArray_Descr.byteorder A character indicating the byte-order: '>' (big-endian), '<' (little- endian), '=' (native), '\|' (irrelevant, ignore). All builtin data- types have byteorder '='. -.. cmember:: int PyArray_Descr.flags +.. c:member:: int PyArray_Descr.flags A data-type bit-flag that determines if the data-type exhibits object- array like behavior. Each bit in this member is a flag which are named as: - .. cvar:: NPY_ITEM_REFCOUNT + .. c:var: NPY_ITEM_REFCOUNT - .. cvar:: NPY_ITEM_HASOBJECT + .. c:var: NPY_ITEM_HASOBJECT Indicates that items of this data-type must be reference - counted (using :cfunc:`Py_INCREF` and :cfunc:`Py_DECREF` ). + counted (using :c:func:`Py_INCREF` and :c:func:`Py_DECREF` ). - .. cvar:: NPY_LIST_PICKLE + .. c:var: NPY_LIST_PICKLE Indicates arrays of this data-type must be converted to a list before pickling. - .. cvar:: NPY_ITEM_IS_POINTER + .. c:var: NPY_ITEM_IS_POINTER Indicates the item is a pointer to some other data-type - .. cvar:: NPY_NEEDS_INIT + .. c:var: NPY_NEEDS_INIT Indicates memory for this data-type must be initialized (set to 0) on creation. - .. cvar:: NPY_NEEDS_PYAPI + .. c:var: NPY_NEEDS_PYAPI Indicates this data-type requires the Python C-API during access (so don't give up the GIL if array access is going to be needed). - .. cvar:: NPY_USE_GETITEM + .. c:var: NPY_USE_GETITEM On array access use the ``f->getitem`` function pointer instead of the standard conversion to an array scalar. Must use if you don't define an array scalar to go along with the data-type. - .. cvar:: NPY_USE_SETITEM + .. c:var: NPY_USE_SETITEM When creating a 0-d array from an array scalar use ``f->setitem`` instead of the standard copy from an array scalar. Must use if you don't define an array scalar to go along with the data-type. - .. cvar:: NPY_FROM_FIELDS + .. c:var: NPY_FROM_FIELDS The bits that are inherited for the parent data-type if these bits are set in any field of the data-type. Currently ( - :cdata:`NPY_NEEDS_INIT` \| :cdata:`NPY_LIST_PICKLE` \| - :cdata:`NPY_ITEM_REFCOUNT` \| :cdata:`NPY_NEEDS_PYAPI` ). + :c:data:`NPY_NEEDS_INIT` \| :c:data:`NPY_LIST_PICKLE` \| + :c:data:`NPY_ITEM_REFCOUNT` \| :c:data:`NPY_NEEDS_PYAPI` ). - .. cvar:: NPY_OBJECT_DTYPE_FLAGS + .. c:var: NPY_OBJECT_DTYPE_FLAGS - Bits set for the object data-type: ( :cdata:`NPY_LIST_PICKLE` - \| :cdata:`NPY_USE_GETITEM` \| :cdata:`NPY_ITEM_IS_POINTER` \| - :cdata:`NPY_REFCOUNT` \| :cdata:`NPY_NEEDS_INIT` \| - :cdata:`NPY_NEEDS_PYAPI`). + Bits set for the object data-type: ( :c:data:`NPY_LIST_PICKLE` + \| :c:data:`NPY_USE_GETITEM` \| :c:data:`NPY_ITEM_IS_POINTER` \| + :c:data:`NPY_REFCOUNT` \| :c:data:`NPY_NEEDS_INIT` \| + :c:data:`NPY_NEEDS_PYAPI`). - .. cfunction:: PyDataType_FLAGCHK(PyArray_Descr *dtype, int flags) + .. c:function:: PyDataType_FLAGCHK(PyArray_Descr *dtype, int flags) Return true if all the given flags are set for the data-type object. - .. cfunction:: PyDataType_REFCHK(PyArray_Descr *dtype) + .. c:function:: PyDataType_REFCHK(PyArray_Descr *dtype) - Equivalent to :cfunc:`PyDataType_FLAGCHK` (*dtype*, - :cdata:`NPY_ITEM_REFCOUNT`). + Equivalent to :c:func:`PyDataType_FLAGCHK` (*dtype*, + :c:data:`NPY_ITEM_REFCOUNT`). -.. cmember:: int PyArray_Descr.type_num +.. c:member:: int PyArray_Descr.type_num A number that uniquely identifies the data type. For new data-types, this number is assigned when the data-type is registered. -.. cmember:: int PyArray_Descr.elsize +.. c:member:: int PyArray_Descr.elsize For data types that are always the same size (such as long), this holds the size of the data type. For flexible data types where different arrays can have a different elementsize, this should be 0. -.. cmember:: int PyArray_Descr.alignment +.. c:member:: int PyArray_Descr.alignment A number providing alignment information for this data type. Specifically, it shows how far from the start of a 2-element @@ -322,7 +322,7 @@ PyArrayDescr_Type places an item of this type: ``offsetof(struct {char c; type v;}, v)`` -.. cmember:: PyArray_ArrayDescr *PyArray_Descr.subarray +.. c:member:: PyArray_ArrayDescr *PyArray_Descr.subarray If this is non- ``NULL``, then this data-type descriptor is a C-style contiguous array of another data-type descriptor. In @@ -331,7 +331,7 @@ PyArrayDescr_Type useful as the data-type descriptor for a field in another data-type descriptor. The fields member should be ``NULL`` if this is non- ``NULL`` (the fields member of the base descriptor can be - non- ``NULL`` however). The :ctype:`PyArray_ArrayDescr` structure is + non- ``NULL`` however). The :c:type:`PyArray_ArrayDescr` structure is defined using .. code-block:: c @@ -343,17 +343,17 @@ PyArrayDescr_Type The elements of this structure are: - .. cmember:: PyArray_Descr *PyArray_ArrayDescr.base + .. c:member:: PyArray_Descr *PyArray_ArrayDescr.base The data-type-descriptor object of the base-type. - .. cmember:: PyObject *PyArray_ArrayDescr.shape + .. c:member:: PyObject *PyArray_ArrayDescr.shape The shape (always C-style contiguous) of the sub-array as a Python tuple. -.. cmember:: PyObject *PyArray_Descr.fields +.. c:member:: PyObject *PyArray_Descr.fields If this is non-NULL, then this data-type-descriptor has fields described by a Python dictionary whose keys are names (and also @@ -366,14 +366,14 @@ PyArrayDescr_Type normally a Python string. These tuples are placed in this dictionary keyed by name (and also title if given). -.. cmember:: PyArray_ArrFuncs *PyArray_Descr.f +.. c:member:: PyArray_ArrFuncs *PyArray_Descr.f A pointer to a structure containing functions that the type needs to implement internal features. These functions are not the same thing as the universal functions (ufuncs) described later. Their signatures can vary arbitrarily. -.. ctype:: PyArray_ArrFuncs +.. c:type:: PyArray_ArrFuncs Functions implementing internal features. Not all of these function pointers must be defined for a given type. The required @@ -420,7 +420,7 @@ PyArrayDescr_Type functions can (and must) deal with mis-behaved arrays. The other functions require behaved memory segments. - .. cmember:: void cast(void *from, void *to, npy_intp n, void *fromarr, void *toarr) + .. c:member:: void cast(void *from, void *to, npy_intp n, void *fromarr, void *toarr) An array of function pointers to cast from the current type to all of the other builtin types. Each function casts a @@ -431,14 +431,14 @@ PyArrayDescr_Type PyArrayObjects for flexible arrays to get itemsize information. - .. cmember:: PyObject *getitem(void *data, void *arr) + .. c:member:: PyObject *getitem(void *data, void *arr) A pointer to a function that returns a standard Python object from a single element of the array object *arr* pointed to by *data*. This function must be able to deal with "misbehaved "(misaligned and/or swapped) arrays correctly. - .. cmember:: int setitem(PyObject *item, void *data, void *arr) + .. c:member:: int setitem(PyObject *item, void *data, void *arr) A pointer to a function that sets the Python object *item* into the array, *arr*, at the position pointed to by *data* @@ -446,14 +446,14 @@ PyArrayDescr_Type a zero is returned, otherwise, a negative one is returned (and a Python error set). - .. cmember:: void copyswapn(void *dest, npy_intp dstride, void *src, npy_intp sstride, npy_intp n, int swap, void *arr) + .. c:member:: void copyswapn(void *dest, npy_intp dstride, void *src, npy_intp sstride, npy_intp n, int swap, void *arr) - .. cmember:: void copyswap(void *dest, void *src, int swap, void *arr) + .. c:member:: void copyswap(void *dest, void *src, int swap, void *arr) These members are both pointers to functions to copy data from *src* to *dest* and *swap* if indicated. The value of arr is - only used for flexible ( :cdata:`NPY_STRING`, :cdata:`NPY_UNICODE`, - and :cdata:`NPY_VOID` ) arrays (and is obtained from + only used for flexible ( :c:data:`NPY_STRING`, :c:data:`NPY_UNICODE`, + and :c:data:`NPY_VOID` ) arrays (and is obtained from ``arr->descr->elsize`` ). The second function copies a single value, while the first loops over n values with the provided strides. These functions can deal with misbehaved *src* @@ -463,7 +463,7 @@ PyArrayDescr_Type (...) first followed by ``copyswap(n)`` with NULL valued ``src``. - .. cmember:: int compare(const void* d1, const void* d2, void* arr) + .. c:member:: int compare(const void* d1, const void* d2, void* arr) A pointer to a function that compares two elements of the array, ``arr``, pointed to by ``d1`` and ``d2``. This @@ -472,7 +472,7 @@ PyArrayDescr_Type ``d2``, and -1 if * ``d1`` < * ``d2``. The array object ``arr`` is used to retrieve itemsize and field information for flexible arrays. - .. cmember:: int argmax(void* data, npy_intp n, npy_intp* max_ind, void* arr) + .. c:member:: int argmax(void* data, npy_intp n, npy_intp* max_ind, void* arr) A pointer to a function that retrieves the index of the largest of ``n`` elements in ``arr`` beginning at the element @@ -481,7 +481,7 @@ PyArrayDescr_Type always 0. The index of the largest element is returned in ``max_ind``. - .. cmember:: void dotfunc(void* ip1, npy_intp is1, void* ip2, npy_intp is2, void* op, npy_intp n, void* arr) + .. c:member:: void dotfunc(void* ip1, npy_intp is1, void* ip2, npy_intp is2, void* op, npy_intp n, void* arr) A pointer to a function that multiplies two ``n`` -length sequences together, adds them, and places the result in @@ -491,7 +491,7 @@ PyArrayDescr_Type and ``is2`` *bytes*, respectively. This function requires behaved (though not necessarily contiguous) memory. - .. cmember:: int scanfunc(FILE* fd, void* ip , void* sep , void* arr) + .. c:member:: int scanfunc(FILE* fd, void* ip , void* sep , void* arr) A pointer to a function that scans (scanf style) one element of the corresponding type from the file descriptor ``fd`` into @@ -506,7 +506,7 @@ PyArrayDescr_Type scanned, and -3 means that the element could not be interpreted from the format string. Requires a behaved array. - .. cmember:: int fromstr(char* str, void* ip, char** endptr, void* arr) + .. c:member:: int fromstr(char* str, void* ip, char** endptr, void* arr) A pointer to a function that converts the string pointed to by ``str`` to one element of the corresponding type and places it @@ -516,13 +516,13 @@ PyArrayDescr_Type points (needed for variable-size data- types). Returns 0 on success or -1 on failure. Requires a behaved array. - .. cmember:: Bool nonzero(void* data, void* arr) + .. c:member:: Bool nonzero(void* data, void* arr) A pointer to a function that returns TRUE if the item of ``arr`` pointed to by ``data`` is nonzero. This function can deal with misbehaved arrays. - .. cmember:: void fill(void* data, npy_intp length, void* arr) + .. c:member:: void fill(void* data, npy_intp length, void* arr) A pointer to a function that fills a contiguous array of given length with data. The first two elements of the array must @@ -531,22 +531,22 @@ PyArrayDescr_Type computed by repeatedly adding this computed delta. The data buffer must be well-behaved. - .. cmember:: void fillwithscalar(void* buffer, npy_intp length, void* value, void* arr) + .. c:member:: void fillwithscalar(void* buffer, npy_intp length, void* value, void* arr) A pointer to a function that fills a contiguous ``buffer`` of the given ``length`` with a single scalar ``value`` whose address is given. The final argument is the array which is needed to get the itemsize for variable-length arrays. - .. cmember:: int sort(void* start, npy_intp length, void* arr) + .. c:member:: int sort(void* start, npy_intp length, void* arr) An array of function pointers to a particular sorting algorithms. A particular sorting algorithm is obtained using a - key (so far :cdata:`NPY_QUICKSORT`, :data`NPY_HEAPSORT`, and - :cdata:`NPY_MERGESORT` are defined). These sorts are done + key (so far :c:data:`NPY_QUICKSORT`, :data`NPY_HEAPSORT`, and + :c:data:`NPY_MERGESORT` are defined). These sorts are done in-place assuming contiguous and aligned data. - .. cmember:: int argsort(void* start, npy_intp* result, npy_intp length, void *arr) + .. c:member:: int argsort(void* start, npy_intp* result, npy_intp length, void *arr) An array of function pointers to sorting algorithms for this data type. The same sorting algorithms as for sort are @@ -554,37 +554,37 @@ PyArrayDescr_Type ``result`` (which must be initialized with indices 0 to ``length-1`` inclusive). - .. cmember:: PyObject *castdict + .. c:member:: PyObject *castdict Either ``NULL`` or a dictionary containing low-level casting functions for user- defined data-types. Each function is - wrapped in a :ctype:`PyCObject *` and keyed by the data-type number. + wrapped in a :c:type:`PyCObject *` and keyed by the data-type number. - .. cmember:: NPY_SCALARKIND scalarkind(PyArrayObject* arr) + .. c:member:: NPY_SCALARKIND scalarkind(PyArrayObject* arr) A function to determine how scalars of this type should be interpreted. The argument is ``NULL`` or a 0-dimensional array containing the data (if that is needed to determine the kind of scalar). The return value must be of type - :ctype:`NPY_SCALARKIND`. + :c:type:`NPY_SCALARKIND`. - .. cmember:: int **cancastscalarkindto + .. c:member:: int **cancastscalarkindto - Either ``NULL`` or an array of :ctype:`NPY_NSCALARKINDS` + Either ``NULL`` or an array of :c:type:`NPY_NSCALARKINDS` pointers. These pointers should each be either ``NULL`` or a pointer to an array of integers (terminated by - :cdata:`NPY_NOTYPE`) indicating data-types that a scalar of + :c:data:`NPY_NOTYPE`) indicating data-types that a scalar of this data-type of the specified kind can be cast to safely (this usually means without losing precision). - .. cmember:: int *cancastto + .. c:member:: int *cancastto Either ``NULL`` or an array of integers (terminated by - :cdata:`NPY_NOTYPE` ) indicated data-types that this data-type + :c:data:`NPY_NOTYPE` ) indicated data-types that this data-type can be cast to safely (this usually means without losing precision). - .. cmember:: void fastclip(void *in, npy_intp n_in, void *min, void *max, void *out) + .. c:member:: void fastclip(void *in, npy_intp n_in, void *min, void *max, void *out) A function that reads ``n_in`` items from ``in``, and writes to ``out`` the read value if it is within the limits pointed to by @@ -592,7 +592,7 @@ PyArrayDescr_Type memory segments must be contiguous and behaved, and either ``min`` or ``max`` may be ``NULL``, but not both. - .. cmember:: void fastputmask(void *in, void *mask, npy_intp n_in, void *values, npy_intp nv) + .. c:member:: void fastputmask(void *in, void *mask, npy_intp n_in, void *values, npy_intp nv) A function that takes a pointer ``in`` to an array of ``n_in`` items, a pointer ``mask`` to an array of ``n_in`` boolean @@ -601,7 +601,7 @@ PyArrayDescr_Type in ``mask`` is non-zero, tiling ``vals`` as needed if ``nv < n_in``. All arrays must be contiguous and behaved. - .. cmember:: void fasttake(void *dest, void *src, npy_intp *indarray, npy_intp nindarray, npy_intp n_outer, npy_intp m_middle, npy_intp nelem, NPY_CLIPMODE clipmode) + .. c:member:: void fasttake(void *dest, void *src, npy_intp *indarray, npy_intp nindarray, npy_intp n_outer, npy_intp m_middle, npy_intp nelem, NPY_CLIPMODE clipmode) A function that takes a pointer ``src`` to a C contiguous, behaved segment, interpreted as a 3-dimensional array of shape @@ -612,12 +612,12 @@ PyArrayDescr_Type ``(n_outer, m_middle, nelem)``. The indices in ``indarray`` are used to index ``src`` along the second dimension, and copy the corresponding chunks of ``nelem`` items into ``dest``. - ``clipmode`` (which can take on the values :cdata:`NPY_RAISE`, - :cdata:`NPY_WRAP` or :cdata:`NPY_CLIP`) determines how will + ``clipmode`` (which can take on the values :c:data:`NPY_RAISE`, + :c:data:`NPY_WRAP` or :c:data:`NPY_CLIP`) determines how will indices smaller than 0 or larger than ``nindarray`` will be handled. - .. cmember:: int argmin(void* data, npy_intp n, npy_intp* min_ind, void* arr) + .. c:member:: int argmin(void* data, npy_intp n, npy_intp* min_ind, void* arr) A pointer to a function that retrieves the index of the smallest of ``n`` elements in ``arr`` beginning at the element @@ -627,12 +627,12 @@ PyArrayDescr_Type ``min_ind``. -The :cdata:`PyArray_Type` typeobject implements many of the features of +The :c:data:`PyArray_Type` typeobject implements many of the features of Python objects including the tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer interfaces. The rich comparison (tp_richcompare) is also used along with new-style attribute lookup for methods (tp_methods) and properties (tp_getset). The -:cdata:`PyArray_Type` can also be sub-typed. +:c:data:`PyArray_Type` can also be sub-typed. .. tip:: @@ -648,10 +648,10 @@ for methods (tp_methods) and properties (tp_getset). The PyUFunc_Type ------------ -.. cvar:: PyUFunc_Type +.. c:var: PyUFunc_Type The ufunc object is implemented by creation of the - :cdata:`PyUFunc_Type`. It is a very simple type that implements only + :c:data:`PyUFunc_Type`. It is a very simple type that implements only basic getattribute behavior, printing behavior, and has call behavior which allows these objects to act like functions. The basic idea behind the ufunc is to hold a reference to fast @@ -664,9 +664,9 @@ PyUFunc_Type ufunc using a single scalar function (*e.g.* atanh). -.. ctype:: PyUFuncObject +.. c:type:: PyUFuncObject - The core of the ufunc is the :ctype:`PyUFuncObject` which contains all + The core of the ufunc is the :c:type:`PyUFuncObject` which contains all the information needed to call the underlying C-code loops that perform the actual work. It has the following structure: @@ -692,30 +692,30 @@ PyUFunc_Type npy_uint32 *iter_flags; } PyUFuncObject; - .. cmacro:: PyUFuncObject.PyObject_HEAD + .. c:macro: PyUFuncObject.PyObject_HEAD required for all Python objects. - .. cmember:: int PyUFuncObject.nin + .. c:member:: int PyUFuncObject.nin The number of input arguments. - .. cmember:: int PyUFuncObject.nout + .. c:member:: int PyUFuncObject.nout The number of output arguments. - .. cmember:: int PyUFuncObject.nargs + .. c:member:: int PyUFuncObject.nargs The total number of arguments (*nin* + *nout*). This must be - less than :cdata:`NPY_MAXARGS`. + less than :c:data:`NPY_MAXARGS`. - .. cmember:: int PyUFuncObject.identity + .. c:member:: int PyUFuncObject.identity - Either :cdata:`PyUFunc_One`, :cdata:`PyUFunc_Zero`, or - :cdata:`PyUFunc_None` to indicate the identity for this operation. + Either :c:data:`PyUFunc_One`, :c:data:`PyUFunc_Zero`, or + :c:data:`PyUFunc_None` to indicate the identity for this operation. It is only used for a reduce-like call on an empty array. - .. cmember:: void PyUFuncObject.functions(char** args, npy_intp* dims, + .. c:member:: void PyUFuncObject.functions(char** args, npy_intp* dims, npy_intp* steps, void* extradata) An array of function pointers --- one for each data type @@ -733,7 +733,7 @@ PyUFunc_Type passed in as *extradata*. The size of this function pointer array is ntypes. - .. cmember:: void **PyUFuncObject.data + .. c:member:: void **PyUFuncObject.data Extra data to be passed to the 1-d vector loops or ``NULL`` if no extra-data is needed. This C-array must be the same size ( @@ -742,23 +742,23 @@ PyUFunc_Type just 1-d vector loops that make use of this extra data to receive a pointer to the actual function to call. - .. cmember:: int PyUFuncObject.ntypes + .. c:member:: int PyUFuncObject.ntypes The number of supported data types for the ufunc. This number specifies how many different 1-d loops (of the builtin data types) are available. - .. cmember:: int PyUFuncObject.check_return + .. c:member:: int PyUFuncObject.check_return Obsolete and unused. However, it is set by the corresponding entry in - the main ufunc creation routine: :cfunc:`PyUFunc_FromFuncAndData` (...). + the main ufunc creation routine: :c:func:`PyUFunc_FromFuncAndData` (...). - .. cmember:: char *PyUFuncObject.name + .. c:member:: char *PyUFuncObject.name A string name for the ufunc. This is used dynamically to build the __doc\__ attribute of ufuncs. - .. cmember:: char *PyUFuncObject.types + .. c:member:: char *PyUFuncObject.types An array of *nargs* :math:`\times` *ntypes* 8-bit type_numbers which contains the type signature for the function for each of @@ -768,43 +768,43 @@ PyUFunc_Type vector loop. These type numbers do not have to be the same type and mixed-type ufuncs are supported. - .. cmember:: char *PyUFuncObject.doc + .. c:member:: char *PyUFuncObject.doc Documentation for the ufunc. Should not contain the function signature as this is generated dynamically when __doc\__ is retrieved. - .. cmember:: void *PyUFuncObject.ptr + .. c:member:: void *PyUFuncObject.ptr Any dynamically allocated memory. Currently, this is used for dynamic ufuncs created from a python function to store room for the types, data, and name members. - .. cmember:: PyObject *PyUFuncObject.obj + .. c:member:: PyObject *PyUFuncObject.obj For ufuncs dynamically created from python functions, this member holds a reference to the underlying Python function. - .. cmember:: PyObject *PyUFuncObject.userloops + .. c:member:: PyObject *PyUFuncObject.userloops A dictionary of user-defined 1-d vector loops (stored as CObject ptrs) for user-defined types. A loop may be registered by the user for any user-defined type. It is retrieved by type number. User defined type - numbers are always larger than :cdata:`NPY_USERDEF`. + numbers are always larger than :c:data:`NPY_USERDEF`. - .. cmember:: npy_uint32 PyUFuncObject.op_flags + .. c:member:: npy_uint32 PyUFuncObject.op_flags Override the default operand flags for each ufunc operand. - .. cmember:: npy_uint32 PyUFuncObject.iter_flags + .. c:member:: npy_uint32 PyUFuncObject.iter_flags Override the default nditer flags for the ufunc. PyArrayIter_Type ---------------- -.. cvar:: PyArrayIter_Type +.. c:var: PyArrayIter_Type This is an iterator object that makes it easy to loop over an N-dimensional array. It is the object returned from the flat attribute of an @@ -815,17 +815,17 @@ PyArrayIter_Type tp_methods table. This object implements the next method and can be used anywhere an iterator can be used in Python. -.. ctype:: PyArrayIterObject +.. c:type:: PyArrayIterObject - The C-structure corresponding to an object of :cdata:`PyArrayIter_Type` is - the :ctype:`PyArrayIterObject`. The :ctype:`PyArrayIterObject` is used to + The C-structure corresponding to an object of :c:data:`PyArrayIter_Type` is + the :c:type:`PyArrayIterObject`. The :c:type:`PyArrayIterObject` is used to keep track of a pointer into an N-dimensional array. It contains associated information used to quickly march through the array. The pointer can be adjusted in three basic ways: 1) advance to the "next" position in the array in a C-style contiguous fashion, 2) advance to an arbitrary N-dimensional coordinate in the array, and 3) advance to an arbitrary one-dimensional index into the array. The members of the - :ctype:`PyArrayIterObject` structure are used in these + :c:type:`PyArrayIterObject` structure are used in these calculations. Iterator objects keep their own dimension and strides information about an array. This can