diff options
author | Aaron Meurer <asmeurer@gmail.com> | 2021-01-12 16:21:46 -0700 |
---|---|---|
committer | Aaron Meurer <asmeurer@gmail.com> | 2021-01-12 16:21:46 -0700 |
commit | 4bd5d158e66e6b1ca5f1a767738f0674f0dc8095 (patch) | |
tree | d4f20ac37d2ae241e14589150d4fe75620a141e7 /numpy/_array_api | |
parent | ba4e21ca150a2d8b3cc08a3e8c981f7042aacf6f (diff) | |
download | numpy-4bd5d158e66e6b1ca5f1a767738f0674f0dc8095.tar.gz |
Use "import numpy as np" in the array_api submodule
This avoids importing everything inside the individual functions, but still is
preferred over importing the functions used explicitly, as most of them clash
with the wrapper function names.
Diffstat (limited to 'numpy/_array_api')
-rw-r--r-- | numpy/_array_api/_creation_functions.py | 35 | ||||
-rw-r--r-- | numpy/_array_api/_elementwise_functions.py | 167 | ||||
-rw-r--r-- | numpy/_array_api/_linear_algebra_functions.py | 68 | ||||
-rw-r--r-- | numpy/_array_api/_manipulation_functions.py | 23 | ||||
-rw-r--r-- | numpy/_array_api/_searching_functions.py | 14 | ||||
-rw-r--r-- | numpy/_array_api/_set_functions.py | 5 | ||||
-rw-r--r-- | numpy/_array_api/_sorting_functions.py | 14 | ||||
-rw-r--r-- | numpy/_array_api/_statistical_functions.py | 23 | ||||
-rw-r--r-- | numpy/_array_api/_utility_functions.py | 8 |
9 files changed, 131 insertions, 226 deletions
diff --git a/numpy/_array_api/_creation_functions.py b/numpy/_array_api/_creation_functions.py index 4e91aa443..b74eca060 100644 --- a/numpy/_array_api/_creation_functions.py +++ b/numpy/_array_api/_creation_functions.py @@ -1,76 +1,67 @@ +import numpy as np + def arange(start, /, *, stop=None, step=1, dtype=None, device=None): - from .. import arange if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return arange(start, stop=stop, step=step, dtype=dtype) + return np.arange(start, stop=stop, step=step, dtype=dtype) def empty(shape, /, *, dtype=None, device=None): - from .. import empty if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return empty(shape, dtype=dtype) + return np.empty(shape, dtype=dtype) def empty_like(x, /, *, dtype=None, device=None): - from .. import empty_like if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return empty_like(x, dtype=dtype) + return np.empty_like(x, dtype=dtype) def eye(N, /, *, M=None, k=0, dtype=None, device=None): - from .. import eye if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return eye(N, M=M, k=k, dtype=dtype) + return np.eye(N, M=M, k=k, dtype=dtype) def full(shape, fill_value, /, *, dtype=None, device=None): - from .. import full if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return full(shape, fill_value, dtype=dtype) + return np.full(shape, fill_value, dtype=dtype) def full_like(x, fill_value, /, *, dtype=None, device=None): - from .. import full_like if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return full_like(x, fill_value, dtype=dtype) + return np.full_like(x, fill_value, dtype=dtype) def linspace(start, stop, num, /, *, dtype=None, device=None, endpoint=True): - from .. import linspace if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return linspace(start, stop, num, dtype=dtype, endpoint=endpoint) + return np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint) def ones(shape, /, *, dtype=None, device=None): - from .. import ones if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return ones(shape, dtype=dtype) + return np.ones(shape, dtype=dtype) def ones_like(x, /, *, dtype=None, device=None): - from .. import ones_like if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return ones_like(x, dtype=dtype) + return np.ones_like(x, dtype=dtype) def zeros(shape, /, *, dtype=None, device=None): - from .. import zeros