diff options
author | Travis Oliphant <oliphant@enthought.com> | 2006-06-12 22:58:43 +0000 |
---|---|---|
committer | Travis Oliphant <oliphant@enthought.com> | 2006-06-12 22:58:43 +0000 |
commit | fbf0b479604c22e60215bb28cdedabfb821b9d75 (patch) | |
tree | ff1c02a4a21aec9998b57d7aff01a34573aa21c2 /numpy/core/oldnumeric.py | |
parent | b5e35c7c5c715d58aca9638e40098d044b8b8dba (diff) | |
download | numpy-fbf0b479604c22e60215bb28cdedabfb821b9d75.tar.gz |
Check-in name-space changes so that numpy.oldnumeric is the compatibility module and numpy does not contain all of the names.
Diffstat (limited to 'numpy/core/oldnumeric.py')
-rw-r--r-- | numpy/core/oldnumeric.py | 621 |
1 files changed, 0 insertions, 621 deletions
diff --git a/numpy/core/oldnumeric.py b/numpy/core/oldnumeric.py deleted file mode 100644 index ddec9439d..000000000 --- a/numpy/core/oldnumeric.py +++ /dev/null @@ -1,621 +0,0 @@ -# Compatibility module containing deprecated names - -__all__ = ['asarray', 'array', 'concatenate', - 'NewAxis', - 'UFuncType', 'UfuncType', 'ArrayType', 'arraytype', - 'LittleEndian', 'Bool', - 'Character', 'UnsignedInt8', 'UnsignedInt16', 'UnsignedInt', - 'UInt8','UInt16','UInt32', 'UnsignedInt32', 'UnsignedInteger', - # UnsignedInt64 and Unsigned128 added below if possible - # same for Int64 and Int128, Float128, and Complex128 - 'Int8', 'Int16', 'Int32', - 'Int0', 'Int', 'Float0', 'Float', 'Complex0', 'Complex', - 'PyObject', 'Float32', 'Float64', 'Float16', 'Float8', - 'Complex32', 'Complex64', 'Complex8', 'Complex16', - 'typecodes', 'sarray', 'arrayrange', 'cross_correlate', - 'matrixmultiply', 'outerproduct', 'innerproduct', - # from cPickle - 'dump', 'dumps', - # functions that are now methods - 'take', 'reshape', 'choose', 'repeat', 'put', 'putmask', - 'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin', - 'searchsorted', 'alen', - 'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape', - 'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue', - 'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim', - 'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze', - 'amax', 'amin', - ] - -import multiarray as mu -import umath as um -import numerictypes as nt -from numeric import asarray, array, asanyarray, correlate, outer, concatenate -from umath import sign, absolute, multiply -import numeric as _nx -import sys -_dt_ = nt.sctype2char - -import types - -try: - _gentype = types.GeneratorType -except AttributeError: - _gentype = types.NoneType -#Use this to add a new axis to an array -#compatibility only -NewAxis = None - -#deprecated -UFuncType = type(um.sin) -UfuncType = type(um.sin) -ArrayType = mu.ndarray -arraytype = mu.ndarray - -LittleEndian = (sys.byteorder == 'little') - -# save away Python sum -_sum_ = sum - -# backward compatible names from old Precision.py - -Character = 'S1' -UnsignedInt8 = _dt_(nt.uint8) -UInt8 = UnsignedInt8 -UnsignedInt16 = _dt_(nt.uint16) -UInt16 = UnsignedInt16 -UnsignedInt32 = _dt_(nt.uint32) -UInt32 = UnsignedInt32 -UnsignedInt = _dt_(nt.uint) - -try: - UnsignedInt64 = _dt_(nt.uint64) -except AttributeError: - pass -else: - UInt64 = UnsignedInt64 - __all__ += ['UnsignedInt64', 'UInt64'] -try: - UnsignedInt128 = _dt_(nt.uint128) -except AttributeError: - pass -else: - UInt128 = UnsignedInt128 - __all__ += ['UnsignedInt128','UInt128'] - -Int8 = _dt_(nt.int8) -Int16 = _dt_(nt.int16) -Int32 = _dt_(nt.int32) - -try: - Int64 = _dt_(nt.int64) -except AttributeError: - pass -else: - __all__ += ['Int64'] - -try: - Int128 = _dt_(nt.int128) -except AttributeError: - pass -else: - __all__ += ['Int128'] - -Bool = _dt_(bool) -Int0 = _dt_(int) -Int = _dt_(int) -Float0 = _dt_(float) -Float = _dt_(float) -Complex0 = _dt_(complex) -Complex = _dt_(complex) -PyObject = _dt_(nt.object_) -Float32 = _dt_(nt.float32) -Float64 = _dt_(nt.float64) - -Float16='f' -Float8='f' -UnsignedInteger='L' -Complex8='F' -Complex16='F' - -try: - Float128 = _dt_(nt.float128) -except AttributeError: - pass -else: - __all__ += ['Float128'] - -Complex32 = _dt_(nt.complex64) -Complex64 = _dt_(nt.complex128) - -try: - Complex128 = _dt_(nt.complex256) -except AttributeError: - pass -else: - __all__ += ['Complex128'] - -typecodes = {'Character':'S1', - 'Integer':'bhilqp', - 'UnsignedInteger':'BHILQP', - 'Float':'fdg', - 'Complex':'FDG', - 'AllInteger':'bBhHiIlLqQpP', - 'AllFloat':'fdgFDG', - 'All':'?bhilqpBHILQPfdgFDGSUVO'} - -def sarray(a, dtype=None, copy=False): - return array(a, dtype, copy) - -def _deprecate(func, oldname, newname): - import warnings - def newfunc(*args,**kwds): - warnings.warn("%s is deprecated, use %s" % (oldname, newname), - DeprecationWarning) - return func(*args, **kwds) - return newfunc - -# backward compatibility -arrayrange = _deprecate(mu.arange, 'arrayrange', 'arange') -cross_correlate = _deprecate(correlate, 'cross_correlate', 'correlate') - -# deprecated names -matrixmultiply = _deprecate(mu.dot, 'matrixmultiply', 'dot') -outerproduct = _deprecate(outer, 'outerproduct', 'outer') -innerproduct = _deprecate(mu.inner, 'innerproduct', 'inner') - -from cPickle import dump, dumps - -# functions that are now methods - -def _wrapit(obj, method, *args, **kwds): - try: - wrap = obj.__array_wrap__ - except AttributeError: - wrap = None - result = getattr(asarray(obj),method)(*args, **kwds) - if wrap and isinstance(result, mu.ndarray): - if not isinstance(result, mu.ndarray): - result = asarray(result) - result = wrap(result) - return result - -def take(a, indices, axis=0): - try: - take = a.take - except AttributeError: - return _wrapit(a, 'take', indices, axis) - return take(indices, axis) - -# not deprecated --- copy if necessary, view otherwise -def reshape(a, newshape, order='C'): - """Change the shape of a to newshape. Return a new view object if possible - otherwise return a copy. - """ - try: - reshape = a.reshape - except AttributeError: - return _wrapit(a, 'reshape', newshape, order=order) - return reshape(newshape, order=order) - -def choose(a, choices): - try: - choose = a.choose - except AttributeError: - return _wrapit(a, 'choose', choices) - return choose(choices) - -def repeat(a, repeats, axis=0): - """repeat elements of a repeats times along axis - repeats is a sequence of length a.shape[axis] - telling how many times to repeat each element. - If repeats is an integer, it is interpreted as - a tuple of length a.shape[axis] containing repeats. - The argument a can be anything array(a) will accept. - """ - try: - repeat = a.repeat - except AttributeError: - return _wrapit(a, 'repeat', repeats, axis) - return repeat(repeats, axis) - -def put (a, ind, v): - """put(a, ind, v) results in a[n] = v[n] for all n in ind - If v is shorter than mask it will be repeated as necessary. - In particular v can be a scalar or length 1 array. - The routine put is the equivalent of the following (although the loop - is in C for speed): - - ind = array(indices, copy=False) - v = array(values, copy=False).astype(a.dtype) - for i in ind: a.flat[i] = v[i] - a must be a contiguous numpy array. - """ - return a.put(v,ind) - -def putmask (a, mask, v): - """putmask(a, mask, v) results in a = v for all places mask is true. - If v is shorter than mask it will be repeated as necessary. - In particular v can be a scalar or length 1 array. - """ - return a.putmask(v, mask) - -def swapaxes(a, axis1, axis2): - """swapaxes(a, axis1, axis2) returns array a with axis1 and axis2 - interchanged. - """ - try: - swapaxes = a.swapaxes - except AttributeError: - return _wrapit(a, 'swapaxes', axis1, axis2) - return swapaxes(axis1, axis2) - -def transpose(a, axes=None): - """transpose(a, axes=None) returns a view of the array with - dimensions permuted according to axes. If axes is None - (default) returns array with dimensions reversed. - """ - try: - transpose = a.transpose - except AttributeError: - return _wrapit(a, 'transpose', axes) - return transpose(axes) - -def sort(a, axis=-1): - """sort(a,axis=-1) returns array with elements sorted along given axis. - """ - a = asanyarray(a).copy() - a.sort(axis) - return a - -def argsort(a, axis=-1): - """argsort(a,axis=-1) return the indices into a of the sorted array - along the given axis, so that take(a,result,axis) is the sorted array. - """ - try: - argsort = a.argsort - except AttributeError: - return _wrapit(a, 'argsort', axis) - return