be adjusted as needed for "broadcasting," or to loop over only specific dimensions. @@ -847,87 +847,87 @@ PyArrayIter_Type Bool contiguous; } PyArrayIterObject; - .. cmember:: int PyArrayIterObject.nd_m1 + .. c:member:: int PyArrayIterObject.nd_m1 :math:`N-1` where :math:`N` is the number of dimensions in the underlying array. - .. cmember:: npy_intp PyArrayIterObject.index + .. c:member:: npy_intp PyArrayIterObject.index The current 1-d index into the array. - .. cmember:: npy_intp PyArrayIterObject.size + .. c:member:: npy_intp PyArrayIterObject.size The total size of the underlying array. - .. cmember:: npy_intp *PyArrayIterObject.coordinates + .. c:member:: npy_intp *PyArrayIterObject.coordinates An :math:`N` -dimensional index into the array. - .. cmember:: npy_intp *PyArrayIterObject.dims_m1 + .. c:member:: npy_intp *PyArrayIterObject.dims_m1 The size of the array minus 1 in each dimension. - .. cmember:: npy_intp *PyArrayIterObject.strides + .. c:member:: npy_intp *PyArrayIterObject.strides The strides of the array. How many bytes needed to jump to the next element in each dimension. - .. cmember:: npy_intp *PyArrayIterObject.backstrides + .. c:member:: npy_intp *PyArrayIterObject.backstrides How many bytes needed to jump from the end of a dimension back to its beginning. Note that *backstrides* [k]= *strides* [k]*d *ims_m1* [k], but it is stored here as an optimization. - .. cmember:: npy_intp *PyArrayIterObject.factors + .. c:member:: npy_intp *PyArrayIterObject.factors This array is used in computing an N-d index from a 1-d index. It contains needed products of the dimensions. - .. cmember:: PyArrayObject *PyArrayIterObject.ao + .. c:member:: PyArrayObject *PyArrayIterObject.ao A pointer to the underlying ndarray this iterator was created to represent. - .. cmember:: char *PyArrayIterObject.dataptr + .. c:member:: char *PyArrayIterObject.dataptr This member points to an element in the ndarray indicated by the index. - .. cmember:: Bool PyArrayIterObject.contiguous + .. c:member:: Bool PyArrayIterObject.contiguous This flag is true if the underlying array is - :cdata:`NPY_ARRAY_C_CONTIGUOUS`. It is used to simplify + :c:data:`NPY_ARRAY_C_CONTIGUOUS`. It is used to simplify calculations when possible. How to use an array iterator on a C-level is explained more fully in later sections. Typically, you do not need to concern yourself with the internal structure of the iterator object, and merely interact -with it through the use of the macros :cfunc:`PyArray_ITER_NEXT` (it), -:cfunc:`PyArray_ITER_GOTO` (it, dest), or :cfunc:`PyArray_ITER_GOTO1D` (it, +with it through the use of the macros :c:func:`PyArray_ITER_NEXT` (it), +:c:func:`PyArray_ITER_GOTO` (it, dest), or :c:func:`PyArray_ITER_GOTO1D` (it, index). All of these macros require the argument *it* to be a -:ctype:`PyArrayIterObject *`. +:c:type:`PyArrayIterObject *`. PyArrayMultiIter_Type --------------------- -.. cvar:: PyArrayMultiIter_Type +.. c:var: PyArrayMultiIter_Type This type provides an iterator that encapsulates the concept of broadcasting. It allows :math:`N` arrays to be broadcast together so that the loop progresses in C-style contiguous fashion over the broadcasted array. The corresponding C-structure is the - :ctype:`PyArrayMultiIterObject` whose memory layout must begin any - object, *obj*, passed in to the :cfunc:`PyArray_Broadcast` (obj) + :c:type:`PyArrayMultiIterObject` whose memory layout must begin any + object, *obj*, passed in to the :c:func:`PyArray_Broadcast` (obj) function. Broadcasting is performed by adjusting array iterators so that each iterator represents the broadcasted shape and size, but has its strides adjusted so that the correct element from the array is used at each iteration. -.. ctype:: PyArrayMultiIterObject +.. c:type:: PyArrayMultiIterObject .. code-block:: c @@ -941,32 +941,32 @@ PyArrayMultiIter_Type PyArrayIterObject *iters[NPY_MAXDIMS]; } PyArrayMultiIterObject; - .. cmacro:: PyArrayMultiIterObject.PyObject_HEAD + .. c:macro: PyArrayMultiIterObject.PyObject_HEAD Needed at the start of every Python object (holds reference count and type identification). - .. cmember:: int PyArrayMultiIterObject.numiter + .. c:member:: int PyArrayMultiIterObject.numiter The number of arrays that need to be broadcast to the same shape. - .. cmember:: npy_intp PyArrayMultiIterObject.size + .. c:member:: npy_intp PyArrayMultiIterObject.size The total broadcasted size. - .. cmember:: npy_intp PyArrayMultiIterObject.index + .. c:member:: npy_intp PyArrayMultiIterObject.index The current (1-d) index into the broadcasted result. - .. cmember:: int PyArrayMultiIterObject.nd + .. c:member:: int PyArrayMultiIterObject.nd The number of dimensions in the broadcasted result. - .. cmember:: npy_intp *PyArrayMultiIterObject.dimensions + .. c:member:: npy_intp *PyArrayMultiIterObject.dimensions The shape of the broadcasted result (only ``nd`` slots are used). - .. cmember:: PyArrayIterObject **PyArrayMultiIterObject.iters + .. c:member:: PyArrayIterObject **PyArrayMultiIterObject.iters An array of iterator objects that holds the iterators for the arrays to be broadcast together. On return, the iterators are adjusted for @@ -975,21 +975,21 @@ PyArrayMultiIter_Type PyArrayNeighborhoodIter_Type ---------------------------- -.. cvar:: PyArrayNeighborhoodIter_Type +.. c:var: PyArrayNeighborhoodIter_Type This is an iterator object that makes it easy to loop over an N-dimensional neighborhood. -.. ctype:: PyArrayNeighborhoodIterObject +.. c:type:: PyArrayNeighborhoodIterObject The C-structure corresponding to an object of - :cdata:`PyArrayNeighborhoodIter_Type` is the - :ctype:`PyArrayNeighborhoodIterObject`. + :c:data:`PyArrayNeighborhoodIter_Type` is the + :c:type:`PyArrayNeighborhoodIterObject`. PyArrayFlags_Type ----------------- -.. cvar:: PyArrayFlags_Type +.. c:var: PyArrayFlags_Type When the flags attribute is retrieved from Python, a special builtin object of this type is constructed. This special type makes @@ -1004,7 +1004,7 @@ ScalarArrayTypes There is a Python type for each of the different built-in data types that can be present in the array Most of these are simple wrappers around the corresponding data type in C. The C-names for these types -are :cdata:`Py{TYPE}ArrType_Type` where ``{TYPE}`` can be +are :c:data:`Py{TYPE}ArrType_Type` where ``{TYPE}`` can be **Bool**, **Byte**, **Short**, **Int**, **Long**, **LongLong**, **UByte**, **UShort**, **UInt**, **ULong**, **ULongLong**, @@ -1013,12 +1013,12 @@ are :cdata:`Py{TYPE}ArrType_Type` where ``{TYPE}`` can be **Object**. These type names are part of the C-API and can therefore be created in -extension C-code. There is also a :cdata:`PyIntpArrType_Type` and a -:cdata:`PyUIntpArrType_Type` that are simple substitutes for one of the +extension C-code. There is also a :c:data:`PyIntpArrType_Type` and a +:c:data:`PyUIntpArrType_Type` that are simple substitutes for one of the integer types that can hold a pointer on the platform. The structure of these scalar objects is not exposed to C-code. The function -:cfunc:`PyArray_ScalarAsCtype` (..) can be used to extract the C-type value -from the array scalar and the function :cfunc:`PyArray_Scalar` (...) can be +:c:func:`PyArray_ScalarAsCtype` (..) can be used to extract the C-type value +from the array scalar and the function :c:func:`PyArray_Scalar` (...) can be used to construct an array scalar from a C-value. @@ -1035,7 +1035,7 @@ convert from Python objects to a useful C-Object. PyArray_Dims ------------ -.. ctype:: PyArray_Dims +.. c:type:: PyArray_Dims This structure is very useful when shape and/or strides information is supposed to be interpreted. The structure is: @@ -1049,12 +1049,12 @@ PyArray_Dims The members of this structure are - .. cmember:: npy_intp *PyArray_Dims.ptr + .. c:member:: npy_intp *PyArray_Dims.ptr - A pointer to a list of (:ctype:`npy_intp`) integers which usually + A pointer to a list of (:c:type:`npy_intp`) integers which usually represent array shape or array strides. - .. cmember:: int PyArray_Dims.len + .. c:member:: int PyArray_Dims.len The length of the list of integers. It is assumed safe to access *ptr* [0] to *ptr* [len-1]. @@ -1063,11 +1063,11 @@ PyArray_Dims PyArray_Chunk ------------- -.. ctype:: PyArray_Chunk +.. c:type:: PyArray_Chunk This is equivalent to the buffer object structure in Python up to - the ptr member. On 32-bit platforms (*i.e.