summaryrefslogtreecommitdiff
path: root/numpy/core/_exceptions.py
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2019-10-15 20:20:20 +0100
committerGitHub <noreply@github.com>2019-10-15 20:20:20 +0100
commit10a7a4a815105e16828fe83fb89778c3bbafe692 (patch)
tree2c73effc6bf4b8404e63564f78661caff034b255 /numpy/core/_exceptions.py
parentd0731e118a5c40d866702f1b5da2be4d4f52ded9 (diff)
parent83da5faca3a313c5d37226b86fa781956f8d162b (diff)
downloadnumpy-10a7a4a815105e16828fe83fb89778c3bbafe692.tar.gz
Merge branch 'master' into master
Diffstat (limited to 'numpy/core/_exceptions.py')
-rw-r--r--numpy/core/_exceptions.py200
1 files changed, 200 insertions, 0 deletions
diff --git a/numpy/core/_exceptions.py b/numpy/core/_exceptions.py
new file mode 100644
index 000000000..88a45561f
--- /dev/null
+++ b/numpy/core/_exceptions.py
@@ -0,0 +1,200 @@
+"""
+Various richly-typed exceptions, that also help us deal with string formatting
+in python where it's easier.
+
+By putting the formatting in `__str__`, we also avoid paying the cost for
+users who silence the exceptions.
+"""
+from numpy.core.overrides import set_module
+
+def _unpack_tuple(tup):
+ if len(tup) == 1:
+ return tup[0]
+ else:
+ return tup
+
+
+def _display_as_base(cls):
+ """
+ A decorator that makes an exception class look like its base.
+
+ We use this to hide subclasses that are implementation details - the user
+ should catch the base type, which is what the traceback will show them.
+
+ Classes decorated with this decorator are subject to removal without a
+ deprecation warning.
+ """
+ assert issubclass(cls, Exception)
+ cls.__name__ = cls.__base__.__name__
+ cls.__qualname__ = cls.__base__.__qualname__
+ set_module(cls.__base__.__module__)(cls)
+ return cls
+
+
+class UFuncTypeError(TypeError):
+ """ Base class for all ufunc exceptions """
+ def __init__(self, ufunc):
+ self.ufunc = ufunc
+
+
+@_display_as_base
+class _UFuncBinaryResolutionError(UFuncTypeError):
+ """ Thrown when a binary resolution fails """
+ def __init__(self, ufunc, dtypes):
+ super().__init__(ufunc)
+ self.dtypes = tuple(dtypes)
+ assert len(self.dtypes) == 2
+
+ def __str__(self):
+ return (
+ "ufunc {!r} cannot use operands with types {!r} and {!r}"
+ ).format(
+ self.ufunc.__name__, *self.dtypes
+ )
+
+
+@_display_as_base
+class _UFuncNoLoopError(UFuncTypeError):
+ """ Thrown when a ufunc loop cannot be found """
+ def __init__(self, ufunc, dtypes):
+ super().__init__(ufunc)
+ self.dtypes = tuple(dtypes)
+
+ def __str__(self):
+ return (
+ "ufunc {!r} did not contain a loop with signature matching types "
+ "{!r} -> {!r}"
+ ).format(
+ self.ufunc.__name__,
+ _unpack_tuple(self.dtypes[:self.ufunc.nin]),
+ _unpack_tuple(self.dtypes[self.ufunc.nin:])
+ )
+
+
+@_display_as_base
+class _UFuncCastingError(UFuncTypeError):
+ def __init__(self, ufunc, casting, from_, to):
+ super().__init__(ufunc)
+ self.casting = casting
+ self.from_ = from_
+ self.to = to
+
+
+@_display_as_base
+class _UFuncInputCastingError(_UFuncCastingError):
+ """ Thrown when a ufunc input cannot be casted """
+ def __init__(self, ufunc, casting, from_, to, i):
+ super().__init__(ufunc, casting, from_, to)
+ self.in_i = i
+
+ def __str__(self):
+ # only show the number if more than one input exists
+ i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
+ return (
+ "Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
+ "rule {!r}"
+ ).format(
+ self.ufunc.__name__, i_str, self.from_, self.to, self.casting
+ )
+
+
+@_display_as_base
+class _UFuncOutputCastingError(_UFuncCastingError):
+ """ Thrown when a ufunc output cannot be casted """
+ def __init__(self, ufunc, casting, from_, to, i):
+ super().__init__(ufunc, casting, from_, to)
+ self.out_i = i
+
+ def __str__(self):
+ # only show the number if more than one output exists
+ i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
+ return (
+ "Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
+ "rule {!r}"
+ ).format(
+ self.ufunc.__name__, i_str, self.from_, self.to, self.casting
+ )
+
+
+# Exception used in shares_memory()
+@set_module('numpy')
+class TooHardError(RuntimeError):
+ pass
+
+
+@set_module('numpy')
+class AxisError(ValueError, IndexError):
+ """ Axis supplied was invalid. """
+ def __init__(self, axis, ndim=None, msg_prefix=None):
+ # single-argument form just delegates to base class
+ if ndim is None and msg_prefix is None:
+ msg = axis
+
+ # do the string formatting here, to save work in the C code
+ else:
+ msg = ("axis {} is out of bounds for array of dimension {}"
+ .format(axis, ndim))
+ if msg_prefix is not None:
+ msg = "{}: {}".format(msg_prefix, msg)
+
+ super(AxisError, self).__init__(msg)
+
+
+@_display_as_base
+class _ArrayMemoryError(MemoryError):
+ """ Thrown when an array cannot be allocated"""
+ def __init__(self, shape, dtype):
+ self.shape = shape
+ self.dtype = dtype
+
+ @property
+ def _total_size(self):
+ num_bytes = self.dtype.itemsize
+ for dim in self.shape:
+ num_bytes *= dim
+ return num_bytes
+
+ @staticmethod
+ def _size_to_string(num_bytes):
+ """ Convert a number of bytes into a binary size string """
+ import math
+
+ # https://en.wikipedia.org/wiki/Binary_prefix
+ LOG2_STEP = 10
+ STEP = 1024
+ units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
+
+ unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
+ unit_val = 1 << (unit_i * LOG2_STEP)
+ n_units = num_bytes / unit_val
+ del unit_val
+
+ # ensure we pick a unit that is correct after rounding
+ if round(n_units) == STEP:
+ unit_i += 1
+ n_units /= STEP
+
+ # deal with sizes so large that we don't have units for them
+ if unit_i >= len(units):
+ new_unit_i = len(units) - 1
+ n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
+ unit_i = new_unit_i
+
+ unit_name = units[unit_i]
+ # format with a sensible number of digits
+ if unit_i == 0:
+ # no decimal point on bytes
+ return '{:.0f} {}'.format(n_units, unit_name)
+ elif round(n_units) < 1000:
+ # 3 significant figures, if none are dropped to the left of the .
+ return '{:#.3g} {}'.format(n_units, unit_name)
+ else:
+ # just give all the digits otherwise
+ return '{:#.0f} {}'.format(n_units, unit_name)
+
+ def __str__(self):
+ size_str = self._size_to_string(self._total_size)
+ return (
+ "Unable to allocate {} for an array with shape {} and data type {}"
+ .format(size_str, self.shape, self.dtype)
+ )