summaryrefslogtreecommitdiff
path: root/numpy/core
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2013-08-18 11:51:25 -0600
committerCharles Harris <charlesr.harris@gmail.com>2013-08-18 11:51:25 -0600
commitfbd6510d58a47ea0d166c48a82793f05425406e4 (patch)
tree330ce703eb02d20f96099c3fe0fc36ae33d4905b /numpy/core
parent8ddb0ce0acafe75d78df528b4d2540dfbf4b364d (diff)
downloadnumpy-fbd6510d58a47ea0d166c48a82793f05425406e4.tar.gz
STY: Giant comma spacing fixup.
Run the 2to3 ws_comma fixer on *.py files. Some lines are now too long and will need to be broken at some point. OTOH, some lines were already too long and need to be broken at some point. Now seems as good a time as any to do this with open PRs at a minimum.
Diffstat (limited to 'numpy/core')
-rw-r--r--numpy/core/__init__.py4
-rw-r--r--numpy/core/_internal.py6
-rw-r--r--numpy/core/arrayprint.py6
-rw-r--r--numpy/core/code_generators/genapi.py2
-rw-r--r--numpy/core/code_generators/generate_umath.py172
-rw-r--r--numpy/core/fromnumeric.py4
-rw-r--r--numpy/core/function_base.py4
-rw-r--r--numpy/core/getlimits.py28
-rw-r--r--numpy/core/memmap.py4
-rw-r--r--numpy/core/numeric.py32
-rw-r--r--numpy/core/numerictypes.py14
-rw-r--r--numpy/core/setup.py78
-rw-r--r--numpy/core/setup_common.py6
-rw-r--r--numpy/core/shape_base.py10
-rw-r--r--numpy/core/src/multiarray/testcalcs.py2
-rw-r--r--numpy/core/tests/test_api.py84
-rw-r--r--numpy/core/tests/test_blasdot.py18
-rw-r--r--numpy/core/tests/test_datetime.py108
-rw-r--r--numpy/core/tests/test_defchararray.py34
-rw-r--r--numpy/core/tests/test_deprecations.py30
-rw-r--r--numpy/core/tests/test_dtype.py112
-rw-r--r--numpy/core/tests/test_einsum.py256
-rw-r--r--numpy/core/tests/test_function_base.py26
-rw-r--r--numpy/core/tests/test_getlimits.py10
-rw-r--r--numpy/core/tests/test_half.py206
-rw-r--r--numpy/core/tests/test_indexerrors.py36
-rw-r--r--numpy/core/tests/test_indexing.py50
-rw-r--r--numpy/core/tests/test_item_selection.py4
-rw-r--r--numpy/core/tests/test_memmap.py6
-rw-r--r--numpy/core/tests/test_multiarray.py750
-rw-r--r--numpy/core/tests/test_nditer.py1520
-rw-r--r--numpy/core/tests/test_numeric.py410
-rw-r--r--numpy/core/tests/test_numerictypes.py44
-rw-r--r--numpy/core/tests/test_print.py6
-rw-r--r--numpy/core/tests/test_regression.py476
-rw-r--r--numpy/core/tests/test_scalarmath.py30
-rw-r--r--numpy/core/tests/test_shape_base.py72
-rw-r--r--numpy/core/tests/test_ufunc.py414
-rw-r--r--numpy/core/tests/test_umath.py90
-rw-r--r--numpy/core/tests/test_umath_complex.py2
-rw-r--r--numpy/core/tests/test_unicode.py24
41 files changed, 2595 insertions, 2595 deletions
diff --git a/numpy/core/__init__.py b/numpy/core/__init__.py
index 50af6e548..79bc72a8c 100644
--- a/numpy/core/__init__.py
+++ b/numpy/core/__init__.py
@@ -32,7 +32,7 @@ from .fromnumeric import amax as max, amin as min, \
round_ as round
from .numeric import absolute as abs
-__all__ = ['char','rec','memmap']
+__all__ = ['char', 'rec', 'memmap']
__all__ += numeric.__all__
__all__ += fromnumeric.__all__
__all__ += rec.__all__
@@ -58,7 +58,7 @@ def _ufunc_reconstruct(module, name):
def _ufunc_reduce(func):
from pickle import whichmodule
name = func.__name__
- return _ufunc_reconstruct, (whichmodule(func,name), name)
+ return _ufunc_reconstruct, (whichmodule(func, name), name)
import sys
diff --git a/numpy/core/_internal.py b/numpy/core/_internal.py
index 8046de149..d32f59390 100644
--- a/numpy/core/_internal.py
+++ b/numpy/core/_internal.py
@@ -24,7 +24,7 @@ def _makenames_list(adict, align):
for fname in fnames:
obj = adict[fname]
n = len(obj)
- if not isinstance(obj, tuple) or n not in [2,3]:
+ if not isinstance(obj, tuple) or n not in [2, 3]:
raise ValueError("entry not a 2- or 3- tuple")
if (n > 2) and (obj[2] == fname):
continue
@@ -108,10 +108,10 @@ def _array_descr(descriptor):
for field in ordered_fields:
if field[1] > offset:
num = field[1] - offset
- result.append(('','|V%d' % num))
+ result.append(('', '|V%d' % num))
offset += num
if len(field) > 3:
- name = (field[2],field[3])
+ name = (field[2], field[3])
else:
name = field[2]