argsort(axis) - -def argmax(a, axis=-1): - """argmax(a,axis=-1) returns the indices to the maximum value of the - 1-D arrays along the given axis. - """ - try: - argmax = a.argmax - except AttributeError: - return _wrapit(a, 'argmax', axis) - return argmax(axis) - -def argmin(a, axis=-1): - """argmin(a,axis=-1) returns the indices to the minimum value of the - 1-D arrays along the given axis. - """ - try: - argmin = a.argmin - except AttributeError: - return _wrapit(a, 'argmin', axis) - return argmin(axis) - -def searchsorted(a, v): - """searchsorted(a, v) - """ - try: - searchsorted = a.searchsorted - except AttributeError: - return _wrapit(a, 'searchsorted', v) - return searchsorted(v) - -def resize(a, new_shape): - """resize(a,new_shape) returns a new array with the specified shape. - The original array's total size can be any size. It - fills the new array with repeated copies of a. - - Note that a.resize(new_shape) will fill array with 0's - beyond current definition of a. - """ - - if isinstance(new_shape, (int, nt.integer)): - new_shape = (new_shape,) - a = ravel(a) - Na = len(a) - if not Na: return mu.zeros(new_shape, a.dtype.char) - total_size = um.multiply.reduce(new_shape) - n_copies = int(total_size / Na) - extra = total_size % Na - - if total_size == 0: - return a[:0] - - if extra != 0: - n_copies = n_copies+1 - extra = Na-extra - - a = concatenate( (a,)*n_copies) - if extra > 0: - a = a[:-extra] - - return reshape(a, new_shape) - -def squeeze(a): - "Returns a with any ones from the shape of a removed" - try: - squeeze = a.squeeze - except AttributeError: - return _wrapit(a, 'squeeze') - return squeeze() - -def diagonal(a, offset=0, axis1=0, axis2=1): - """diagonal(a, offset=0, axis1=0, axis2=1) returns the given diagonals - defined by the last two dimensions of the array. - """ - return asarray(a).diagonal(offset, axis1, axis2) - -def trace(a, offset=0, axis1=0, axis2=1, dtype=None): - """trace(a,offset=0, axis1=0, axis2=1) returns the sum along diagonals - (defined by the last two dimenions) of the array. - """ - return asarray(a).trace(offset, axis1, axis2, dtype) - -# not deprecated --- always returns a 1-d array. Copy-if-necessary. -def ravel(m,order='C'): - """ravel(m) returns a 1d array corresponding to all the elements of it's - argument. The new array is a view of m if possible, otherwise it is - a copy. - """ - a = asarray(m) - return a.ravel(order) - -def nonzero(a): - """nonzero(a) returns the indices of the elements of a which are not zero, - a must be 1d - """ - try: - nonzero = a.nonzero - except AttributeError: - res = _wrapit(a, 'nonzero') - else: - res = nonzero() - - if len(res) == 1: - return res[0] - else: - raise ValueError, "Input argument must be 1d" - - -def shape(a): - """shape(a) returns the shape of a (as a function call which - also works on nested sequences). - """ - try: - result = a.shape - except AttributeError: - result = asarray(a).shape - return result - -def compress(condition, m, axis=-1): - """compress(condition, x, axis=-1) = those elements of x corresponding - to those elements of condition that are "true". condition must be the - same size as the given dimension of x.""" - try: - compress = m.compress - except AttributeError: - return _wrapit(m, 'compress', condition, axis) - return compress(condition, axis) - -def clip(m, m_min, m_max): - """clip(m, m_min, m_max) = every entry in m that is less than m_min is - replaced by m_min, and every entry greater than m_max is replaced by - m_max. - """ - try: - clip = m.clip - except AttributeError: - return _wrapit(m, 'clip', m_min, m_max) - return clip(m_min, m_max) - -def sum(x, axis=0, dtype=None): - """Sum the array over the given axis. The optional dtype argument - is the data type for intermediate calculations. - - The default is to upcast (promote) smaller integer types to the - platform-dependent Int. For example, on 32-bit platforms: - - x.dtype default sum() dtype - --------------------------------------------------- - bool, Int8, Int16, Int32 Int32 - - Examples: - >>> sum([0.5, 1.5]) - 2.0 - >>> sum([0.5, 1.5], dtype=Int32) - 1 - >>> sum([[0, 1], [0, 5]]) - array([0, 6]) - >>> sum([[0, 