summaryrefslogtreecommitdiff
path: root/numpy/core/multiarray.py
diff options
context:
space:
mode:
authorRoss Barnowski <rossbar@berkeley.edu>2023-01-25 23:31:48 -0800
committerRoss Barnowski <rossbar@berkeley.edu>2023-01-25 23:31:48 -0800
commit1bff4d246ed79d01522085136a7b6b46145b8f0e (patch)
treeb4ae43229c5ff73c89d5647d1aac0803280950eb /numpy/core/multiarray.py
parent30a99cdf154e7a76573b5366c2872709b5347cf8 (diff)
parent0457ca4e93d91983c985a8b463f71ab2e7b58b27 (diff)
downloadnumpy-1bff4d246ed79d01522085136a7b6b46145b8f0e.tar.gz
Merge branch 'main' into document_diag_indices_from
Diffstat (limited to 'numpy/core/multiarray.py')
-rw-r--r--numpy/core/multiarray.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/numpy/core/multiarray.py b/numpy/core/multiarray.py
index 31b779783..ec1294b85 100644
--- a/numpy/core/multiarray.py
+++ b/numpy/core/multiarray.py
@@ -14,7 +14,7 @@ from ._multiarray_umath import * # noqa: F403
# do not change them. issue gh-15518
# _get_ndarray_c_version is semi-public, on purpose not added to __all__
from ._multiarray_umath import (
- fastCopyAndTranspose, _flagdict, from_dlpack, _insert, _reconstruct,
+ fastCopyAndTranspose, _flagdict, from_dlpack, _place, _reconstruct,
_vec_string, _ARRAY_API, _monotonicity, _get_ndarray_c_version,
_get_madvise_hugepage, _set_madvise_hugepage,
_get_promotion_state, _set_promotion_state,
@@ -25,7 +25,7 @@ __all__ = [
'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS',
'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI',
'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP',
- '_flagdict', 'from_dlpack', '_insert', '_reconstruct', '_vec_string',
+ '_flagdict', 'from_dlpack', '_place', '_reconstruct', '_vec_string',
'_monotonicity', 'add_docstring', 'arange', 'array', 'asarray',
'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount',
'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast',
@@ -714,7 +714,7 @@ def result_type(*arrays_and_dtypes):
the data types are combined with :func:`promote_types`
to produce the return value.
- Otherwise, `min_scalar_type` is called on each array, and
+ Otherwise, `min_scalar_type` is called on each scalar, and
the resulting data types are all combined with :func:`promote_types`
to produce the return value.
@@ -1122,13 +1122,13 @@ def copyto(dst, src, casting=None, where=None):
>>> A
array([[4, 5, 6],
[7, 8, 9]])
-
+
"""
return (dst, src, where)
@array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask)
-def putmask(a, mask, values):
+def putmask(a, /, mask, values):
"""
putmask(a, mask, values)
@@ -1345,7 +1345,7 @@ def shares_memory(a, b, max_work=None):
Raises
------
- numpy.TooHardError
+ numpy.exceptions.TooHardError
Exceeded max_work.
Returns
@@ -1379,7 +1379,7 @@ def shares_memory(a, b, max_work=None):
>>> np.shares_memory(x1, x2, max_work=1000)
Traceback (most recent call last):
...
- numpy.TooHardError: Exceeded max_work
+ numpy.exceptions.TooHardError: Exceeded max_work
Running ``np.shares_memory(x1, x2)`` without `max_work` set takes
around 1 minute for this case. It is possible to find problems