summaryrefslogtreecommitdiff
path: root/numpy/core
diff options
context:
space:
mode:
authorJarrod Millman <millman@berkeley.edu>2010-02-17 23:42:42 +0000
committerJarrod Millman <millman@berkeley.edu>2010-02-17 23:42:42 +0000
commitdcc721a5bddde3afd4ce47d7a7b76ec6c7102b92 (patch)
treedfb944339fc1bb15294efc2c903500ac66450c8c /numpy/core
parentd9e1ff3f202f2c80d0a7816935c73fec57734aff (diff)
downloadnumpy-dcc721a5bddde3afd4ce47d7a7b76ec6c7102b92.tar.gz
updated docstrings from pydoc website (thanks to everyone who contributed!)
Diffstat (limited to 'numpy/core')
-rw-r--r--numpy/core/defchararray.py83
-rw-r--r--numpy/core/fromnumeric.py28
-rw-r--r--numpy/core/numeric.py27
-rw-r--r--numpy/core/numerictypes.py16
-rw-r--r--numpy/core/shape_base.py2
5 files changed, 115 insertions, 41 deletions
diff --git a/numpy/core/defchararray.py b/numpy/core/defchararray.py
index 4530bd5ad..27bcb352b 100644
--- a/numpy/core/defchararray.py
+++ b/numpy/core/defchararray.py
@@ -4,12 +4,12 @@ operations and methods.
.. note::
The `chararray` class exists for backwards compatibility with
- Numarray, it is not recommended for new development. If one needs
- arrays of strings, use arrays of `dtype` `object_`, `string_` or
- `unicode_`, and use the free functions in the `numpy.char` module
- for fast vectorized string operations.
+ Numarray, it is not recommended for new development. Starting from numpy
+ 1.4, if one needs arrays of strings, it is recommended to use arrays of
+ `dtype` `object_`, `string_` or `unicode_`, and use the free functions
+ in the `numpy.char` module for fast vectorized string operations.
-Some methods will only be available if the corresponding str method is
+Some methods will only be available if the corresponding string method is
available in your version of Python.
The preferred alias for `defchararray` is `numpy.char`.
@@ -1692,10 +1692,10 @@ class chararray(ndarray):
.. note::
The `chararray` class exists for backwards compatibility with
- Numarray, it is not recommended for new development. If one needs
- arrays of strings, use arrays of `dtype` `object_`, `string_` or
- `unicode_`, and use the free functions in the `numpy.char` module
- for fast vectorized string operations.
+ Numarray, it is not recommended for new development. Starting from numpy
+ 1.4, if one needs arrays of strings, it is recommended to use arrays of
+ `dtype` `object_`, `string_` or `unicode_`, and use the free functions
+ in the `numpy.char` module for fast vectorized string operations.
Versus a regular Numpy array of type `str` or `unicode`, this
class adds the following functionality:
@@ -1718,6 +1718,71 @@ class chararray(ndarray):
``len(shape) >= 2`` and ``order='Fortran'``, in which case `strides`
is in "Fortran order".
+ Methods
+ -------
+ astype
+ argsort
+ copy
+ count
+ decode
+ dump
+ dumps
+ encode
+ endswith
+ expandtabs
+ fill
+ find
+ flatten
+ getfield
+ index
+ isalnum
+ isalpha
+ isdecimal
+ isdigit
+ islower
+ isnumeric
+ isspace
+ istitle
+ isupper
+ item
+ join
+ ljust
+ lower
+ lstrip
+ nonzero
+ put
+ ravel
+ repeat
+ replace
+ reshape
+ resize
+ rfind
+ rindex
+ rjust
+ rsplit
+ rstrip
+ searchsorted
+ setfield
+ setflags
+ sort
+ split
+ splitlines
+ squeeze
+ startswith
+ strip
+ swapaxes
+ swapcase
+ take
+ title
+ tofile
+ tolist
+ tostring
+ translate
+ transpose
+ upper
+ view
+ zfill
+
Parameters
----------
shape : tuple
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index b9265216f..b255e89af 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -127,10 +127,28 @@ def reshape(a, newshape, order='C'):
This will be a new view object if possible; otherwise, it will
be a copy.
+
See Also
--------
ndarray.reshape : Equivalent method.
+ Notes
+ -----
+
+ It is not always possible to change the shape of an array without
+ copying the data. If you want an error to be raise if the data is copied,
+ you should assign the new shape to the shape attribute of the array::
+
+ >>> a = np.zeros((10, 2))
+ # A transpose make the array non-contiguous
+ >>> b = a.T
+ # Taking a view makes it possible to modify the shape without modiying the
+ # initial object.