* if :cdata:`NPY_SIZEOF_INT` - == :cdata:`NPY_SIZEOF_INTP`), the len member also matches an equivalent + the ptr member. On 32-bit platforms (*i.e.* if :c:data:`NPY_SIZEOF_INT` + == :c:data:`NPY_SIZEOF_INTP`), the len member also matches an equivalent member of the buffer object. It is useful to represent a generic single-segment chunk of memory. @@ -1083,28 +1083,28 @@ PyArray_Chunk The members are - .. cmacro:: PyArray_Chunk.PyObject_HEAD + .. c:macro: PyArray_Chunk.PyObject_HEAD Necessary for all Python objects. Included here so that the - :ctype:`PyArray_Chunk` structure matches that of the buffer object + :c:type:`PyArray_Chunk` structure matches that of the buffer object (at least to the len member). - .. cmember:: PyObject *PyArray_Chunk.base + .. c:member:: PyObject *PyArray_Chunk.base The Python object this chunk of memory comes from. Needed so that memory can be accounted for properly. - .. cmember:: void *PyArray_Chunk.ptr + .. c:member:: void *PyArray_Chunk.ptr A pointer to the start of the single-segment chunk of memory. - .. cmember:: npy_intp PyArray_Chunk.len + .. c:member:: npy_intp PyArray_Chunk.len The length of the segment in bytes. - .. cmember:: int PyArray_Chunk.flags + .. c:member:: int PyArray_Chunk.flags - Any data flags (*e.g.* :cdata:`NPY_ARRAY_WRITEABLE` ) that should + Any data flags (*e.g.* :c:data:`NPY_ARRAY_WRITEABLE` ) that should be used to interpret the memory. @@ -1113,18 +1113,18 @@ PyArrayInterface .. seealso:: :ref:`arrays.interface` -.. ctype:: PyArrayInterface +.. c:type:: PyArrayInterface - The :ctype:`PyArrayInterface` structure is defined so that NumPy and + The :c:type:`PyArrayInterface` structure is defined so that NumPy and other extension modules can use the rapid array interface protocol. The :obj:`__array_struct__` method of an object that supports the rapid array interface protocol should return a - :ctype:`PyCObject` that contains a pointer to a :ctype:`PyArrayInterface` + :c:type:`PyCObject` that contains a pointer to a :c:type:`PyArrayInterface` structure with the relevant details of the array. After the new array is created, the attribute should be ``DECREF``'d which will - free the :ctype:`PyArrayInterface` structure. Remember to ``INCREF`` the + free the :c:type:`PyArrayInterface` structure. Remember to ``INCREF`` the object (whose :obj:`__array_struct__` attribute was retrieved) and - point the base member of the new :ctype:`PyArrayObject` to this same + point the base member of the new :c:type:`PyArrayObject` to this same object. In this way the memory for the array will be managed correctly. @@ -1142,15 +1142,15 @@ PyArrayInterface PyObject *descr; } PyArrayInterface; - .. cmember:: int PyArrayInterface.two + .. c:member:: int PyArrayInterface.two the integer 2 as a sanity check. - .. cmember:: int PyArrayInterface.nd + .. c:member:: int PyArrayInterface.nd the number of dimensions in the array. - .. cmember:: char PyArrayInterface.typekind + .. c:member:: char PyArrayInterface.typekind A character indicating what kind of array is present according to the typestring convention with 't' -> bitfield, 'b' -> Boolean, 'i' -> @@ -1158,44 +1158,44 @@ PyArrayInterface complex floating point, 'O' -> object, 'S' -> (byte-)string, 'U' -> unicode, 'V' -> void. - .. cmember:: int PyArrayInterface.itemsize + .. c:member:: int PyArrayInterface.itemsize The number of bytes each item in the array requires. - .. cmember:: int PyArrayInterface.flags + .. c:member:: int PyArrayInterface.flags - Any of the bits :cdata:`NPY_ARRAY_C_CONTIGUOUS` (1), - :cdata:`NPY_ARRAY_F_CONTIGUOUS` (2), :cdata:`NPY_ARRAY_ALIGNED` (0x100), - :cdata:`NPY_ARRAY_NOTSWAPPED` (0x200), or :cdata:`NPY_ARRAY_WRITEABLE` + Any of the bits :c:data:`NPY_ARRAY_C_CONTIGUOUS` (1), + :c:data:`NPY_ARRAY_F_CONTIGUOUS` (2), :c:data:`NPY_ARRAY_ALIGNED` (0x100), + :c:data:`NPY_ARRAY_NOTSWAPPED` (0x200), or :c:data:`NPY_ARRAY_WRITEABLE` (0x400) to indicate something about the data. The - :cdata:`NPY_ARRAY_ALIGNED`, :cdata:`NPY_ARRAY_C_CONTIGUOUS`, and - :cdata:`NPY_ARRAY_F_CONTIGUOUS` flags can actually be determined from - the other parameters. The flag :cdata:`NPY_ARR_HAS_DESCR` + :c:data:`NPY_ARRAY_ALIGNED`, :c:data:`NPY_ARRAY_C_CONTIGUOUS`, and + :c:data:`NPY_ARRAY_F_CONTIGUOUS` flags can actually be determined from + the other parameters. The flag :c:data:`NPY_ARR_HAS_DESCR` (0x800) can also be set to indicate to objects consuming the version 3 array interface that the descr member of the structure is present (it will be ignored by objects consuming version 2 of the array interface). - .. cmember:: npy_intp *PyArrayInterface.shape + .. c:member:: npy_intp *PyArrayInterface.shape An array containing the size of the array in each dimension. - .. cmember:: npy_intp *PyArrayInterface.strides + .. c:member:: npy_intp *PyArrayInterface.strides An array containing the number of bytes to jump to get to the next element in each dimension. - .. cmember:: void *PyArrayInterface.data + .. c:member:: void *PyArrayInterface.data A pointer *to* the first element of the array. - .. cmember:: PyObject *PyArrayInterface.descr + .. c:member:: PyObject *PyArrayInterface.descr A Python object describing the data-type in more detail (same as the *descr* key in :obj:`__array_interface__`). This can be ``NULL`` if *typekind* and *itemsize* provide enough information. This field is also ignored unless - :cdata:`ARR_HAS_DESCR` flag is on in *flags*. + :c:data:`ARR_HAS_DESCR` flag is on in *flags*. Internally used structures @@ -1207,33 +1207,33 @@ Python, and are not exposed to the C-API. They are included here only for completeness and assistance in understanding the code. -.. ctype:: PyUFuncLoopObject +.. c:type:: PyUFuncLoopObject A loose wrapper for a C-structure that contains the information needed for looping. This is useful if you are trying to understand - the ufunc looping code. The :ctype:`PyUFuncLoopObject` is the associated + the ufunc looping code. The :c:type:`PyUFuncLoopObject` is the associated C-structure. It is defined in the ``ufuncobject.h`` header. -.. ctype:: PyUFuncReduceObject +.. c:type:: PyUFuncReduceObject A loose wrapper for the C-structure that contains the information needed for reduce-like methods of ufuncs. This is useful if you are trying to understand the reduce, accumulate, and reduce-at - code. The :ctype:`PyUFuncReduceObject` is the associated C-structure. It + code. The :c:type:`PyUFuncReduceObject` is the associated C-structure. It is defined in the ``ufuncobject.h`` header. -.. ctype:: PyUFunc_Loop1d +.. c:type:: PyUFunc_Loop1d A simple linked-list of C-structures containing the information needed to define a 1-d loop for a ufunc for every defined signature of a user-defined data-type. -.. cvar:: PyArrayMapIter_Type +.. c:var: PyArrayMapIter_Type Advanced indexing is handled with this Python type. It is simply a loose wrapper around the C-structure containing the variables needed for advanced array indexing. The associated C-structure, - :ctype:`PyArrayMapIterObject`, is useful if you are trying to + :c:type:`PyArrayMapIterObject`, is useful if you are trying to understand the advanced-index mapping code. It is defined in the ``arrayobject.h`` header. This type is not exposed to Python and could be replaced with a C-structure. As a Python type it takes diff --git a/doc/source/reference/c-api.ufunc.rst b/doc/source/reference/c-api.ufunc.rst index 3673958d9..ee1822122 100644 --- a/doc/source/reference/c-api.ufunc.rst +++ b/doc/source/reference/c-api.ufunc.rst @@ -10,16 +10,16 @@ UFunc API Constants --------- -.. cvar:: UFUNC_ERR_{HANDLER} +.. c:var:: UFUNC_ERR_{HANDLER} ``{HANDLER}`` can be **IGNORE**, **WARN**, **RAISE**, or **CALL** -.. cvar:: UFUNC_{THING}_{ERR} +.. c:var:: UFUNC_{THING}_{ERR} ``{THING}`` can be **MASK**, **SHIFT**, or **FPE**, and ``{ERR}`` can be **DIVIDEBYZERO**, **OVERFLOW**, **UNDERFLOW**, and **INVALID**. -.. cvar:: PyUFunc_{VALUE} +.. c:var:: PyUFunc_{VALUE} ``{VALUE}`` can be **One** (1), **Zero** (0), or **None** (-1) @@ -27,37 +27,37 @@ Constants Macros ------ -.. cmacro:: NPY_LOOP_BEGIN_THREADS +.. c:macro:: NPY_LOOP_BEGIN_THREADS Used in universal function code to only release the Python GIL if loop->obj is not true (*i.e.* this is not an OBJECT array - loop). Requires use of :cmacro:`NPY_BEGIN_THREADS_DEF` in variable + loop). Requires use of :c:macro:`NPY_BEGIN_THREADS_DEF` in variable declaration area. -.. cmacro:: NPY_LOOP_END_THREADS +.. c:macro:: NPY_LOOP_END_THREADS Used in universal function code to re-acquire the Python GIL if it was released (because loop->obj was not true). -.. cfunction:: UFUNC_CHECK_ERROR(loop) +.. c:function:: UFUNC_CHECK_ERROR(loop) A macro used internally to check for errors and goto fail if found. This macro requires a fail label in the current code block. The *loop* variable must have at least members (obj, errormask, and errorobj). If *loop* ->obj is nonzero, then - :cfunc:`PyErr_Occurred` () is called (meaning the GIL must be held). If + :c:func:`PyErr_Occurred` () is called (meaning the GIL must be held). If *loop* ->obj is zero, then if *loop* ->errormask is nonzero, - :cfunc:`PyUFunc_checkfperr` is called with arguments *loop* ->errormask + :c:func:`PyUFunc_checkfperr` is called with arguments *loop* ->errormask and *loop* ->errobj. If the result of this check of the IEEE floating point registers is true then the code redirects to the fail label which must be defined. -.. cfunction:: UFUNC_CHECK_STATUS(ret) +.. c:function:: UFUNC_CHECK_STATUS(ret) Deprecated: use npy_clear_floatstatus from npy_math.h instead. A macro that expands to platform-dependent code. The *ret* - variable can can be any integer. The :cdata:`UFUNC_FPE_{ERR}` bits are + variable can can be any integer. The :c:data:`UFUNC_FPE_{ERR}` bits are set in *ret* according to the status of the corresponding error flags of the floating point processor. @@ -65,7 +65,7 @@ Macros Functions --------- -.. cfunction:: PyObject* PyUFunc_FromFuncAndData(PyUFuncGenericFunction* func, +.. c:function:: PyObject* PyUFunc_FromFuncAndData(PyUFuncGenericFunction* func, void** data, char* types, int ntypes, int nin, int nout, int identity, char* name, char* doc, int check_return) @@ -77,13 +77,13 @@ Functions .. note:: The *func*, *data*, *types*, *name*, and *doc* arguments are not - copied by :cfunc:`PyUFunc_FromFuncAndData`. The caller must ensure + copied by :c:func:`PyUFunc_FromFuncAndData`. The caller must ensure that the memory used by these arrays is not freed as long as the ufunc object is alive. :param func: Must to an array of length *ntypes* containing - :ctype:`PyUFuncGenericFunction` items. These items are pointers to + :c:type:`PyUFuncGenericFunction` items. These items are pointers to functions that actually implement the underlying (element-by-element) function :math:`N` times. @@ -127,7 +127,7 @@ Functions structure and it does get set with this value when the ufunc object is created. -.. cfunction:: PyObject* PyUFunc_FromFuncAndDataAndSignature(PyUFuncGenericFunction* func, +.. c:function:: PyObject* PyUFunc_FromFuncAndDataAndSignature(PyUFuncGenericFunction* func, void** data, char* types, int ntypes, int nin, int nout, int identity, char* name, char* doc, int check_return, char *signature) @@ -142,7 +142,7 @@ Functions to calling PyUFunc_FromFuncAndData. A copy of the string is made, so the passed in buffer can be freed. -.. cfunction:: int PyUFunc_RegisterLoopForType(PyUFuncObject* ufunc, +.. c:function:: int PyUFunc_RegisterLoopForType(PyUFuncObject* ufunc, int usertype, PyUFuncGenericFunction function, int* arg_types, void* data) This function allows the user to register a 1-d loop with an @@ -156,7 +156,7 @@ Functions in as *arg_types* which must be a pointer to memory at least as large as ufunc->nargs. -.. cfunction:: int PyUFunc_RegisterLoopForDescr(PyUFuncObject* ufunc, +.. c:function:: int PyUFunc_RegisterLoopForDescr(PyUFuncObject* ufunc, PyArray_Descr* userdtype, PyUFuncGenericFunction function, PyArray_Descr** arg_dtypes, void* data) @@ -166,7 +166,7 @@ Functions registered for structured array data-dtypes and custom data-types instead of scalar data-types. -.. cfunction:: int PyUFunc_ReplaceLoopBySignature(PyUFuncObject* ufunc, +.. c:function:: int PyUFunc_ReplaceLoopBySignature(PyUFuncObject* ufunc, PyUFuncGenericFunction newfunc, int* signature, PyUFuncGenericFunction* oldfunc) @@ -174,16 +174,16 @@ Functions already-created *ufunc* with the new 1-d loop newfunc. Return the old 1-d loop function in *oldfunc*. Return 0 on success and -1 on failure. This function works only with built-in types (use - :cfunc:`PyUFunc_RegisterLoopForType` for user-defined types). A + :c:func:`PyUFunc_RegisterLoopForType` for user-defined types). A signature is an array of data-type numbers indicating the inputs followed by the outputs assumed by the 1-d loop. -.. cfunction:: int PyUFunc_GenericFunction(PyUFuncObject* self, +.. c:function:: int PyUFunc_GenericFunction(PyUFuncObject* self, PyObject* args, PyObject* kwds, PyArrayObject** mps) A generic ufunc call. The ufunc is passed in as *self*, the arguments to the ufunc as *args* and *kwds*. The *mps* argument is an array of - :ctype:`PyArrayObject` pointers whose values are discarded and which + :c:type:`PyArrayObject` pointers whose values are discarded and which receive the converted input arguments as well as the ufunc outputs when success is returned. The user is responsible for managing this array and receives a new reference for each array in *mps*. The total @@ -191,26 +191,26 @@ Functions Returns 0 on success, -1 on error. -.. cfunction:: int PyUFunc_checkfperr(int errmask, PyObject* errobj) +.. c:function:: int PyUFunc_checkfperr(int errmask, PyObject* errobj) A simple interface to the IEEE error-flag checking support. The - *errmask* argument is a mask of :cdata:`UFUNC_MASK_{ERR}` bitmasks + *errmask* argument is a mask of :c:data:`UFUNC_MASK_{ERR}` bitmasks indicating which errors to check for (and how to check for them). The *errobj* must be a Python tuple with two elements: a string containing the name which will be used in any communication of error and either a callable Python object (call-back function) - or :cdata:`Py_None`. The callable object will only be used if - :cdata:`UFUNC_ERR_CALL` is set as the desired error checking + or :c:data:`Py_None`. The callable object will only be used if + :c:data:`UFUNC_ERR_CALL` is set as the desired error checking method. This routine manages the GIL and is safe to call even after releasing the GIL. If an error in the IEEE-compatibile hardware is determined a -1 is returned, otherwise a 0 is returned. -.. cfunction:: void PyUFunc_clearfperr() +.. c:function:: void PyUFunc_clearfperr() Clear the IEEE error flags. -.. cfunction:: void