summaryrefslogtreecommitdiff
path: root/numpy/core/oldnumeric.py
diff options
context:
space:
mode:
authorTravis Oliphant <oliphant@enthought.com>2006-06-12 22:58:43 +0000
committerTravis Oliphant <oliphant@enthought.com>2006-06-12 22:58:43 +0000
commitfbf0b479604c22e60215bb28cdedabfb821b9d75 (patch)
treeff1c02a4a21aec9998b57d7aff01a34573aa21c2 /numpy/core/oldnumeric.py
parentb5e35c7c5c715d58aca9638e40098d044b8b8dba (diff)
downloadnumpy-fbf0b479604c22e60215bb28cdedabfb821b9d75.tar.gz
Check-in name-space changes so that numpy.oldnumeric is the compatibility module and numpy does not contain all of the names.
Diffstat (limited to 'numpy/core/oldnumeric.py')
-rw-r--r--numpy/core/oldnumeric.py621
1 files changed, 0 insertions, 621 deletions
diff --git a/numpy/core/oldnumeric.py b/numpy/core/oldnumeric.py
deleted file mode 100644
index ddec9439d..000000000
--- a/numpy/core/oldnumeric.py
+++ /dev/null
@@ -1,621 +0,0 @@
-# Compatibility module containing deprecated names
-
-__all__ = ['asarray', 'array', 'concatenate',
- 'NewAxis',
- 'UFuncType', 'UfuncType', 'ArrayType', 'arraytype',
- 'LittleEndian', 'Bool',
- 'Character', 'UnsignedInt8', 'UnsignedInt16', 'UnsignedInt',
- 'UInt8','UInt16','UInt32', 'UnsignedInt32', 'UnsignedInteger',
- # UnsignedInt64 and Unsigned128 added below if possible
- # same for Int64 and Int128, Float128, and Complex128
- 'Int8', 'Int16', 'Int32',
- 'Int0', 'Int', 'Float0', 'Float', 'Complex0', 'Complex',
- 'PyObject', 'Float32', 'Float64', 'Float16', 'Float8',
- 'Complex32', 'Complex64', 'Complex8', 'Complex16',
- 'typecodes', 'sarray', 'arrayrange', 'cross_correlate',
- 'matrixmultiply', 'outerproduct', 'innerproduct',
- # from cPickle
- 'dump', 'dumps',
- # functions that are now methods
- 'take', 'reshape', 'choose', 'repeat', 'put', 'putmask',
- 'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin',
- 'searchsorted', 'alen',
- 'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape',
- 'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue',
- 'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim',
- 'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze',
- 'amax', 'amin',
- ]
-
-import multiarray as mu
-import umath as um
-import numerictypes as nt
-from numeric import asarray, array, asanyarray, correlate, outer, concatenate
-from umath import sign, absolute, multiply
-import numeric as _nx
-import sys
-_dt_ = nt.sctype2char
-
-import types
-
-try:
- _gentype = types.GeneratorType
-except AttributeError:
- _gentype = types.NoneType
-#Use this to add a new axis to an array
-#compatibility only
-NewAxis = None
-
-#deprecated
-UFuncType = type(um.sin)
-UfuncType = type(um.sin)
-ArrayType = mu.ndarray
-arraytype = mu.ndarray
-
-LittleEndian = (sys.byteorder == 'little')
-
-# save away Python sum
-_sum_ = sum
-
-# backward compatible names from old Precision.py
-
-Character = 'S1'
-UnsignedInt8 = _dt_(nt.uint8)
-UInt8 = UnsignedInt8
-UnsignedInt16 = _dt_(nt.uint16)
-UInt16 = UnsignedInt16
-UnsignedInt32 = _dt_(nt.uint32)
-UInt32 = UnsignedInt32
-UnsignedInt = _dt_(nt.uint)
-
-try:
- UnsignedInt64 = _dt_(nt.uint64)
-except AttributeError:
- pass
-else:
- UInt64 = UnsignedInt64