if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return zeros(shape, dtype=dtype) + return np.zeros(shape, dtype=dtype) def zeros_like(x, /, *, dtype=None, device=None): - from .. import zeros_like if device is not None: # Note: Device support is not yet implemented on ndarray raise NotImplementedError("Device support is not yet implemented") - return zeros_like(x, dtype=dtype) + return np.zeros_like(x, dtype=dtype) diff --git a/numpy/_array_api/_elementwise_functions.py b/numpy/_array_api/_elementwise_functions.py index f9052020e..ef820dd5b 100644 --- a/numpy/_array_api/_elementwise_functions.py +++ b/numpy/_array_api/_elementwise_functions.py @@ -1,230 +1,177 @@ +import numpy as np + def abs(x, /): - from .. import abs - return abs(x) + return np.abs(x) def acos(x, /): # Note: the function name is different here - from .. import arccos - return arccos(x) + return np.arccos(x) def acosh(x, /): # Note: the function name is different here - from .. import arccosh - return arccosh(x) + return np.arccosh(x) def add(x1, x2, /): - from .. import add - return add(x1, x2) + return np.add(x1, x2) def asin(x, /): # Note: the function name is different here - from .. import arcsin - return arcsin(x) + return np.arcsin(x) def asinh(x, /): # Note: the function name is different here - from .. import arcsinh - return arcsinh(x) + return np.arcsinh(x) def atan(x, /): # Note: the function name is different here - from .. import arctan - return arctan(x) + return np.arctan(x) def atan2(x1, x2, /): # Note: the function name is different here - from .. import arctan2 - return arctan2(x1, x2) + return np.arctan2(x1, x2) def atanh(x, /): # Note: the function name is different here - from .. import arctanh - return arctanh(x) + return np.arctanh(x) def bitwise_and(x1, x2, /): - from .. import bitwise_and - return bitwise_and(x1, x2) + return np.bitwise_and(x1, x2) def bitwise_left_shift(x1, x2, /): # Note: the function name is different here - from .. import left_shift - return left_shift(x1, x2) + return np.left_shift(x1, x2) def bitwise_invert(x, /): # Note: the function name is different here - from .. import invert - return invert(x) + return np.invert(x) def bitwise_or(x1, x2, /): - from .. import bitwise_or - return bitwise_or(x1, x2) + return np.bitwise_or(x1, x2) def bitwise_right_shift(x1, x2, /): # Note: the function name is different here - from .. import right_shift - return right_shift(x1, x2) + return np.right_shift(x1, x2) def bitwise_xor(x1, x2, /): - from .. import bitwise_xor - return bitwise_xor(x1, x2) + return np.bitwise_xor(x1, x2) def ceil(x, /): - from .. import ceil - return ceil(x) + return np.ceil(x) def cos(x, /): - from .. import cos - return cos(x) + return np.cos(x) def cosh(x, /): - from .. import cosh - return cosh(x) + return np.cosh(x) def divide(x1, x2, /): - from .. import divide - return divide(x1, x2) + return np.divide(x1, x2) def equal(x1, x2, /): - from .. import equal - return equal(x1, x2) + return np.equal(x1, x2) def exp(x, /): - from .. import exp - return exp(x) + return np.exp(x) def expm1(x, /): - from .. import expm1 - return expm1(x) + return np.expm1(x) def floor(x, /): - from .. import floor - return floor(x) + return np.floor(x) def floor_divide(x1, x2, /): - from .. import floor_divide - return floor_divide(x1, x2) + return np.floor_divide(x1, x2) def greater(x1, x2, /): - from .. import greater - return greater(x1, x2) + return np.greater(x1, x2) def greater_equal(x1, x2, /): - from .. import greater_equal - return greater_equal(x1, x2) + return np.greater_equal(x1, x2) def isfinite(x, /): - from .. import isfinite - return isfinite(x) + return np.isfinite(x) def isinf(x, /): - from .. import isinf - return isinf(x) + return