summaryrefslogtreecommitdiff
path: root/numpy/core/fromnumeric.py
diff options
context:
space:
mode:
authorÉlie Gouzien <elie.gouzien@ens.fr>2017-06-29 23:54:11 +0200
committerCharles Harris <charlesr.harris@gmail.com>2017-10-05 11:47:53 -0600
commita94c15fcd6456c6df3a060a5fdae797649eb787e (patch)
treeffc8b190af2d199d7f6f1b811f85699cd6725d4c /numpy/core/fromnumeric.py
parent04c43f177dcf156ab85118898d30870a38df70cc (diff)
downloadnumpy-a94c15fcd6456c6df3a060a5fdae797649eb787e.tar.gz
DOC: Add examples for np.arg[min|max|sort]
Show how to retrieve indices for d-dim arrays. [ci skip]
Diffstat (limited to 'numpy/core/fromnumeric.py')
-rw-r--r--numpy/core/fromnumeric.py18
1 files changed, 18 insertions, 0 deletions
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index a94be7b4d..78b156f21 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -885,6 +885,14 @@ def argsort(a, axis=-1, kind='quicksort', order=None):
array([[0, 1],
[0, 1]])
+ Indices of the sorted elements of a N-dimensional array:
+ >>> np.unravel_index(np.argsort(x, axis=None), x.shape)
+ (array([0, 1, 1, 0]), array([0, 0, 1, 1]))
+ >>> from np.testing import assert_equal
+ >>> assert_equal(x[(array([0, 1, 1, 0]), array([0, 0, 1, 1]))], np.sort(x, axis=None))
+ >>> list(zip(*np.unravel_index(np.argsort(x, axis=None), x.shape)))
+ [(0, 0), (1, 0), (1, 1), (0, 1)]
+
Sorting with keys:
>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
@@ -947,6 +955,11 @@ def argmax(a, axis=None, out=None):
>>> np.argmax(a, axis=1)
array([2, 2])
+ Indices of the maximal elements of a N-dimensional array:
+ >>> np.unravel_index(np.argmax(a, axis=None), a.shape)
+ (1, 2)
+ >>> np.testing.assert_equal(a[(1, 2)], np.max(a))
+
>>> b = np.arange(6)
>>> b[1] = 5
>>> b
@@ -1003,6 +1016,11 @@ def argmin(a, axis=None, out=None):
>>> np.argmin(a, axis=1)
array([0, 0])
+ Indices of the minimum elements of a N-dimensional array:
+ >>> np.unravel_index(np.argmin(a, axis=None), a.shape)
+ (0, 0)
+ >>> np.testing.assert_equal(a[(0, 0)], np.min(a))
+
>>> b = np.arange(6)
>>> b[4] = 0
>>> b