if field[0].subdtype:
diff --git a/numpy/core/arrayprint.py b/numpy/core/arrayprint.py
index 18b008a3f..db491e6f5 100644
--- a/numpy/core/arrayprint.py
+++ b/numpy/core/arrayprint.py
@@ -214,7 +214,7 @@ def _leading_trailing(a):
l = [_leading_trailing(a[i]) for i in range(
min(len(a), _summaryEdgeItems))]
l.extend([_leading_trailing(a[-i]) for i in range(
- min(len(a), _summaryEdgeItems),0,-1)])
+ min(len(a), _summaryEdgeItems), 0, -1)])
else:
l = [_leading_trailing(a[i]) for i in range(0, len(a))]
b = _nc.concatenate(tuple(l))
@@ -510,7 +510,7 @@ def _formatArray(a, format_function, rank, max_line_len,
s += _formatArray(a[i], format_function, rank-1, max_line_len,
" " + next_line_prefix, separator, edge_items,
summary_insert)
- s = s.rstrip() + sep.rstrip() + '\n'*max(rank-1,1)
+ s = s.rstrip() + sep.rstrip() + '\n'*max(rank-1, 1)
if summary_insert1:
s += next_line_prefix + summary_insert1 + "\n"
@@ -521,7 +521,7 @@ def _formatArray(a, format_function, rank, max_line_len,
s += _formatArray(a[-i], format_function, rank-1, max_line_len,
" " + next_line_prefix, separator, edge_items,
summary_insert)
- s = s.rstrip() + sep.rstrip() + '\n'*max(rank-1,1)
+ s = s.rstrip() + sep.rstrip() + '\n'*max(rank-1, 1)
if leading_items or trailing_items > 1:
s += next_line_prefix
s += _formatArray(a[-1], format_function, rank-1, max_line_len,
diff --git a/numpy/core/code_generators/genapi.py b/numpy/core/code_generators/genapi.py
index 62e4f9fc8..ad054920a 100644
--- a/numpy/core/code_generators/genapi.py
+++ b/numpy/core/code_generators/genapi.py
@@ -72,7 +72,7 @@ def remove_whitespace(s):
return ''.join(s.split())
def _repl(str):
- return str.replace('Bool','npy_bool')
+ return str.replace('Bool', 'npy_bool')
class Function(object):
def __init__(self, name, return_type, args, doc=''):
diff --git a/numpy/core/code_generators/generate_umath.py b/numpy/core/code_generators/generate_umath.py
index 1bc22d777..e02cb8709 100644
--- a/numpy/core/code_generators/generate_umath.py
+++ b/numpy/core/code_generators/generate_umath.py
@@ -237,7 +237,7 @@ for code in 'bhilq':
# an object which expands a list of character codes into an array of
# TypeDescriptions.
defdict = {
-'add' :
+'add':
Ufunc(2, 1, Zero,
docstrings.get('numpy.core.umath.add'),
'PyUFunc_AdditionTypeResolver',
@@ -248,7 +248,7 @@ defdict = {
],
TD(O, f='PyNumber_Add'),
),
-'subtract' :
+'subtract':
Ufunc(2, 1, None, # Zero is only a unit to the right, not the left
docstrings.get('numpy.core.umath.subtract'),
'PyUFunc_SubtractionTypeResolver',
@@ -259,7 +259,7 @@ defdict = {
],
TD(O, f='PyNumber_Subtract'),
),
-'multiply' :
+'multiply':
Ufunc(2, 1, One,
docstrings.get('numpy.core.umath.multiply'),
'PyUFunc_MultiplicationTypeResolver',
@@ -271,7 +271,7 @@ defdict = {
],
TD(O, f='PyNumber_Multiply'),
),
-'divide' :
+'divide':
Ufunc(2, 1, None, # One is only a unit to the right, not the left
docstrings.get('numpy.core.umath.divide'),
'PyUFunc_DivisionTypeResolver',
@@ -282,7 +282,7 @@ defdict = {
],
TD(O, f='PyNumber_Divide'),
),
-'floor_divide' :
+'floor_divide':
Ufunc(2, 1, None, # One is only a unit to the right, not the left
docstrings.get('numpy.core.umath.floor_divide'),
'PyUFunc_DivisionTypeResolver',
@@ -293,7 +293,7 @@ defdict = {
],
TD(O, f='PyNumber_FloorDivide'),
),
-'true_divide' :
+'true_divide':
Ufunc(2, 1, None, # One is only a unit to the right, not the left
docstrings.get('numpy.core.umath.true_divide'),
'PyUFunc_DivisionTypeResolver',
@@ -306,14 +306,14 @@ defdict = {
],
TD(O, f='PyNumber_TrueDivide'),
),
-'conjugate' :
+'conjugate':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.conjugate'),
None,
TD(ints+flts+cmplx),
TD(P, f='conjugate'),
),
-'fmod' :
+'fmod':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.fmod'),
None,
@@ -321,14 +321,14 @@ defdict = {
TD(flts, f='fmod', astype={'e':'f'}),
TD(P, f='fmod'),
),
-'square' :
+'square':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.square'),
None,
TD(ints+inexact),
TD(O, f='Py_square'),
),
-'reciprocal' :
+'reciprocal':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.reciprocal'),