- __all__ += ['UnsignedInt64', 'UInt64']
-try:
- UnsignedInt128 = _dt_(nt.uint128)
-except AttributeError:
- pass
-else:
- UInt128 = UnsignedInt128
- __all__ += ['UnsignedInt128','UInt128']
-
-Int8 = _dt_(nt.int8)
-Int16 = _dt_(nt.int16)
-Int32 = _dt_(nt.int32)
-
-try:
- Int64 = _dt_(nt.int64)
-except AttributeError:
- pass
-else:
- __all__ += ['Int64']
-
-try:
- Int128 = _dt_(nt.int128)
-except AttributeError:
- pass
-else:
- __all__ += ['Int128']
-
-Bool = _dt_(bool)
-Int0 = _dt_(int)
-Int = _dt_(int)
-Float0 = _dt_(float)
-Float = _dt_(float)
-Complex0 = _dt_(complex)
-Complex = _dt_(complex)
-PyObject = _dt_(nt.object_)
-Float32 = _dt_(nt.float32)
-Float64 = _dt_(nt.float64)
-
-Float16='f'
-Float8='f'
-UnsignedInteger='L'
-Complex8='F'
-Complex16='F'
-
-try:
- Float128 = _dt_(nt.float128)
-except AttributeError:
- pass
-else:
- __all__ += ['Float128']
-
-Complex32 = _dt_(nt.complex64)
-Complex64 = _dt_(nt.complex128)
-
-try:
- Complex128 = _dt_(nt.complex256)
-except AttributeError:
- pass
-else:
- __all__ += ['Complex128']
-
-typecodes = {'Character':'S1',
- 'Integer':'bhilqp',
- 'UnsignedInteger':'BHILQP',
- 'Float':'fdg',
- 'Complex':'FDG',
- 'AllInteger':'bBhHiIlLqQpP',
- 'AllFloat':'fdgFDG',
- 'All':'?bhilqpBHILQPfdgFDGSUVO'}
-
-def sarray(a, dtype=None, copy=False):
- return array(a, dtype, copy)
-
-def _deprecate(func, oldname, newname):
- import warnings
- def newfunc(*args,**kwds):
- warnings.warn("%s is deprecated, use %s" % (oldname, newname),
- DeprecationWarning)
- return func(*args, **kwds)
- return newfunc
-
-# backward compatibility
-arrayrange = _deprecate(mu.arange, 'arrayrange', 'arange')
-cross_correlate = _deprecate(correlate, 'cross_correlate', 'correlate')
-
-# deprecated names
-matrixmultiply = _deprecate(mu.dot, 'matrixmultiply', 'dot')
-outerproduct = _deprecate(outer, 'outerproduct', 'outer')
-innerproduct = _deprecate(mu.inner, 'innerproduct', 'inner')
-
-from cPickle import dump, dumps
-
-# functions that are now methods
-
-def _wrapit(obj, method, *args, **kwds):
- try:
- wrap = obj.__array_wrap__
- except AttributeError:
- wrap = None
- result = getattr(asarray(obj),method)(*args, **kwds)
- if wrap and isinstance(result, mu.ndarray):
- if not isinstance(result, mu.ndarray):
- result = asarray(result)
- result = wrap(result)
- return result
-
-def take(a, indices, axis=0):
- try:
- take = a.take
- except AttributeError:
- return _wrapit(a, 'take', indices, axis)
- return take(indices, axis)
-
-# not deprecated --- copy if necessary, view otherwise
-def reshape(a, newshape, order='C'):
- """Change the shape of a to newshape. Return a new view object if possible
- otherwise return a copy.
- """
- try:
- reshape = a.reshape
- except AttributeError:
- return _wrapit(a, 'reshape', newshape, order=order)
- return reshape(newshape, order=order)
-
-def choose(a, choices):
- try:
- choose = a.choose
- except AttributeError:
- return _wrapit(a, 'choose', choices)
- return choose(choices)
-
-def repeat(a, repeats, axis=0):
- """repeat elements of a repeats times along axis
- repeats is a sequence of length a.shape[axis]
- telling how many times to repeat each element.