1], [0, 5]], axis=1) - array([1, 5]) - """ - if isinstance(x, _gentype): - return _sum_(x) - try: - sum = x.sum - except AttributeError: - return _wrapit(x, 'sum', axis, dtype) - return sum(axis, dtype) - -def product (x, axis=0, dtype=None): - """Product of the array elements over the given axis.""" - try: - prod = x.prod - except AttributeError: - return _wrapit(x, 'prod', axis, dtype) - return prod(axis, dtype) - -def sometrue (x, axis=0): - """Perform a logical_or over the given axis.""" - try: - any = x.any - except AttributeError: - return _wrapit(x, 'any', axis) - return any(axis) - -def alltrue (x, axis=0): - """Perform a logical_and over the given axis.""" - try: - all = x.all - except AttributeError: - return _wrapit(x, 'all', axis) - return all(axis) - -def any(x,axis=None): - """Return true if any elements of x are true: - """ - try: - any = x.any - except AttributeError: - return _wrapit(x, 'any', axis) - return any(axis) - -def all(x,axis=None): - """Return true if all elements of x are true: - """ - try: - all = x.all - except AttributeError: - return _wrapit(x, 'all', axis) - return all(axis) - -def cumsum (x, axis=0, dtype=None): - """Sum the array over the given axis.""" - try: - cumsum = x.cumsum - except AttributeError: - return _wrapit(x, 'cumsum', axis, dtype) - return cumsum(axis, dtype) - -def cumproduct (x, axis=0, dtype=None): - """Sum the array over the given axis.""" - try: - cumprod = x.cumprod - except AttributeError: - return _wrapit(x, 'cumprod', axis, dtype) - return cumprod(axis, dtype) - -def ptp(a, axis=0): - """Return maximum - minimum along the the given dimension - """ - try: - ptp = a.ptp - except AttributeError: - return _wrapit(a, 'ptp', axis) - return ptp(axis) - -def amax(a, axis=0): - """Return the maximum of 'a' along dimension axis. - """ - try: - max = a.max - except AttributeError: - return _wrapit(a, 'max', axis) - return max(axis) - -def amin(a, axis=0): - """Return the minimum of a along dimension axis. - """ - try: - min = a.min - except AttributeError: - return _wrapit(a, 'min', axis) - return min(axis) - -def alen(a): - """Return the length of a Python object interpreted as an array - of at least 1 dimension. - """ - try: - return len(a) - except TypeError: - return len(array(a,ndmin=1)) - -def prod(a, axis=0, dtype=None): - """Return the product of the elements along the given axis - """ - try: - prod = a.prod - except AttributeError: - return _wrapit(a, 'prod', axis, dtype) - return prod(axis, dtype) - -def cumprod(a, axis=0, dtype=None): - """Return the cumulative product of the elments along the given axis - """ - try: - cumprod = a.cumprod - except AttributeError: - return _wrapit(a, 'cumprod', axis, dtype) - return cumprod(axis, dtype) - -def ndim(a): - try: - return a.ndim - except AttributeError: - return asarray(a).ndim - -def rank(a): - """Get the rank of sequence a (the number of dimensions, not a matrix rank) - The rank of a scalar is zero. - """ - try: - return a.ndim - except AttributeError: - return asarray(a).ndim - -def size (a, axis=None): - "Get the number of elements in sequence a, or along a certain axis." - if axis is None: - try: - return a.size - except AttributeError: - return asarray(a).size - else: - try: - return a.shape[axis] - except AttributeError: - return asarray(a).shape[axis] - -def round_(a, decimals=0): - """Round 'a' to the given number of decimal places. Rounding - behaviour is equivalent to Python. - - Return 'a' if the array is not floating point. Round both the real - and imaginary parts separately if the array is complex. - """ - try: - round = a.round - except AttributeError: - return _wrapit(a, 'round', decimals) - return round(decimals) - -around = round_ - -def mean(a, axis=0, dtype=None): - try: - mean = a.mean - except AttributeError: - return _wrapit(a, 'mean', axis, dtype) - return mean(axis, dtype) - -def std(a, axis=0, dtype=None): - try: - std = a.std - except AttributeError: - return _wrapit(a, 'std', axis, dtype) - return std(axis, dtype) - -def var(a, axis=0, dtype=None): - try: - var = a.var - except AttributeError: - return _wrapit(a, 'var', axis, dtype) - return var(axis, dtype) |