None,
@@ -337,14 +337,14 @@ defdict = {
),
# This is no longer used as numpy.ones_like, however it is
# still used by some internal calls.
-'_ones_like' :
+'_ones_like':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath._ones_like'),
'PyUFunc_OnesLikeTypeResolver',
TD(noobj),
TD(O, f='Py_get_one'),
),
-'power' :
+'power':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.power'),
None,
@@ -352,7 +352,7 @@ defdict = {
TD(inexact, f='pow', astype={'e':'f'}),
TD(O, f='npy_ObjectPower'),
),
-'absolute' :
+'absolute':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.absolute'),
'PyUFunc_AbsoluteTypeResolver',
@@ -360,13 +360,13 @@ defdict = {
TD(cmplx, out=('f', 'd', 'g')),
TD(O, f='PyNumber_Absolute'),
),
-'_arg' :
+'_arg':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath._arg'),
None,
TD(cmplx, out=('f', 'd', 'g')),
),
-'negative' :
+'negative':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.negative'),
'PyUFunc_SimpleUnaryOperationTypeResolver',
@@ -374,316 +374,316 @@ defdict = {
TD(cmplx, f='neg'),
TD(O, f='PyNumber_Negative'),
),
-'sign' :
+'sign':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.sign'),
'PyUFunc_SimpleUnaryOperationTypeResolver',
TD(nobool_or_datetime),
),
-'greater' :
+'greater':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.greater'),
'PyUFunc_SimpleBinaryComparisonTypeResolver',
TD(all, out='?'),
),
-'greater_equal' :
+'greater_equal':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.greater_equal'),
'PyUFunc_SimpleBinaryComparisonTypeResolver',
TD(all, out='?'),
),
-'less' :
+'less':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.less'),
'PyUFunc_SimpleBinaryComparisonTypeResolver',
TD(all, out='?'),
),
-'less_equal' :
+'less_equal':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.less_equal'),
'PyUFunc_SimpleBinaryComparisonTypeResolver',
TD(all, out='?'),
),
-'equal' :
+'equal':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.equal'),
'PyUFunc_SimpleBinaryComparisonTypeResolver',
TD(all, out='?'),
),
-'not_equal' :
+'not_equal':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.not_equal'),
'PyUFunc_SimpleBinaryComparisonTypeResolver',
TD(all, out='?'),
),
-'logical_and' :
+'logical_and':
Ufunc(2, 1, One,
docstrings.get('numpy.core.umath.logical_and'),
'PyUFunc_SimpleBinaryComparisonTypeResolver',
TD(nodatetime_or_obj, out='?'),
TD(O, f='npy_ObjectLogicalAnd'),
),
-'logical_not' :
+'logical_not':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.logical_not'),
None,
TD(nodatetime_or_obj, out='?'),
TD(O, f='npy_ObjectLogicalNot'),
),
-'logical_or' :
+'logical_or':
Ufunc(2, 1, Zero,
docstrings.get('numpy.core.umath.logical_or'),
'PyUFunc_SimpleBinaryComparisonTypeResolver',
TD(nodatetime_or_obj, out='?'),
TD(O, f='npy_ObjectLogicalOr'),
),
-'logical_xor' :
+'logical_xor':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.logical_xor'),
'PyUFunc_SimpleBinaryComparisonTypeResolver',
TD(nodatetime_or_obj, out='?'),
TD(P, f='logical_xor'),
),
-'maximum' :
+'maximum':
Ufunc(2, 1, ReorderableNone,
docstrings.get('numpy.core.umath.maximum'),
'PyUFunc_SimpleBinaryOperationTypeResolver',
TD(noobj),
TD(O, f='npy_ObjectMax')
),
-'minimum' :
+'minimum':
Ufunc(2, 1, ReorderableNone,
docstrings.get('numpy.core.umath.minimum'),
'PyUFunc_SimpleBinaryOperationTypeResolver',
TD(noobj),
TD(O, f='npy_ObjectMin')
),
-'fmax' :
+'fmax':
Ufunc(2, 1, ReorderableNone,
docstrings.get('numpy.core.umath.fmax'),
'PyUFunc_SimpleBinaryOperationTypeResolver',
TD(noobj),
TD(O, f='npy_ObjectMax')
),
-'fmin' :
+'fmin':
Ufunc(2, 1, ReorderableNone,
docstrings.get('numpy.core.umath.fmin'),
'PyUFunc_SimpleBinaryOperationTypeResolver',
TD(noobj),
TD(O, f='npy_ObjectMin')
),
-'logaddexp' :
+'logaddexp':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.logaddexp'),
None,
TD(flts, f="logaddexp", astype={'e':'f'})
),
-'logaddexp2' :
+'logaddexp2':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.logaddexp2'),
