diff options
author | melissawm <melissawm.github@gmail.com> | 2022-10-03 16:33:03 -0300 |
---|---|---|
committer | melissawm <melissawm.github@gmail.com> | 2022-10-03 16:33:03 -0300 |
commit | 399e0e859ca7874bd068bc3667e86c8410ca7b53 (patch) | |
tree | 52bd0d291bce979d359aaa70201b104d60965ae5 /doc/source/user | |
parent | 25ed0312cfbbddb60aa8f1491248f03f9eca5caa (diff) | |
download | numpy-399e0e859ca7874bd068bc3667e86c8410ca7b53.tar.gz |
DOC, MAINT: Remove unused files
These files should be deleted, as they were used on the SVD Tutorial which is now hosted at numpy/numpy-tutorials.
[skip azp][skip travis]
Diffstat (limited to 'doc/source/user')
-rw-r--r-- | doc/source/user/plot_approx.py | 19 | ||||
-rw-r--r-- | doc/source/user/plot_face.py | 5 | ||||
-rw-r--r-- | doc/source/user/plot_final.py | 19 | ||||
-rw-r--r-- | doc/source/user/plot_gray.py | 8 | ||||
-rw-r--r-- | doc/source/user/plot_gray_svd.py | 16 | ||||
-rw-r--r-- | doc/source/user/plot_reconstructed.py | 17 |
6 files changed, 0 insertions, 84 deletions
diff --git a/doc/source/user/plot_approx.py b/doc/source/user/plot_approx.py deleted file mode 100644 index a2d6981d9..000000000 --- a/doc/source/user/plot_approx.py +++ /dev/null @@ -1,19 +0,0 @@ -from scipy import misc -import matplotlib.pyplot as plt -import numpy as np -from numpy import linalg - -img = misc.face() -img_array = img / 255 -img_gray = img_array @ [0.2126, 0.7152, 0.0722] - -U, s, Vt = linalg.svd(img_gray) - -Sigma = np.zeros((768, 1024)) -for i in range(768): - Sigma[i, i] = s[i] - -k = 10 - -approx = U @ Sigma[:, :k] @ Vt[:k, :] -plt.imshow(approx, cmap="gray") diff --git a/doc/source/user/plot_face.py b/doc/source/user/plot_face.py deleted file mode 100644 index c0891e770..000000000 --- a/doc/source/user/plot_face.py +++ /dev/null @@ -1,5 +0,0 @@ -from scipy import misc -import matplotlib.pyplot as plt - -img = misc.face() -plt.imshow(img) diff --git a/doc/source/user/plot_final.py b/doc/source/user/plot_final.py deleted file mode 100644 index 10cb097dd..000000000 --- a/doc/source/user/plot_final.py +++ /dev/null @@ -1,19 +0,0 @@ -from scipy import misc -import matplotlib.pyplot as plt -import numpy as np -from numpy import linalg - -img = misc.face() -img_array = img / 255 -img_array_transposed = np.transpose(img_array, (2, 0, 1)) - -U, s, Vt = linalg.svd(img_array_transposed) - -Sigma = np.zeros((3, 768, 1024)) -for j in range(3): - np.fill_diagonal(Sigma[j, :, :], s[j, :]) - -k = 10 - -approx_img = U @ Sigma[..., :k] @ Vt[..., :k, :] -plt.imshow(np.transpose(approx_img, (1, 2, 0))) diff --git a/doc/source/user/plot_gray.py b/doc/source/user/plot_gray.py deleted file mode 100644 index 6cb46bbe4..000000000 --- a/doc/source/user/plot_gray.py +++ /dev/null @@ -1,8 +0,0 @@ -from scipy import misc -import matplotlib.pyplot as plt -import numpy as np - -img = misc.face() -img_array = img / 255 -img_gray = img_array @ [0.2126, 0.7152, 0.0722] -plt.imshow(img_gray, cmap="gray") diff --git a/doc/source/user/plot_gray_svd.py b/doc/source/user/plot_gray_svd.py deleted file mode 100644 index 95439939d..000000000 --- a/doc/source/user/plot_gray_svd.py +++ /dev/null @@ -1,16 +0,0 @@ -from scipy import misc -import matplotlib.pyplot as plt -import numpy as np -from numpy import linalg - -img = misc.face() -img_array = img / 255 -img_gray = img_array @ [0.2126, 0.7152, 0.0722] - -U, s, Vt = linalg.svd(img_gray) - -Sigma = np.zeros((768, 1024)) -for i in range(768): - Sigma[i, i] = s[i] - -plt.plot(s) diff --git a/doc/source/user/plot_reconstructed.py b/doc/source/user/plot_reconstructed.py deleted file mode 100644 index 37cf3c626..000000000 --- a/doc/source/user/plot_reconstructed.py +++ /dev/null @@ -1,17 +0,0 @@ -from scipy import misc -import matplotlib.pyplot as plt -import numpy as np -from numpy import linalg - -img = misc.face() -img_array = img / 255 -img_array_transposed = np.transpose(img_array, (2, 0, 1)) - -U, s, Vt = linalg.svd(img_array_transposed) - -Sigma = np.zeros((3, 768, 1024)) -for j in range(3): - np.fill_diagonal(Sigma[j, :, :], s[j, :]) - -reconstructed = U @ Sigma @ Vt -plt.imshow(np.transpose(reconstructed, (1, 2, 0))) |