- If repeats is an integer, it is interpreted as
- a tuple of length a.shape[axis] containing repeats.
- The argument a can be anything array(a) will accept.
- """
- try:
- repeat = a.repeat
- except AttributeError:
- return _wrapit(a, 'repeat', repeats, axis)
- return repeat(repeats, axis)
-
-def put (a, ind, v):
- """put(a, ind, v) results in a[n] = v[n] for all n in ind
- If v is shorter than mask it will be repeated as necessary.
- In particular v can be a scalar or length 1 array.
- The routine put is the equivalent of the following (although the loop
- is in C for speed):
-
- ind = array(indices, copy=False)
- v = array(values, copy=False).astype(a.dtype)
- for i in ind: a.flat[i] = v[i]
- a must be a contiguous numpy array.
- """
- return a.put(v,ind)
-
-def putmask (a, mask, v):
- """putmask(a, mask, v) results in a = v for all places mask is true.
- If v is shorter than mask it will be repeated as necessary.
- In particular v can be a scalar or length 1 array.
- """
- return a.putmask(v, mask)
-
-def swapaxes(a, axis1, axis2):
- """swapaxes(a, axis1, axis2) returns array a with axis1 and axis2
- interchanged.
- """
- try:
- swapaxes = a.swapaxes
- except AttributeError:
- return _wrapit(a, 'swapaxes', axis1, axis2)
- return swapaxes(axis1, axis2)
-
-def transpose(a, axes=None):
- """transpose(a, axes=None) returns a view of the array with
- dimensions permuted according to axes. If axes is None
- (default) returns array with dimensions reversed.
- """
- try:
- transpose = a.transpose
- except AttributeError:
- return _wrapit(a, 'transpose', axes)
- return transpose(axes)
-
-def sort(a, axis=-1):
- """sort(a,axis=-1) returns array with elements sorted along given axis.
- """
- a = asanyarray(a).copy()
- a.sort(axis)
- return a
-
-def argsort(a, axis=-1):
- """argsort(a,axis=-1) return the indices into a of the sorted array
- along the given axis, so that take(a,result,axis) is the sorted array.
- """
- try:
- argsort = a.argsort
- except AttributeError:
- return _wrapit(a, 'argsort', axis)
- return argsort(axis)
-
-def argmax(a, axis=-1):
- """argmax(a,axis=-1) returns the indices to the maximum value of the
- 1-D arrays along the given axis.
- """
- try:
- argmax = a.argmax
- except AttributeError:
- return _wrapit(a, 'argmax', axis)
- return argmax(axis)
-
-def argmin(a, axis=-1):
- """argmin(a,axis=-1) returns the indices to the minimum value of the
- 1-D arrays along the given axis.
- """
- try:
- argmin = a.argmin
- except AttributeError:
- return _wrapit(a, 'argmin', axis)
- return argmin(axis)
-
-def searchsorted(a, v):
- """searchsorted(a, v)
- """
- try:
- searchsorted = a.searchsorted
- except AttributeError:
- return _wrapit(a, 'searchsorted', v)
- return searchsorted(v)
-
-def resize(a, new_shape):
- """resize(a,new_shape) returns a new array with the specified shape.
- The original array's total size can be any size. It
- fills the new array with repeated copies of a.
-
- Note that a.resize(new_shape) will fill array with 0's
- beyond current definition of a.
- """
-
- if isinstance(new_shape, (int, nt.integer)):
- new_shape = (new_shape,)
- a = ravel(a)
- Na = len(a)
- if not Na: return mu.zeros(new_shape, a.dtype.char)
- total_size = um.multiply.reduce(new_shape)
- n_copies = int(total_size / Na)
- extra = total_size % Na
-
- if total_size == 0:
- return a[:0]
-
- if extra != 0:
- n_copies = n_copies+1
- extra = Na-extra
-
- a = concatenate( (a,)*n_copies)
- if extra > 0:
- a = a[:-extra]
-
- return reshape(a, new_shape)
-
-def squeeze(a):
- "Returns a with any ones from the shape of a removed"
- try:
- squeeze = a.squeeze
- except AttributeError:
- return _wrapit(a, 'squeeze')
- return squeeze()
-
-def diagonal(a, offset=0, axis1=0, axis2=1):
- """diagonal(a, offset=0, axis1=0, axis2=1) returns the given diagonals
- defined by the last two dimensions of the array.