None,
TD(flts, f="logaddexp2", astype={'e':'f'})
),
-'bitwise_and' :
+'bitwise_and':
Ufunc(2, 1, One,
docstrings.get('numpy.core.umath.bitwise_and'),
None,
TD(bints),
TD(O, f='PyNumber_And'),
),
-'bitwise_or' :
+'bitwise_or':
Ufunc(2, 1, Zero,
docstrings.get('numpy.core.umath.bitwise_or'),
None,
TD(bints),
TD(O, f='PyNumber_Or'),
),
-'bitwise_xor' :
+'bitwise_xor':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.bitwise_xor'),
None,
TD(bints),
TD(O, f='PyNumber_Xor'),
),
-'invert' :
+'invert':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.invert'),
None,
TD(bints),
TD(O, f='PyNumber_Invert'),
),
-'left_shift' :
+'left_shift':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.left_shift'),
None,
TD(ints),
TD(O, f='PyNumber_Lshift'),
),
-'right_shift' :
+'right_shift':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.right_shift'),
None,
TD(ints),
TD(O, f='PyNumber_Rshift'),
),
-'degrees' :
+'degrees':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.degrees'),
None,
TD(fltsP, f='degrees', astype={'e':'f'}),
),
-'rad2deg' :
+'rad2deg':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.rad2deg'),
None,
TD(fltsP, f='rad2deg', astype={'e':'f'}),
),
-'radians' :
+'radians':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.radians'),
None,
TD(fltsP, f='radians', astype={'e':'f'}),
),
-'deg2rad' :
+'deg2rad':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.deg2rad'),
None,
TD(fltsP, f='deg2rad', astype={'e':'f'}),
),
-'arccos' :
+'arccos':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.arccos'),
None,
TD(inexact, f='acos', astype={'e':'f'}),
TD(P, f='arccos'),
),
-'arccosh' :
+'arccosh':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.arccosh'),
None,
TD(inexact, f='acosh', astype={'e':'f'}),
TD(P, f='arccosh'),
),
-'arcsin' :
+'arcsin':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.arcsin'),
None,
TD(inexact, f='asin', astype={'e':'f'}),
TD(P, f='arcsin'),
),
-'arcsinh' :
+'arcsinh':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.arcsinh'),
None,
TD(inexact, f='asinh', astype={'e':'f'}),
TD(P, f='arcsinh'),
),
-'arctan' :
+'arctan':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.arctan'),
None,
TD(inexact, f='atan', astype={'e':'f'}),
TD(P, f='arctan'),
),
-'arctanh' :
+'arctanh':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.arctanh'),
None,
TD(inexact, f='atanh', astype={'e':'f'}),
TD(P, f='arctanh'),
),
-'cos' :
+'cos':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.cos'),
None,
TD(inexact, f='cos', astype={'e':'f'}),
TD(P, f='cos'),
),
-'sin' :
+'sin':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.sin'),
None,
TD(inexact, f='sin', astype={'e':'f'}),
TD(P, f='sin'),
),
-'tan' :
+'tan':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.tan'),
None,
TD(inexact, f='tan', astype={'e':'f'}),
TD(P, f='tan'),
),
-'cosh' :
+'cosh':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.cosh'),
None,
TD(inexact, f='cosh', astype={'e':'f'}),
TD(P, f='cosh'),
),
-'sinh' :
+'sinh':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.sinh'),
None,
TD(inexact, f='sinh', astype={'e':'f'}),
TD(P, f='sinh'),
),
-'tanh' :
+'tanh':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.tanh'),
None,
TD(inexact, f='tanh', astype={'e':'f'}),
TD(P, f='tanh'),
),
-'exp' :
+'exp':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.exp'),
None,
TD(inexact, f='exp', astype={'e':'f'}),
TD(P, f='exp'),
),
-'exp2' :
+'exp2':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.exp2'),
None,
TD(inexact, f='exp2', astype={'e':'f'}),
TD(P, f='exp2'),
),
-'expm1' :
+'expm1':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.expm1'),
None,
TD(inexact, f='expm1', astype={'e':'f'}),
TD(P, f='expm1'),
),
-'log' :
+'log':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.log'),
None,
TD(inexact, f='log', astype={'e':'f'}),
TD(P, f='log'),
),
