diff options
author | Julian Taylor <jtaylor.debian@googlemail.com> | 2015-11-11 19:34:23 +0100 |
---|---|---|
committer | Julian Taylor <jtaylor.debian@googlemail.com> | 2015-11-16 21:10:46 +0100 |
commit | 904da7c202384c8a2a6ec88cece378f70e2dd956 (patch) | |
tree | 92bdf5542fc7e4483ebbd4d94135450a0ccf5a0c /numpy/core | |
parent | 1d511429ac04d137c3d9ec7da9160bec7baa2829 (diff) | |
download | numpy-904da7c202384c8a2a6ec88cece378f70e2dd956.tar.gz |
ENH: use prefetching for summation
It seems the small blocksizes (128) messes up the hardware prefetcher
which would usually be able to work fine on this iteration pattern.
Fix this by using software prefetching. Improves performance for large
sums by 15%-30%. Tested on core2duo, xeon E5-4620, i5-3470 and AMD phenom II X4.
Prefers __builtin_prefetch as that, unlike SSE2 _mm_prefetch, also works
on capable non-x86 cpus.
Diffstat (limited to 'numpy/core')
-rw-r--r-- | numpy/core/include/numpy/npy_common.h | 15 | ||||
-rw-r--r-- | numpy/core/setup_common.py | 3 | ||||
-rw-r--r-- | numpy/core/src/umath/loops.c.src | 4 |
3 files changed, 22 insertions, 0 deletions
diff --git a/numpy/core/include/numpy/npy_common.h b/numpy/core/include/numpy/npy_common.h index eff5dd339..47ef94c92 100644 --- a/numpy/core/include/numpy/npy_common.h +++ b/numpy/core/include/numpy/npy_common.h @@ -61,6 +61,21 @@ #define NPY_UNLIKELY(x) (x) #endif +#ifdef HAVE___BUILTIN_PREFETCH +/* unlike _mm_prefetch also works on non-x86 */ +#define NPY_PREFETCH(x, rw, loc) __builtin_prefetch((x), (rw), (loc)) +#else +#ifdef HAVE__MM_PREFETCH +/* _MM_HINT_ET[01] (rw = 1) unsupported, only available in gcc >= 4.9 */ +#define NPY_PREFETCH(x, rw, loc) _mm_prefetch((x), loc == 0 ? _MM_HINT_NTA : \ + (loc == 1 ? _MM_HINT_T2 : \ + (loc == 2 ? _MM_HINT_T1 : \ + (loc == 3 ? _MM_HINT_T0 : -1)))) +#else +#define NPY_PREFETCH(x, rw,loc) +#endif +#endif + #if defined(_MSC_VER) #define NPY_INLINE __inline #elif defined(__GNUC__) diff --git a/numpy/core/setup_common.py b/numpy/core/setup_common.py index 68efd1791..d93e475e3 100644 --- a/numpy/core/setup_common.py +++ b/numpy/core/setup_common.py @@ -125,7 +125,10 @@ OPTIONAL_INTRINSICS = [("__builtin_isnan", '5.'), ("__builtin_expect", '5, 0'), ("__builtin_mul_overflow", '5, 5, (int*)5'), ("_mm_load_ps", '(float*)0', "xmmintrin.h"), # SSE + ("_mm_prefetch", '(float*)0, _MM_HINT_NTA', + "xmmintrin.h"), # SSE ("_mm_load_pd", '(double*)0', "emmintrin.h"), # SSE2 + ("__builtin_prefetch", "(float*)0, 0, 3"), ] # function attributes diff --git a/numpy/core/src/umath/loops.c.src b/numpy/core/src/umath/loops.c.src index 854c1e17a..aff6180c7 100644 --- a/numpy/core/src/umath/loops.c.src +++ b/numpy/core/src/umath/loops.c.src @@ -1444,6 +1444,8 @@ pairwise_sum_@TYPE@(@dtype@ *a, npy_uintp n, npy_intp stride) r[7] = @trf@(a[7 * stride]); for (i = 8; i < n - (n % 8); i += 8) { + /* small blocksizes seems to mess with hardware prefetch */ + NPY_PREFETCH(&a[(i + 512 / sizeof(a[0])) * stride], 0, 3); r[0] += @trf@(a[(i + 0) * stride]); r[1] += @trf@(a[(i + 1) * stride]); r[2] += @trf@(a[(i + 2) * stride]); @@ -2190,6 +2192,8 @@ pairwise_sum_@TYPE@(@ftype@ *rr, @ftype@ * ri, @ftype@ * a, npy_uintp n, r[7] = a[6 * stride + 1]; for (i = 8; i < n - (n % 8); i += 8) { + /* small blocksizes seems to mess with hardware prefetch */ + NPY_PREFETCH(&a[(i + 512 / sizeof(a[0])) * stride], 0, 3); r[0] += a[(i + 0) * stride]; r[1] += a[(i + 0) * stride + 1]; r[2] += a[(i + 2) * stride]; |