PyUFunc_GetPyValues(char* name, int* bufsize, +.. c:function:: void PyUFunc_GetPyValues(char* name, int* bufsize, int* errmask, PyObject** errobj) Get the Python values used for ufunc processing from the @@ -238,37 +238,37 @@ of these functions are suitable for placing directly in the array of functions stored in the functions member of the PyUFuncObject structure. -.. cfunction:: void PyUFunc_f_f_As_d_d(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_f_f_As_d_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_d_d(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_d_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_f_f(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_f_f(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_g_g(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_g_g(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_F_F_As_D_D(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_F_F_As_D_D(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_F_F(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_F_F(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_D_D(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_D_D(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_G_G(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_G_G(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_e_e(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_e_e(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_e_e_As_f_f(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_e_e_As_f_f(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_e_e_As_d_d(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_e_e_As_d_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func) Type specific, core 1-d functions for ufuncs where each @@ -280,41 +280,41 @@ structure. ``G`` - clongdouble). The argument *func* must support the same signature. The _As_X_X variants assume ndarray's of one data type but cast the values to use an underlying function that takes a - different data type. Thus, :cfunc:`PyUFunc_f_f_As_d_d` uses - ndarrays of data type :cdata:`NPY_FLOAT` but calls out to a + different data type. Thus, :c:func:`PyUFunc_f_f_As_d_d` uses + ndarrays of data type :c:data:`NPY_FLOAT` but calls out to a C-function that takes double and returns double. -.. cfunction:: void PyUFunc_ff_f_As_dd_d(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_ff_f_As_dd_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_ff_f(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_ff_f(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_dd_d(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_dd_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_gg_g(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_gg_g(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_FF_F_As_DD_D(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_FF_F_As_DD_D(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_DD_D(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_DD_D(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_FF_F(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_FF_F(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_GG_G(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_GG_G(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_ee_e(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_ee_e(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_ee_e_As_ff_f(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_ee_e_As_ff_f(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_ee_e_As_dd_d(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_ee_e_As_dd_d(char** args, npy_intp* dimensions, npy_intp* steps, void* func) Type specific, core 1-d functions for ufuncs where each @@ -327,20 +327,20 @@ structure. of one data type but cast the values at each iteration of the loop to use the underlying function that takes a different data type. -.. cfunction:: void PyUFunc_O_O(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_O_O(char** args, npy_intp* dimensions, npy_intp* steps, void* func) -.. cfunction:: void PyUFunc_OO_O(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_OO_O(char** args, npy_intp* dimensions, npy_intp* steps, void* func) One-input, one-output, and two-input, one-output core 1-d functions - for the :cdata:`NPY_OBJECT` data type. These functions handle reference + for the :c:data:`NPY_OBJECT` data type. These functions handle reference count issues and return early on error. The actual function to call is *func* and it must accept calls with the signature ``(PyObject*) - (PyObject*)`` for :cfunc:`PyUFunc_O_O` or ``(PyObject*)(PyObject *, - PyObject *)`` for :cfunc:`PyUFunc_OO_O`. + (PyObject*)`` for :c:func:`PyUFunc_O_O` or ``(PyObject*)(PyObject *, + PyObject *)`` for :c:func:`PyUFunc_OO_O`. -.. cfunction:: void PyUFunc_O_O_method(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_O_O_method(char** args, npy_intp* dimensions, npy_intp* steps, void* func) This general purpose 1-d core function assumes that *func* is a string @@ -348,7 +348,7 @@ structure. iteration of the loop, the Python obejct is extracted from the array and its *func* method is called returning the result to the output array. -.. cfunction:: void PyUFunc_OO_O_method(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_OO_O_method(char** args, npy_intp* dimensions, npy_intp* steps, void* func) This general purpose 1-d core function assumes that *func* is a @@ -358,14 +358,14 @@ structure. function. The output of the function is stored in the third entry of *args*. -.. cfunction:: void PyUFunc_On_Om(char** args, npy_intp* dimensions, +.. c:function:: void PyUFunc_On_Om(char** args, npy_intp* dimensions, npy_intp* steps, void* func) This is the 1-d core function used by the dynamic ufuncs created by umath.frompyfunc(function, nin, nout). In this case *func* is a - pointer to a :ctype:`PyUFunc_PyFuncData` structure which has definition + pointer to a :c:type:`PyUFunc_PyFuncData` structure which has definition - .. ctype:: PyUFunc_PyFuncData + .. c:type:: PyUFunc_PyFuncData .. code-block:: c @@ -384,11 +384,11 @@ structure. Importing the API ----------------- -.. cvar:: PY_UFUNC_UNIQUE_SYMBOL +.. c:var:: PY_UFUNC_UNIQUE_SYMBOL -.. cvar:: NO_IMPORT_UFUNC +.. c:var:: NO_IMPORT_UFUNC -.. cfunction:: void import_ufunc(void) +.. c:function:: void import_ufunc(void) These are the constants and functions for accessing the ufunc C-API from extension modules in precisely the same way as the @@ -397,17 +397,17 @@ Importing the API extension module). If your extension module is in one file then that is all that is required. The other two constants are useful if your extension module makes use of multiple files. In that - case, define :cdata:`PY_UFUNC_UNIQUE_SYMBOL` to something unique to + case, define :c:data:`PY_UFUNC_UNIQUE_SYMBOL` to something unique to your code and then in source files that do not contain the module initialization function but still need access to the UFUNC API, - define :cdata:`PY_UFUNC_UNIQUE_SYMBOL` to the same name used previously - and also define :cdata:`NO_IMPORT_UFUNC`. + define :c:data:`PY_UFUNC_UNIQUE_SYMBOL` to the same name used previously + and also define :c:data:`NO_IMPORT_UFUNC`. The C-API is actually an array of function pointers. This array is created (and pointed to by a global variable) by import_ufunc. The global variable is either statically defined or allowed to be seen by other files depending on the state of - :cdata:`Py_UFUNC_UNIQUE_SYMBOL` and :cdata:`NO_IMPORT_UFUNC`. + :c:data:`Py_UFUNC_UNIQUE_SYMBOL` and :c:data:`NO_IMPORT_UFUNC`. .. index:: pair: ufunc; C-API diff --git a/doc/source/reference/internals.code-explanations.rst b/doc/source/reference/internals.code-explanations.rst