-'log2' :
+'log2':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.log2'),
None,
TD(inexact, f='log2', astype={'e':'f'}),
TD(P, f='log2'),
),
-'log10' :
+'log10':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.log10'),
None,
TD(inexact, f='log10', astype={'e':'f'}),
TD(P, f='log10'),
),
-'log1p' :
+'log1p':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.log1p'),
None,
TD(inexact, f='log1p', astype={'e':'f'}),
TD(P, f='log1p'),
),
-'sqrt' :
+'sqrt':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.sqrt'),
None,
@@ -691,105 +691,105 @@ defdict = {
TD(inexact, f='sqrt', astype={'e':'f'}),
TD(P, f='sqrt'),
),
-'ceil' :
+'ceil':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.ceil'),
None,
TD(flts, f='ceil', astype={'e':'f'}),
TD(P, f='ceil'),
),
-'trunc' :
+'trunc':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.trunc'),
None,
TD(flts, f='trunc', astype={'e':'f'}),
TD(P, f='trunc'),
),
-'fabs' :
+'fabs':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.fabs'),
None,
TD(flts, f='fabs', astype={'e':'f'}),
TD(P, f='fabs'),
),
-'floor' :
+'floor':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.floor'),
None,
TD(flts, f='floor', astype={'e':'f'}),
TD(P, f='floor'),
),
-'rint' :
+'rint':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.rint'),
None,
TD(inexact, f='rint', astype={'e':'f'}),
TD(P, f='rint'),
),
-'arctan2' :
+'arctan2':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.arctan2'),
None,
TD(flts, f='atan2', astype={'e':'f'}),
TD(P, f='arctan2'),
),
-'remainder' :
+'remainder':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.remainder'),
None,
TD(intflt),
TD(O, f='PyNumber_Remainder'),
),
-'hypot' :
+'hypot':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.hypot'),
None,
TD(flts, f='hypot', astype={'e':'f'}),
TD(P, f='hypot'),
),
-'isnan' :
+'isnan':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.isnan'),
None,
TD(inexact, out='?'),
),
-'isinf' :
+'isinf':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.isinf'),
None,
TD(inexact, out='?'),
),
-'isfinite' :
+'isfinite':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.isfinite'),
None,
TD(inexact, out='?'),
),
-'signbit' :
+'signbit':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.signbit'),
None,
TD(flts, out='?'),
),
-'copysign' :
+'copysign':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.copysign'),
None,
TD(flts),
),
-'nextafter' :
+'nextafter':
Ufunc(2, 1, None,
docstrings.get('numpy.core.umath.nextafter'),
None,
TD(flts),
),
-'spacing' :
+'spacing':
Ufunc(1, 1, None,
docstrings.get('numpy.core.umath.spacing'),
None,
TD(flts),
),
-'modf' :
+'modf':
Ufunc(1, 2, None,
docstrings.get('numpy.core.umath.modf'),
None,
@@ -801,11 +801,11 @@ if sys.version_info[0] >= 3:
# Will be aliased to true_divide in umathmodule.c.src:InitOtherOperators
del defdict['divide']
-def indent(st,spaces):
+def indent(st, spaces):
indention = ' '*spaces
- indented = indention + st.replace('\n','\n'+indention)
+ indented = indention + st.replace('\n', '\n'+indention)
# trim off any trailing spaces
- indented = re.sub(r' +$',r'',indented)
+ indented = re.sub(r' +$', r'', indented)
return indented
chartotype1 = {'e': 'e_e',
@@ -899,7 +899,7 @@ def make_arrays(funcdict):
% (name, datanames))
code1list.append("static char %s_signatures[] = { %s };" \
% (name, signames))
- return "\n".join(code1list),"\n".join(code2list)
+ return "\n".join(code1list), "\n".join(code2list)
def make_ufuncs(funcdict):
code3list = []
@@ -939,11 +939,11 @@ r"""f = PyUFunc_FromFuncAndData(%s_functions, %s_data, %s_signatures, %d,
return '\n'.join(code3list)
-def make_code(funcdict,filename):
+def make_code(funcdict, filename):
code1, code2 = make_arrays(funcdict)
code3 = make_ufuncs(funcdict)
- code2 = indent(code2,4)
- code3 = indent(code3,4)
+ code2 = indent(code2, 4)
+ code3 = indent(code3, 4)
code = r"""
/** Warning this file is autogenerated!!!