- """
- return asarray(a).diagonal(offset, axis1, axis2)
-
-def trace(a, offset=0, axis1=0, axis2=1, dtype=None):
- """trace(a,offset=0, axis1=0, axis2=1) returns the sum along diagonals
- (defined by the last two dimenions) of the array.
- """
- return asarray(a).trace(offset, axis1, axis2, dtype)
-
-# not deprecated --- always returns a 1-d array. Copy-if-necessary.
-def ravel(m,order='C'):
- """ravel(m) returns a 1d array corresponding to all the elements of it's
- argument. The new array is a view of m if possible, otherwise it is
- a copy.
- """
- a = asarray(m)
- return a.ravel(order)
-
-def nonzero(a):
- """nonzero(a) returns the indices of the elements of a which are not zero,
- a must be 1d
- """
- try:
- nonzero = a.nonzero
- except AttributeError:
- res = _wrapit(a, 'nonzero')
- else:
- res = nonzero()
-
- if len(res) == 1:
- return res[0]
- else:
- raise ValueError, "Input argument must be 1d"
-
-
-def shape(a):
- """shape(a) returns the shape of a (as a function call which
- also works on nested sequences).
- """
- try:
- result = a.shape
- except AttributeError:
- result = asarray(a).shape
- return result
-
-def compress(condition, m, axis=-1):
- """compress(condition, x, axis=-1) = those elements of x corresponding
- to those elements of condition that are "true". condition must be the
- same size as the given dimension of x."""
- try:
- compress = m.compress
- except AttributeError:
- return _wrapit(m, 'compress', condition, axis)
- return compress(condition, axis)
-
-def clip(m, m_min, m_max):
- """clip(m, m_min, m_max) = every entry in m that is less than m_min is
- replaced by m_min, and every entry greater than m_max is replaced by
- m_max.
- """
- try:
- clip = m.clip
- except AttributeError:
- return _wrapit(m, 'clip', m_min, m_max)
- return clip(m_min, m_max)
-
-def sum(x, axis=0, dtype=None):
- """Sum the array over the given axis. The optional dtype argument
- is the data type for intermediate calculations.
-
- The default is to upcast (promote) smaller integer types to the
- platform-dependent Int. For example, on 32-bit platforms:
-
- x.dtype default sum() dtype
- ---------------------------------------------------
- bool, Int8, Int16, Int32 Int32
-
- Examples:
- >>> sum([0.5, 1.5])
- 2.0
- >>> sum([0.5, 1.5], dtype=Int32)
- 1
- >>> sum([[0, 1], [0, 5]])
- array([0, 6])
- >>> sum([[0, 1], [0, 5]], axis=1)
- array([1, 5])
- """
- if isinstance(x, _gentype):
- return _sum_(x)
- try:
- sum = x.sum
- except AttributeError:
- return _wrapit(x, 'sum', axis, dtype)
- return sum(axis, dtype)
-
-def product (x, axis=0, dtype=None):
- """Product of the array elements over the given axis."""
- try:
- prod = x.prod
- except AttributeError:
- return _wrapit(x, 'prod', axis, dtype)
- return prod(axis, dtype)
-
-def sometrue (x, axis=0):
- """Perform a logical_or over the given axis."""
- try:
- any = x.any
- except AttributeError:
- return _wrapit(x, 'any', axis)
- return any(axis)
-
-def alltrue (x, axis=0):
- """Perform a logical_and over the given axis."""