index 29bf30081..205d84230 100644 --- a/doc/source/reference/internals.code-explanations.rst +++ b/doc/source/reference/internals.code-explanations.rst @@ -41,18 +41,18 @@ called a rank-0 array), then the strides and dimensions variables are NULL. Besides the structural information contained in the strides and -dimensions members of the :ctype:`PyArrayObject`, the flags contain +dimensions members of the :c:type:`PyArrayObject`, the flags contain important information about how the data may be accessed. In particular, -the :cdata:`NPY_ARRAY_ALIGNED` flag is set when the memory is on a +the :c:data:`NPY_ARRAY_ALIGNED` flag is set when the memory is on a suitable boundary according to the data-type array. Even if you have a contiguous chunk of memory, you cannot just assume it is safe to dereference a data- type-specific pointer to an element. Only if the -:cdata:`NPY_ARRAY_ALIGNED` flag is set is this a safe operation (on +:c:data:`NPY_ARRAY_ALIGNED` flag is set is this a safe operation (on some platforms it will work but on others, like Solaris, it will cause -a bus error). The :cdata:`NPY_ARRAY_WRITEABLE` should also be ensured +a bus error). The :c:data:`NPY_ARRAY_WRITEABLE` should also be ensured if you plan on writing to the memory area of the array. It is also possible to obtain a pointer to an unwritable memory area. Sometimes, -writing to the memory area when the :cdata:`NPY_ARRAY_WRITEABLE` flag is not +writing to the memory area when the :c:data:`NPY_ARRAY_WRITEABLE` flag is not set will just be rude. Other times it can cause program crashes ( *e.g.* a data-area that is a read-only memory-mapped file). @@ -67,8 +67,8 @@ The data-type is an important abstraction of the ndarray. Operations will look to the data-type to provide the key functionality that is needed to operate on the array. This functionality is provided in the list of function pointers pointed to by the 'f' member of the -:ctype:`PyArray_Descr` structure. In this way, the number of data-types can be -extended simply by providing a :ctype:`PyArray_Descr` structure with suitable +:c:type:`PyArray_Descr` structure. In this way, the number of data-types can be +extended simply by providing a :c:type:`PyArray_Descr` structure with suitable function pointers in the 'f' member. For built-in types there are some optimizations that by-pass this mechanism, but the point of the data- type abstraction is to allow new data-types to be added. @@ -97,7 +97,7 @@ operation of a general-purpose N-dimensional loop is abstracted in the notion of an iterator object. To write an N-dimensional loop, you only have to create an iterator object from an ndarray, work with the dataptr member of the iterator object structure and call the macro -:cfunc:`PyArray_ITER_NEXT` (it) on the iterator object to move to the next +:c:func:`PyArray_ITER_NEXT` (it) on the iterator object to move to the next element. The "next" element is always in C-contiguous order. The macro works by first special casing the C-contiguous, 1-D, and 2-D cases which work very simply. @@ -120,11 +120,11 @@ previously-described tests are executed again on the next-to-last dimension. In this way, the dataptr is adjusted appropriately for arbitrary striding. -The coordinates member of the :ctype:`PyArrayIterObject` structure maintains +The coordinates member of the :c:type:`PyArrayIterObject` structure maintains the current N-d counter unless the underlying array is C-contiguous in which case the coordinate counting is by-passed. The index member of -the :ctype:`PyArrayIterObject` keeps track of the current flat index of the -iterator. It is updated by the :cfunc:`PyArray_ITER_NEXT` macro. +the :c:type:`PyArrayIterObject` keeps track of the current flat index of the +iterator. It is updated by the :c:func:`PyArray_ITER_NEXT` macro. Broadcasting @@ -136,18 +136,18 @@ Broadcasting In Numeric, broadcasting was implemented in several lines of code buried deep in ufuncobject.c. In NumPy, the notion of broadcasting has been abstracted so that it can be performed in multiple places. -Broadcasting is handled by the function :cfunc:`PyArray_Broadcast`. This -function requires a :ctype:`PyArrayMultiIterObject` (or something that is a -binary equivalent) to be passed in. The :ctype:`PyArrayMultiIterObject` keeps +Broadcasting is handled by the function :c:func:`PyArray_Broadcast`. This +function requires a :c:type:`PyArrayMultiIterObject` (or something that is a +binary equivalent) to be passed in. The :c:type:`PyArrayMultiIterObject` keeps track of the broadcast number of dimensions and size in each dimension along with the total size of the broadcast result. It also keeps track of the number of arrays being broadcast and a pointer to an iterator for each of the arrays being broadcast. -The :cfunc:`PyArray_Broadcast` function takes the iterators that have already +The :c:func:`PyArray_Broadcast` function takes the iterators that have already been defined and uses them to determine the broadcast shape in each dimension (to create the iterators at the same time that broadcasting -occurs then use the :cfunc:`PyMultiIter_New` function). Then, the iterators are +occurs then use the :c:func:`PyMultiIter_New` function). Then, the iterators are adjusted so that each iterator thinks it is iterating over an array with the broadcast size. This is done by adjusting the iterators number of dimensions, and the shape in each dimension. This works @@ -160,9 +160,9 @@ operates over the extended dimension. Broadcasting was always implemented in Numeric using 0-valued strides for the extended dimensions. It is done in exactly the same way in NumPy. The big difference is that now the array of strides is kept -track of in a :ctype:`PyArrayIterObject`, the iterators involved in a -broadcast result are kept track of in a :ctype:`PyArrayMultiIterObject`, -and the :cfunc:`PyArray_BroadCast` call implements the broad-casting rules. +track of in a :c:type:`PyArrayIterObject`, the iterators involved in a +broadcast result are kept track of in a :c:type:`PyArrayMultiIterObject`, +and the :c:func:`PyArray_BroadCast` call implements the broad-casting rules. Array Scalars @@ -222,7 +222,7 @@ single boolean indexing array will call specialized boolean functions. Indices containing an ellipsis or slice but no advanced indexing will always create a view into the old array by calculating the new strides and memory offset. This view can then either be returned or, for assignments, -filled using :cfunc:`PyArray_CopyObject`. Note that `PyArray_CopyObject` +filled using :c:func:`PyArray_CopyObject`. Note that `PyArray_CopyObject` may also be called on temporary arrays in other branches to support complicated assignments when the array is of object dtype. @@ -260,7 +260,7 @@ the start of the subarray, which then allows to restart the subarray iteration. When advanced indices are next to each other transposing may be necessary. -All necessary transposing is handled by :cfunc:`PyArray_MapIterSwapAxes` and +All necessary transposing is handled by :c:func:`PyArray_MapIterSwapAxes` and has to be handled by the caller unless `PyArray_MapIterNew` is asked to allocate the result. @@ -385,7 +385,7 @@ Function call This section describes how the basic universal function computation loop is setup and executed for each of the three different kinds of execution. If -:cdata:`NPY_ALLOW_THREADS` is defined during compilation, then as long as +:c:data:`NPY_ALLOW_THREADS` is defined during compilation, then as long as no object arrays are involved, the Python Global Interpreter Lock (GIL) is released prior to calling the loops. It is re-acquired if necessary to handle error conditions. The hardware error flags are checked only after |