@@ -966,7 +966,7 @@ InitOperators(PyObject *dictionary) {
if __name__ == "__main__":
filename = __file__
- fid = open('__umath_generated.c','w')
+ fid = open('__umath_generated.c', 'w')
code = make_code(defdict, filename)
fid.write(code)
fid.close()
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index 1af1fea16..ca18d64ea 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -40,7 +40,7 @@ def _wrapit(obj, method, *args, **kwds):
wrap = obj.__array_wrap__
except AttributeError:
wrap = None
- result = getattr(asarray(obj),method)(*args, **kwds)
+ result = getattr(asarray(obj), method)(*args, **kwds)
if wrap:
if not isinstance(result, mu.ndarray):
result = asarray(result)
@@ -2239,7 +2239,7 @@ def alen(a):
try:
return len(a)
except TypeError:
- return len(array(a,ndmin=1))
+ return len(array(a, ndmin=1))
def prod(a, axis=None, dtype=None, out=None, keepdims=False):
diff --git a/numpy/core/function_base.py b/numpy/core/function_base.py
index f198ab3b8..f2c895608 100644
--- a/numpy/core/function_base.py
+++ b/numpy/core/function_base.py
@@ -164,5 +164,5 @@ def logspace(start,stop,num=50,endpoint=True,base=10.0):
>>> plt.show()
"""
- y = linspace(start,stop,num=num,endpoint=endpoint)
- return _nx.power(base,y)
+ y = linspace(start, stop, num=num, endpoint=endpoint)
+ return _nx.power(base, y)
diff --git a/numpy/core/getlimits.py b/numpy/core/getlimits.py
index 93210a23b..165ea6860 100644
--- a/numpy/core/getlimits.py
+++ b/numpy/core/getlimits.py
@@ -3,7 +3,7 @@
"""
from __future__ import division, absolute_import, print_function
-__all__ = ['finfo','iinfo']
+__all__ = ['finfo', 'iinfo']
from .machar import MachAr
from . import numeric
@@ -97,7 +97,7 @@ class finfo(object):
# In case a float instance was given
dtype = numeric.dtype(type(dtype))
- obj = cls._finfo_cache.get(dtype,None)
+ obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
return obj
dtypes = [dtype]
@@ -107,7 +107,7 @@ class finfo(object):
dtype = newdtype
if not issubclass(dtype, numeric.inexact):
raise ValueError("data type %r not inexact" % (dtype))
- obj = cls._finfo_cache.get(dtype,None)
+ obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
return obj
if not issubclass(dtype, numeric.floating):
@@ -115,7 +115,7 @@ class finfo(object):
if newdtype is not dtype:
dtypes.append(newdtype)
dtype = newdtype
- obj = cls._finfo_cache.get(dtype,None)
+ obj = cls._finfo_cache.get(dtype, None)
if obj is not None:
return obj
obj = object.__new__(cls)._init(dtype)
@@ -151,11 +151,11 @@ class finfo(object):
'numpy %s precision floating point number' % precname)
for word in ['precision', 'iexp',
- 'maxexp','minexp','negep',
+ 'maxexp', 'minexp', 'negep',
'machep']:
- setattr(self,word,getattr(machar, word))
- for word in ['tiny','resolution','epsneg']:
- setattr(self,word,getattr(machar, word).flat[0])
+ setattr(self, word, getattr(machar, word))
+ for word in ['tiny', 'resolution', 'epsneg']:
+ setattr(self, word, getattr(machar, word).flat[0])
self.max = machar.huge.flat[0]
self.min = -self.max
self.eps = machar.eps.flat[0]
@@ -296,11 +296,11 @@ max = %(max)s
if __name__ == '__main__':
f = finfo(ntypes.single)
- print('single epsilon:',f.eps)
- print('single tiny:',f.tiny)
+ print('single epsilon:', f.eps)
+ print('single tiny:', f.tiny)
f = finfo(ntypes.float)
- print('float epsilon:',f.eps)
- print('float tiny:',f.tiny)
+ print('float epsilon:', f.eps)
+ print('float tiny:', f.tiny)
f = finfo(ntypes.longfloat)
- print('longfloat epsilon:',f.eps)
- print('longfloat tiny:',f.tiny)
+ print('longfloat epsilon:', f.eps)
+ print('longfloat tiny:', f.tiny)
diff --git a/numpy/core/memmap.py b/numpy/core/memmap.py
index 53662ce89..bd99a1374 100644
--- a/numpy/core/memmap.py
+++ b/numpy/core/memmap.py
@@ -11,7 +11,7 @@ from numpy.compat import long, basestring
dtypedescr = dtype
valid_filemodes = ["r", "c", "r+", "w+"]
-writeable_filemodes = ["r+","w+"]
+writeable_filemodes = ["r+", "w+"]
mode_equivalents = {
"readonly":"r",
@@ -204,7 +204,7 @@ class memmap(ndarray):
raise ValueError("mode must be one of %s" %
(valid_filemodes + list(mode_equivalents.keys())))
- if hasattr(filename,'read'):
+ if hasattr(filename, 'read'):
fid = filename
own_file = False
else:
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index e2c020ced..1b3d5d5a8 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -866,9 +866,9 @@ for NumPy 2.0.
