summaryrefslogtreecommitdiff
path: root/numpy/_array_api/_statistical_functions.py
diff options
context:
space:
mode:
authorAaron Meurer <asmeurer@gmail.com>2021-03-05 14:35:35 -0700
committerAaron Meurer <asmeurer@gmail.com>2021-03-05 14:35:35 -0700
commitcdd6bbcdf260a4d6947901604dc8dd64c864c8d4 (patch)
tree947c48482ec001d0dd4f1fa5055bd7d6970bfc30 /numpy/_array_api/_statistical_functions.py
parent58c2a996afd13f729ec5d2aed77151c8e799548b (diff)
downloadnumpy-cdd6bbcdf260a4d6947901604dc8dd64c864c8d4.tar.gz
Support the ndarray object in the remaining array API functions
Diffstat (limited to 'numpy/_array_api/_statistical_functions.py')
-rw-r--r--numpy/_array_api/_statistical_functions.py15
1 files changed, 8 insertions, 7 deletions
diff --git a/numpy/_array_api/_statistical_functions.py b/numpy/_array_api/_statistical_functions.py
index e62410d01..fa3551248 100644
--- a/numpy/_array_api/_statistical_functions.py
+++ b/numpy/_array_api/_statistical_functions.py
@@ -1,28 +1,29 @@
from __future__ import annotations
from ._types import Optional, Tuple, Union, array
+from ._array_object import ndarray
import numpy as np
def max(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
- return np.max(x, axis=axis, keepdims=keepdims)
+ return ndarray._new(np.max(x._array, axis=axis, keepdims=keepdims))
def mean(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
- return np.asarray(np.mean(x, axis=axis, keepdims=keepdims))
+ return ndarray._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims)))
def min(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
- return np.min(x, axis=axis, keepdims=keepdims)
+ return ndarray._new(np.min(x._array, axis=axis, keepdims=keepdims))
def prod(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
- return np.asarray(np.prod(x, axis=axis, keepdims=keepdims))
+ return ndarray._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims)))
def std(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array:
# Note: the keyword argument correction is different here
- return np.asarray(np.std(x, axis=axis, ddof=correction, keepdims=keepdims))
+ return ndarray._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims)))
def sum(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
- return np.asarray(np.sum(x, axis=axis, keepdims=keepdims))
+ return ndarray._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims)))
def var(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array:
# Note: the keyword argument correction is different here
- return np.asarray(np.var(x, axis=axis, ddof=correction, keepdims=keepdims))
+ return ndarray._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims)))