summaryrefslogtreecommitdiff
path: root/numpy/_array_api/_statistical_functions.py
diff options
context:
space:
mode:
authorAaron Meurer <asmeurer@gmail.com>2021-07-08 16:56:27 -0600
committerAaron Meurer <asmeurer@gmail.com>2021-07-08 16:56:27 -0600
commitfc1ff6fc3045482a72c359689ee7bfa7e3299985 (patch)
tree0b5668fa928cf428fc83c103a74bdc02238341cd /numpy/_array_api/_statistical_functions.py
parent13796236295b344ee83e79c8a33ad6205c0095db (diff)
downloadnumpy-fc1ff6fc3045482a72c359689ee7bfa7e3299985.tar.gz
Capitalize the names of the type hint types in the array API
That way they aren't ambiguous with the attributes with the same names.
Diffstat (limited to 'numpy/_array_api/_statistical_functions.py')
-rw-r--r--numpy/_array_api/_statistical_functions.py16
1 files changed, 8 insertions, 8 deletions
diff --git a/numpy/_array_api/_statistical_functions.py b/numpy/_array_api/_statistical_functions.py
index 26afd7354..e6a791fe6 100644
--- a/numpy/_array_api/_statistical_functions.py
+++ b/numpy/_array_api/_statistical_functions.py
@@ -4,29 +4,29 @@ from ._array_object import ndarray
from typing import TYPE_CHECKING
if TYPE_CHECKING:
- from ._types import Optional, Tuple, Union, array
+ from ._types import Optional, Tuple, Union, Array
import numpy as np
-def max(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
+def max(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
return ndarray._new(np.max(x._array, axis=axis, keepdims=keepdims))
-def mean(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
+def mean(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
return ndarray._new(np.asarray(np.mean(x._array, axis=axis, keepdims=keepdims)))
-def min(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
+def min(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
return ndarray._new(np.min(x._array, axis=axis, keepdims=keepdims))
-def prod(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
+def prod(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
return ndarray._new(np.asarray(np.prod(x._array, axis=axis, keepdims=keepdims)))
-def std(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array:
+def std(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array:
# Note: the keyword argument correction is different here
return ndarray._new(np.asarray(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims)))
-def sum(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
+def sum(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array:
return ndarray._new(np.asarray(np.sum(x._array, axis=axis, keepdims=keepdims)))
-def var(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> array:
+def var(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array:
# Note: the keyword argument correction is different here
return ndarray._new(np.asarray(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims)))