The new behavior fits the conventional definition of correlation: inputs are
never swapped, and the second argument is conjugated for complex arrays.""",
DeprecationWarning)
- return multiarray.correlate(a,v,mode)
+ return multiarray.correlate(a, v, mode)
else:
- return multiarray.correlate2(a,v,mode)
+ return multiarray.correlate2(a, v, mode)
def convolve(a,v,mode='full'):
"""
@@ -953,7 +953,7 @@ def convolve(a,v,mode='full'):
array([ 2.5])
"""
- a,v = array(a, ndmin=1),array(v, ndmin=1)
+ a, v = array(a, ndmin=1), array(v, ndmin=1)
if (len(v) > len(a)):
a, v = v, a
if len(a) == 0 :
@@ -963,7 +963,7 @@ def convolve(a,v,mode='full'):
mode = _mode_from_name(mode)
return multiarray.correlate(a, v[::-1], mode)
-def outer(a,b):
+def outer(a, b):
"""
Compute the outer product of two vectors.
@@ -1037,7 +1037,7 @@ def outer(a,b):
"""
a = asarray(a)
b = asarray(b)
- return a.ravel()[:,newaxis]*b.ravel()[newaxis,:]
+ return a.ravel()[:, newaxis]*b.ravel()[newaxis,:]
# try to import blas optimized dot if available
try:
@@ -1169,8 +1169,8 @@ def tensordot(a, b, axes=2):
try:
iter(axes)
except:
- axes_a = list(range(-axes,0))
- axes_b = list(range(0,axes))
+ axes_a = list(range(-axes, 0))
+ axes_b = list(range(0, axes))
else:
axes_a, axes_b = axes
try:
@@ -1346,7 +1346,7 @@ def rollaxis(a, axis, start=0):
start -= 1
if axis==start:
return a
- axes = list(range(0,n))
+ axes = list(range(0, n))
axes.remove(axis)
axes.insert(start, axis)
return a.transpose(axes)
@@ -1462,12 +1462,12 @@ def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
"""
if axis is not None:
- axisa,axisb,axisc=(axis,)*3
+ axisa, axisb, axisc=(axis,)*3
a = asarray(a).swapaxes(axisa, 0)
b = asarray(b).swapaxes(axisb, 0)
msg = "incompatible dimensions for cross product\n"\
"(dimension must be 2 or 3)"
- if (a.shape[0] not in [2,3]) or (b.shape[0] not in [2,3]):
+ if (a.shape[0] not in [2, 3]) or (b.shape[0] not in [2, 3]):
raise ValueError(msg)
if a.shape[0] == 2:
if (b.shape[0] == 2):
@@ -1489,11 +1489,11 @@ def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
x = -a[2]*b[1]
y = a[2]*b[0]
z = a[0]*b[1] - a[1]*b[0]
- cp = array([x,y,z])
+ cp = array([x, y, z])
if cp.ndim == 1:
return cp
else:
- return cp.swapaxes(0,axisc)
+ return cp.swapaxes(0, axisc)
#Use numarray's printing function
@@ -1742,10 +1742,10 @@ def indices(dimensions, dtype=int):
dimensions = tuple(dimensions)
N = len(dimensions)
if N == 0:
- return array([],dtype=dtype)
+ return array([], dtype=dtype)
res = empty((N,)+dimensions, dtype=dtype)
for i, dim in enumerate(dimensions):
- tmp = arange(dim,dtype=dtype)
+ tmp = arange(dim, dtype=dtype)
tmp.shape = (1,)*i + (dim,)+(1,)*(N-i-1)
newdim = dimensions[:i] + (1,)+ dimensions[i+1:]
val = zeros(newdim, dtype)
@@ -2019,7 +2019,7 @@ def _maketup(descr, val):
if fields is None:
return val
else:
- res = [_maketup(fields[name][0],val) for name in dt.names]
+ res = [_maketup(fields[name][0], val) for name in dt.names]
return tuple(res)
def identity(n, dtype=None):
@@ -2699,7 +2699,7 @@ class errstate(object):
# Note that we don't want to run the above doctests because they will fail
# without a from __future__ import with_statement
def __init__(self, **kwargs):
- self.call = kwargs.pop('call',_Unspecified)
+ self.call = kwargs.pop('call', _Unspecified)
self.kwargs = kwargs
def __enter__(self):
diff --git a/numpy/core/numerictypes.py b/numpy/core/numerictypes.py
index 1a5f31e4e..8dc4ca75e 100644
--- a/numpy/core/numerictypes.py
+++ b/numpy/core/numerictypes.py
@@ -86,7 +86,7 @@ from __future__ import division, absolute_import, print_function
__all__ = ['sctypeDict', 'sctypeNA', 'typeDict', 'typeNA', 'sctypes',
'ScalarType', 'obj2sctype', 'cast', 'nbytes', 'sctype2char',
'maximum_sctype', 'issctype', 'typecodes', 'find_common_type',
- 'issubdtype', 'datetime_data','datetime_as_string',
+ 'issubdtype', 'datetime_data', 'datetime_as_string',
'busday_offset', 'busday_count', 'is_busday', 'busdaycalendar',
]
@@ -436,7 +436,7 @@ def _construct_char_code_lookup():
for name in typeinfo.keys():
tup = typeinfo[name]
if isinstance(tup, tuple):