- try:
- all = x.all
- except AttributeError:
- return _wrapit(x, 'all', axis)
- return all(axis)
-
-def any(x,axis=None):
- """Return true if any elements of x are true:
- """
- try:
- any = x.any
- except AttributeError:
- return _wrapit(x, 'any', axis)
- return any(axis)
-
-def all(x,axis=None):
- """Return true if all elements of x are true:
- """
- try:
- all = x.all
- except AttributeError:
- return _wrapit(x, 'all', axis)
- return all(axis)
-
-def cumsum (x, axis=0, dtype=None):
- """Sum the array over the given axis."""
- try:
- cumsum = x.cumsum
- except AttributeError:
- return _wrapit(x, 'cumsum', axis, dtype)
- return cumsum(axis, dtype)
-
-def cumproduct (x, axis=0, dtype=None):
- """Sum the array over the given axis."""
- try:
- cumprod = x.cumprod
- except AttributeError:
- return _wrapit(x, 'cumprod', axis, dtype)
- return cumprod(axis, dtype)
-
-def ptp(a, axis=0):
- """Return maximum - minimum along the the given dimension
- """
- try:
- ptp = a.ptp
- except AttributeError:
- return _wrapit(a, 'ptp', axis)
- return ptp(axis)
-
-def amax(a, axis=0):
- """Return the maximum of 'a' along dimension axis.
- """
- try:
- max = a.max
- except AttributeError:
- return _wrapit(a, 'max', axis)
- return max(axis)
-
-def amin(a, axis=0):
- """Return the minimum of a along dimension axis.
- """
- try:
- min = a.min
- except AttributeError:
- return _wrapit(a, 'min', axis)
- return min(axis)
-
-def alen(a):
- """Return the length of a Python object interpreted as an array
- of at least 1 dimension.
- """
- try:
- return len(a)
- except TypeError:
- return len(array(a,ndmin=1))
-
-def prod(a, axis=0, dtype=None):
- """Return the product of the elements along the given axis
- """
- try:
- prod = a.prod
- except AttributeError:
- return _wrapit(a, 'prod', axis, dtype)
- return prod(axis, dtype)
-
-def cumprod(a, axis=0, dtype=None):
- """Return the cumulative product of the elments along the given axis
- """
- try:
- cumprod = a.cumprod
- except AttributeError:
- return _wrapit(a, 'cumprod', axis, dtype)
- return cumprod(axis, dtype)
-
-def ndim(a):
- try:
- return a.ndim
- except AttributeError:
- return asarray(a).ndim
-
-def rank(a):
- """Get the rank of sequence a (the number of dimensions, not a matrix rank)
- The rank of a scalar is zero.
- """
- try:
- return a.ndim
- except AttributeError:
- return asarray(a).ndim
-
-def size (a, axis=None):
- "Get the number of elements in sequence a, or along a certain axis."
- if axis is None:
- try:
- return a.size
- except AttributeError:
- return asarray(a).size
- else:
- try:
- return a.shape[axis]
- except AttributeError:
- return asarray(a).shape[axis]
-
-def round_(a, decimals=0):
- """Round 'a' to the given number of decimal places. Rounding
- behaviour is equivalent to Python.
-
- Return 'a' if the array is not floating point. Round both the real
- and imaginary parts separately if the array is complex.
- """
- try:
- round = a.round
- except AttributeError:
- return _wrapit(a, 'round', decimals)
- return round(decimals)
-
-around = round_
-
-def mean(a, axis=0, dtype=None):
- try:
- mean = a.mean
- except AttributeError:
- return _wrapit(a, 'mean', axis, dtype)
- return mean(axis, dtype)
-
-def std(a, axis=0, dtype=None):
- try:
- std = a.std
- except AttributeError:
- return _wrapit(a, 'std', axis, dtype)
- return std(axis, dtype)
-
-def var(a, axis=0, dtype=None):
- try:
- var = a.var
- except AttributeError:
- return _wrapit(a, 'var', axis, dtype)
- return var(axis, dtype)