diff options
author | Aaron Meurer <asmeurer@gmail.com> | 2021-03-05 14:35:35 -0700 |
---|---|---|
committer | Aaron Meurer <asmeurer@gmail.com> | 2021-03-05 14:35:35 -0700 |
commit | cdd6bbcdf260a4d6947901604dc8dd64c864c8d4 (patch) | |
tree | 947c48482ec001d0dd4f1fa5055bd7d6970bfc30 /numpy/_array_api/_statistical_functions.py | |
parent | 58c2a996afd13f729ec5d2aed77151c8e799548b (diff) | |
download | numpy-cdd6bbcdf260a4d6947901604dc8dd64c864c8d4.tar.gz |
Support the ndarray object in the remaining array API functions
Diffstat (limited to 'numpy/_array_api/_statistical_functions.py')
-rw-r--r-- | numpy/_array_api/_statistical_functions.py | 15 |
1 files changed, 8 insertions, 7 deletions
diff --git a/numpy/_array_api/_statistical_functions.py b/numpy/_array_api/_statistical_functions.py index e62410d01..fa3551248 100644 --- a/numpy/_array_api/_statistical_functions.py +++ b/numpy/_array_api/_statistical_functions.py @@ -1,28 +1,29 @@ from __future__ import annotations from ._types import Optional, Tuple, Union, array +from ._array_object import ndarray import numpy as np def max(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array: - return np.max(x, axis=axis, keepdims=keepdims) + return ndarray._new(np.max(x._array, axis=axis, keepdims=keepdims)) def mean(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array: - return np.asarray(np.mean(x, axis=axis, keepdims=keepdims)) + return ndarray._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims))) def min(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array: - return np.min(x, axis=axis, keepdims=keepdims) + return ndarray._new(np.min(x._array, axis=axis, keepdims=keepdims)) def prod(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array: - return np.asarray(np.prod(x, axis=axis, keepdims=keepdims)) + return ndarray._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims))) def std(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array: # Note: the keyword argument correction is different here - return np.asarray(np.std(x, axis=axis, ddof=correction, keepdims=keepdims)) + return ndarray._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))) def sum(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array: - return np.asarray(np.sum(x, axis=axis, keepdims=keepdims)) + return ndarray._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims))) def var(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array: # Note: the keyword argument correction is different here - return np.asarray(np.var(x, axis=axis, ddof=correction, keepdims=keepdims)) + return ndarray._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))) |