+ >>> c = b.view()
+ >>> c.shape = (20)
+ AttributeError: incompatible shape for a non-contiguous array
+
+
Examples
--------
>>> a = np.array([[1,2,3], [4,5,6]])
@@ -1708,7 +1726,7 @@ def ptp(a, axis=None, out=None):
def amax(a, axis=None, out=None):
"""
- Return the maximum along an axis.
+ Return the maximum of an array or maximum along an axis.
Parameters
----------
@@ -1724,8 +1742,7 @@ def amax(a, axis=None, out=None):
Returns
-------
amax : ndarray
- A new array or a scalar with the result, or a reference to `out`
- if it was specified.
+ A new array or a scalar array with the result.
See Also
--------
@@ -1769,7 +1786,7 @@ def amax(a, axis=None, out=None):
def amin(a, axis=None, out=None):
"""
- Return the minimum along an axis.
+ Return the minimum of an array or minimum along an axis.
Parameters
----------
@@ -1785,8 +1802,7 @@ def amin(a, axis=None, out=None):
Returns
-------
amin : ndarray
- A new array or a scalar with the result, or a reference to `out` if it
- was specified.
+ A new array or a scalar array with the result.
See Also
--------
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index 176212d09..fba6512b2 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -262,6 +262,14 @@ def asarray(a, dtype=None, order=None):
>>> np.asarray(a) is a
True
+ If `dtype` is set, array is copied only if dtype does not match:
+
+ >>> a = np.array([1, 2], dtype=np.float32)
+ >>> np.asarray(a, dtype=np.float32) is a
+ True
+ >>> np.asarray(a, dtype=np.float64) is a
+ False
+
Contrary to `asanyarray`, ndarray subclasses are not passed through:
>>> issubclass(np.matrix, np.ndarray)
@@ -2090,25 +2098,6 @@ def seterr(all=None, divide=None, over=None, under=None, invalid=None):
Warning: overflow encountered in short_scalars
30464
- Calling `seterr` with no arguments resets treatment for all floating-point
- errors to the defaults. XXX: lies!!! code doesn't do that
- >>> np.geterr()
- {'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}
- >>> np.seterr(all='warn')
- {'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'}
- >>> np.geterr()
- {'over': 'warn', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'}
- >>> np.seterr() # XXX: this should reset to defaults according to docstring above
- {'over': 'warn', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'}
- >>> np.geterr() # XXX: but clearly it doesn't
- {'over': 'warn', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'}
-
- >>> old_settings = np.seterr()
- >>> old_settings = np.seterr(all='ignore')
- >>> np.geterr()
- {'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
- 'under': 'ignore'}
-
"""
pyvals = umath.geterrobj()
diff --git a/numpy/core/numerictypes.py b/numpy/core/numerictypes.py
index f9938761d..f47e05391 100644
--- a/numpy/core/numerictypes.py
+++ b/numpy/core/numerictypes.py
@@ -1,6 +1,7 @@
-"""numerictypes: Define the numeric type objects
+"""
+numerictypes: Define the numeric type objects
-This module is designed so 'from numerictypes import *' is safe.
+This module is designed so "from numerictypes import \\*" is safe.
Exported symbols include:
Dictionary with all registered number types (including aliases):
@@ -37,8 +38,10 @@ Exported symbols include:
float_, complex_,
longfloat, clongfloat,
- datetime_, timedelta_, (these inherit from timeinteger which inherits from signedinteger)
-
+
+ datetime_, timedelta_, (these inherit from timeinteger which inherits
+ from signedinteger)
+
As part of the type-hierarchy: xx -- is bit-width
@@ -65,7 +68,7 @@ Exported symbols include:
| | single
| | float_ (double)
| | longfloat
- | \-> complexfloating (complexxx) (kind=c)
+ | \\-> complexfloating (complexxx) (kind=c)
| csingle (singlecomplex)
| complex_ (cfloat, cdouble)
| clongfloat (longcomplex)
@@ -75,7 +78,8 @@ Exported symbols include:
| unicode_ (kind=U)
| void (kind=V)
|
- \-> object_ (not used much) (kind=O)
+ \\-> object_ (not used much) (kind=O)
+
"""
# we add more at the bottom
diff --git a/numpy/core/shape_base.py b/numpy/core/shape_base.py
index d3a2953ed..c86684c6f 100644
--- a/numpy/core/shape_base.py
+++ b/numpy/core/shape_base.py
@@ -218,7 +218,7 @@ def hstack(tup):
Stack arrays in sequence horizontally (column wise).
Take a sequence of arrays and stack them horizontally to make
- a single array. Rebuild arrays divided by ``hsplit``.
+ a single array. Rebuild arrays divided by `hsplit`.
Parameters
----------