summaryrefslogtreecommitdiff
path: root/numpy/core/fromnumeric.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2013-08-18 11:16:06 -0600
committerCharles Harris <charlesr.harris@gmail.com>2013-08-18 11:20:45 -0600
commit8ddb0ce0acafe75d78df528b4d2540dfbf4b364d (patch)
tree156b23f48f14c7c1df699874007c521b5482d1a4 /numpy/core/fromnumeric.py
parent13b0b272f764c14bc4ac34f5b19fd030d9c611a4 (diff)
downloadnumpy-8ddb0ce0acafe75d78df528b4d2540dfbf4b364d.tar.gz
STY: Giant whitespace cleanup.
Now is as good a time as any with open PR's at a low.
Diffstat (limited to 'numpy/core/fromnumeric.py')
-rw-r--r--numpy/core/fromnumeric.py19
1 files changed, 9 insertions, 10 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index cb1c4ff05..1af1fea16 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -106,7 +106,7 @@ def take(a, indices, axis=None, out=None, mode='raise'):
array([4, 3, 6])
If `indices` is not one dimensional, the output also has these dimensions.
-
+
>>> np.take(a, [[0, 1], [2, 3]])
array([[4, 3],
[5, 7]])
@@ -2077,9 +2077,9 @@ def amax(a, axis=None, out=None, keepdims=False):
Element-wise maximum of two arrays, propagating any NaNs.
fmax :
Element-wise maximum of two arrays, ignoring any NaNs.
- argmax :
+ argmax :
Return the indices of the maximum values.
-
+
nanmin, minimum, fmin
Notes
@@ -2087,9 +2087,9 @@ def amax(a, axis=None, out=None, keepdims=False):
NaN values are propagated, that is if at least one item is NaN, the
corresponding max value will be NaN as well. To ignore NaN values
(MATLAB behavior), please use nanmax.
-
+
Don't use `amax` for element-wise comparison of 2 arrays; when
- ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than
+ ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than
``amax(a, axis=0)``.
Examples
@@ -2161,7 +2161,7 @@ def amin(a, axis=None, out=None, keepdims=False):
Element-wise minimum of two arrays, propagating any NaNs.
fmin :
Element-wise minimum of two arrays, ignoring any NaNs.
- argmin :
+ argmin :
Return the indices of the minimum values.
nanmax, maximum, fmax
@@ -2171,9 +2171,9 @@ def amin(a, axis=None, out=None, keepdims=False):
NaN values are propagated, that is if at least one item is NaN, the
corresponding min value will be NaN as well. To ignore NaN values
(MATLAB behavior), please use nanmin.
-
- Don't use `amin` for element-wise comparison of 2 arrays; when
- ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than
+
+ Don't use `amin` for element-wise comparison of 2 arrays; when
+ ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than
``amin(a, axis=0)``.
Examples
@@ -2913,4 +2913,3 @@ def var(a, axis=None, dtype=None, out=None, ddof=0,
return _methods._var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
keepdims=keepdims)
-