np.isinf(x) def isnan(x, /): - from .. import isnan - return isnan(x) + return np.isnan(x) def less(x1, x2, /): - from .. import less - return less(x1, x2) + return np.less(x1, x2) def less_equal(x1, x2, /): - from .. import less_equal - return less_equal(x1, x2) + return np.less_equal(x1, x2) def log(x, /): - from .. import log - return log(x) + return np.log(x) def log1p(x, /): - from .. import log1p - return log1p(x) + return np.log1p(x) def log2(x, /): - from .. import log2 - return log2(x) + return np.log2(x) def log10(x, /): - from .. import log10 - return log10(x) + return np.log10(x) def logical_and(x1, x2, /): - from .. import logical_and - return logical_and(x1, x2) + return np.logical_and(x1, x2) def logical_not(x, /): - from .. import logical_not - return logical_not(x) + return np.logical_not(x) def logical_or(x1, x2, /): - from .. import logical_or - return logical_or(x1, x2) + return np.logical_or(x1, x2) def logical_xor(x1, x2, /): - from .. import logical_xor - return logical_xor(x1, x2) + return np.logical_xor(x1, x2) def multiply(x1, x2, /): - from .. import multiply - return multiply(x1, x2) + return np.multiply(x1, x2) def negative(x, /): - from .. import negative - return negative(x) + return np.negative(x) def not_equal(x1, x2, /): - from .. import not_equal - return not_equal(x1, x2) + return np.not_equal(x1, x2) def positive(x, /): - from .. import positive - return positive(x) + return np.positive(x) def pow(x1, x2, /): # Note: the function name is different here - from .. import power - return power(x1, x2) + return np.power(x1, x2) def remainder(x1, x2, /): - from .. import remainder - return remainder(x1, x2) + return np.remainder(x1, x2) def round(x, /): - from .. import round - return round(x) + return np.round(x) def sign(x, /): - from .. import sign - return sign(x) + return np.sign(x) def sin(x, /): - from .. import sin - return sin(x) + return np.sin(x) def sinh(x, /): - from .. import sinh - return sinh(x) + return np.sinh(x) def square(x, /): - from .. import square - return square(x) + return np.square(x) def sqrt(x, /): - from .. import sqrt - return sqrt(x) + return np.sqrt(x) def subtract(x1, x2, /): - from .. import subtract - return subtract(x1, x2) + return np.subtract(x1, x2) def tan(x, /): - from .. import tan - return tan(x) + return np.tan(x) def tanh(x, /): - from .. import tanh - return tanh(x) + return np.tanh(x) def trunc(x, /): - from .. import trunc - return trunc(x) + return np.trunc(x) diff --git a/numpy/_array_api/_linear_algebra_functions.py b/numpy/_array_api/_linear_algebra_functions.py index 10c81d12c..ffb589c99 100644 --- a/numpy/_array_api/_linear_algebra_functions.py +++ b/numpy/_array_api/_linear_algebra_functions.py @@ -1,93 +1,73 @@ +import numpy as np + # def cholesky(): -# from .. import cholesky -# return cholesky() +# return np.cholesky() def cross(x1, x2, /, *, axis=-1): - from .. import cross - return cross(x1, x2, axis=axis) + return np.cross(x1, x2, axis=axis) def det(x, /): # Note: this function is being imported from a nondefault namespace - from ..linalg import det - return det(x) + return np.det(x) def diagonal(x, /, *, axis1=0, axis2=1, offset=0): - from .. import diagonal - return diagonal(x, axis1=axis1, axis2=axis2, offset=offset) + return np.diagonal(x, axis1=axis1, axis2=axis2, offset=offset) # def dot(): -# from .. import dot -# return dot() +# return np.dot() # # def eig(): -# from .. import eig -# return eig() +# return np.eig() # # def eigvalsh(): -# from .. import eigvalsh -# return eigvalsh() +# return np.eigvalsh() # # def einsum(): -# from .. import einsum -# return einsum() +# return np.einsum() def inv(x): # Note: this function is being imported from a nondefault namespace - from ..linalg import inv - return inv(x) + return np.inv(x) # def lstsq(): -# from .. import lstsq -# return lstsq() +# return np.lstsq() # # def matmul(): -# from .. import matmul -# return matmul() +# return np.matmul() # # def matrix_power(): -# from .. import matrix_power -# return matrix_power() +# return np.matrix_power() # # def matrix_rank(): -# from .. import matrix_rank -# return matrix_rank() +# return np.matrix_rank() def norm(x, /, *, axis=None, keepdims=False, ord=None): # Note: this function is being imported from a nondefault namespace - from ..linalg import norm # Note: this is different from the default behavior if axis == None and x.ndim > 2: x = x.flatten() - return norm(x, axis=axis, keepdims=keepdims, ord=ord) + return np.norm(x, axis=axis, keepdims=keepdims, ord=ord) def outer(x1, x2, /): - from .. import outer - return outer(x1, x2) + return np.outer(x1, x2) # def pinv(): -# from .. import pinv -# return pinv() +# return np.pinv() # # def qr(): -# from .. import qr -# return qr() +# return np.qr() # # def slogdet(): -# from .. import slogdet -# return slogdet() +# return np.slogdet() # # def solve(): -# from .. import solve -# return solve() +# return np.solve() # # def svd(): -# from .. import svd -# return svd() +# return np.svd() def trace(x, /, *, axis1=0, axis2=1, offset=0): - from .. import trace - return trace(x, axis1=axis1, axis2=axis2, offset=offset) + return np.trace(x, axis1=axis1, axis2=axis2, offset=offset) def transpose(x, /, *, axes=None): - from .. import transpose - return transpose(x, axes=axes) + return np.transpose(x, axes=axes) diff --git a/numpy/_array_api/_manipulation_functions.py b/numpy/_array_api/_manipulation_functions.py index 19e9c1cab..262c712f8 100644 --- a/numpy/_array_api/_manipulation_functions.py +++ b/numpy/_array_api/_manipulation_functions.py @@ -1,28 +1,23 @@ +import numpy as np + def concat(arrays, /, *, axis=0): # Note: the function name is different here - from .. import concatenate - return concatenate(arrays, axis=axis) + return np.concatenate(arrays, axis=axis) def expand_dims(x, axis, /): - from .. import expand_dims - return expand_dims(x, axis) + return np.expand_dims(x, axis) def flip(x, /, *, axis=None): - from .. import flip - return flip(x, axis=axis) + return np.flip(x, axis=axis) def reshape(x, shape, /): - from .. import reshape - return reshape(x, shape) + return np.reshape(x, shape) def roll(x, shift, /, *, axis=None): - from .. import roll - return roll(x, shift, axis=axis) + return np.roll(x, shift, axis=axis) def squeeze(x, /, *, axis=None): - from .. import squeeze - return squeeze(x, axis=axis) + return np.squeeze(x, axis=axis) def stack(arrays, /, *, axis=0): - from .. import stack - return stack(arrays, axis=axis) + return np.stack(arrays, axis=axis) diff --git a/numpy/_array_api/_searching_functions.py b/numpy/_array_api/_searching_functions.py index c6035ca77..62763eaca 100644 --- a/numpy/_array_api/_searching_functions.py +++ b/numpy/_array_api/_searching_functions.py @@ -1,15 +1,13 @@ +import numpy as np + def argmax(x, /, *, axis=None, keepdims=False): - from .. import argmax - return argmax(x, axis=axis, keepdims=keepdims) + return np.argmax(x, axis=axis, keepdims=keepdims) def argmin(x, /, *, axis=None, keepdims=False): - from .. import argmin - return argmin(x, axis=axis, keepdims=keepdims) + return np.argmin(x, axis=axis, keepdims=keepdims) def nonzero(x, /): - from .. import nonzero - return nonzero(x) + return np.nonzero(x) def where(condition, x1, x2, /): - from .. import where - return where(condition, x1, x2) + return np.where(condition, x1, x2) diff --git a/numpy/_array_api/_set_functions.py b/numpy/_array_api/_set_functions.py index b6198765a..7603b6b30 100644 --- a/numpy/_array_api/_set_functions.py +++ b/numpy/_array_api/_set_functions.py @@ -1,3 +1,4 @@ +import numpy as np + def unique(x, /, *, return_counts=False, return_index=False, return_inverse=False, sorted=True): - from .. import unique - return unique(x, return_counts=return_counts, return_index=return_index, return_inverse=return_inverse, sorted=sorted) + return np.unique(x, return_counts=return_counts, return_index=return_index, return_inverse=return_inverse, sorted=sorted) diff --git a/numpy/_array_api/_sorting_functions.py b/numpy/_array_api/_sorting_functions.py index fb2f819a2..6477029b9 100644 --- a/numpy/_array_api/_sorting_functions.py +++ b/numpy/_array_api/_sorting_functions.py @@ -1,19 +1,17 @@ +import numpy as np + def argsort(x, /, *, axis=-1, descending=False, stable=True): - from .. import argsort - from .. import flip # Note: this keyword argument is different, and the default is different. kind = 'stable' if stable else 'quicksort' - res = argsort(x, axis=axis, kind=kind) + res = np.argsort(x, axis=axis, kind=kind) if descending: - res = flip(res, axis=axis) + res = np.flip(res, axis=axis) return res def sort(x, /, *, axis=-1, descending=False, stable=True): - from .. import sort - from .. import flip # Note: this keyword argument is different, and the default is different. kind = 'stable' if stable else 'quicksort' - res = sort(x, axis=axis, kind=kind) + res = np.sort(x, axis=axis, kind=kind) if descending: - res = flip(res, axis=axis) + res = np.flip(res, axis=axis) return res diff --git a/numpy/_array_api/_statistical_functions.py b/numpy/_array_api/_statistical_functions.py index 339835095..833c47f66 100644 --- a/numpy/_array_api/_statistical_functions.py +++ b/numpy/_array_api/_statistical_functions.py @@ -1,29 +1,24 @@ +import numpy as np + def max(x, /, *, axis=None, keepdims=False): - from .. import max - return max(x, axis=axis, keepdims=keepdims) + return np.max(x, axis=axis, keepdims=keepdims) def mean(x, /, *, axis=None, keepdims=False): - from .. import mean - return mean(x, axis=axis, keepdims=keepdims) + return np.mean(x, axis=axis, keepdims=keepdims) def min(x, /, *, axis=None, keepdims=False): - from .. import min - return min(x, axis=axis, keepdims=keepdims) + return np.min(x, axis=axis, keepdims=keepdims) def prod(x, /, *, axis=None, keepdims=False): - from .. import prod - return prod(x, axis=axis, keepdims=keepdims) + return np.prod(x, axis=axis, keepdims=keepdims) def std(x, /, *, axis=None, correction=0.0, keepdims=False): - from .. import std # Note: the keyword argument correction is different here - return std(x, axis=axis, ddof=correction, keepdims=keepdims) + return np.std(x, axis=axis, ddof=correction, keepdims=keepdims) def sum(x, /, *, axis=None, keepdims=False): - from .. import sum - return sum(x, axis=axis, keepdims=keepdims) + return np.sum(x, axis=axis, keepdims=keepdims) def var(x, /, *, axis=None, correction=0.0, keepdims=False): - from .. import var # Note: the keyword argument correction is different here - return var(x, axis=axis, ddof=correction, keepdims=keepdims) + return np.var(x, axis=axis, ddof=correction, keepdims=keepdims) diff --git a/numpy/_array_api/_utility_functions.py b/numpy/_array_api/_utility_functions.py index accc43e1e..0bbdef412 100644 --- a/numpy/_array_api/_utility_functions.py +++ b/numpy/_array_api/_utility_functions.py @@ -1,7 +1,7 @@ +import numpy as np + def all(x, /, *, axis=None, keepdims=False): - from .. import all - return all(x, axis=axis, keepdims=keepdims) + return np.all(x, axis=axis, keepdims=keepdims) def any(x, /, *, axis=None, keepdims=False): - from .. import any - return any(x, axis=axis, keepdims=keepdims) + return np.any(x, axis=axis, keepdims=keepdims) |