- if tup[0] not in ['p','P']:
+ if tup[0] not in ['p', 'P']:
_sctype2char_dict[tup[-1]] = tup[0]
_construct_char_code_lookup()
@@ -445,7 +445,7 @@ sctypes = {'int': [],
'uint':[],
'float':[],
'complex':[],
- 'others':[bool,object,str,unicode,void]}
+ 'others':[bool, object, str, unicode, void]}
def _add_array_type(typename, bits):
try:
@@ -541,7 +541,7 @@ except AttributeError:
# Py3K
buffer_type = memoryview
-_python_types = {int : 'int_',
+_python_types = {int: 'int_',
float: 'float_',
complex: 'complex_',
bool: 'bool_',
@@ -871,7 +871,7 @@ for key in _sctype2char_dict.keys():
if issubclass(key, allTypes['flexible']):
_typestr[key] = _sctype2char_dict[key]
else:
- _typestr[key] = empty((1,),key).dtype.str[1:]
+ _typestr[key] = empty((1,), key).dtype.str[1:]
# Make sure all typestrings are in sctypeDict
for key, val in _typestr.items():
@@ -942,7 +942,7 @@ def _find_common_coerce(a, b):
thisind = __test_types.index(a.char)
except ValueError:
return None
- return _can_coerce_all([a,b], start=thisind)
+ return _can_coerce_all([a, b], start=thisind)
# Find a data-type that all data-types in a list can be coerced to
def _can_coerce_all(dtypelist, start=0):
@@ -1030,6 +1030,6 @@ def find_common_type(array_types, scalar_types):
return None
if index_sc > index_a:
- return _find_common_coerce(maxsc,maxa)
+ return _find_common_coerce(maxsc, maxa)
else:
return maxa
diff --git a/numpy/core/setup.py b/numpy/core/setup.py
index 03d26c2b6..3937b2374 100644
--- a/numpy/core/setup.py
+++ b/numpy/core/setup.py
@@ -360,10 +360,10 @@ def check_types(config_cmd, ext, build_dir):
def check_mathlib(config_cmd):
# Testing the C math library
mathlibs = []
- mathlibs_choices = [[],['m'],['cpml']]
+ mathlibs_choices = [[], ['m'], ['cpml']]
mathlib = os.environ.get('MATHLIB')
if mathlib:
- mathlibs_choices.insert(0,mathlib.split(','))
+ mathlibs_choices.insert(0, mathlib.split(','))
for libs in mathlibs_choices:
if config_cmd.check_func("exp", libraries=libs, decl=True, call=True):
mathlibs = libs
@@ -383,12 +383,12 @@ def visibility_define(config):
return ''
def configuration(parent_package='',top_path=None):
- from numpy.distutils.misc_util import Configuration,dot_join
+ from numpy.distutils.misc_util import Configuration, dot_join
from numpy.distutils.system_info import get_info, default_lib_dirs
- config = Configuration('core',parent_package,top_path)
+ config = Configuration('core', parent_package, top_path)
local_dir = config.local_path
- codegen_dir = join(local_dir,'code_generators')
+ codegen_dir = join(local_dir, 'code_generators')
if is_released(config):
warnings.simplefilter('error', MismatchCAPIWarning)
@@ -397,32 +397,32 @@ def configuration(parent_package='',top_path=None):
# actual C API VERSION
check_api_version(C_API_VERSION, codegen_dir)
- generate_umath_py = join(codegen_dir,'generate_umath.py')
- n = dot_join(config.name,'generate_umath')
+ generate_umath_py = join(codegen_dir, 'generate_umath.py')
+ n = dot_join(config.name, 'generate_umath')
generate_umath = imp.load_module('_'.join(n.split('.')),
- open(generate_umath_py,'U'),generate_umath_py,
- ('.py','U',1))
+ open(generate_umath_py, 'U'), generate_umath_py,
+ ('.py', 'U', 1))
header_dir = 'include/numpy' # this is relative to config.path_in_package
cocache = CallOnceOnly()
def generate_config_h(ext, build_dir):
- target = join(build_dir,header_dir,'config.h')
+ target = join(build_dir, header_dir, 'config.h')
d = os.path.dirname(target)
if not os.path.exists(d):
os.makedirs(d)
- if newer(__file__,target):
+ if newer(__file__, target):
config_cmd = config.get_config_cmd()
- log.info('Generating %s',target)
+ log.info('Generating %s', target)
# Check sizeof
moredefs, ignored = cocache.check_types(config_cmd, ext, build_dir)
# Check math library and C99 math funcs availability
mathlibs = check_mathlib(config_cmd)
- moredefs.append(('MATHLIB',','.join(mathlibs)))
+ moredefs.append(('MATHLIB', ','.join(mathlibs)))
check_math_capabilities(config_cmd, moredefs, mathlibs)
moredefs.extend(cocache.check_ieee_macros(config_cmd)[0])
@@ -471,10 +471,10 @@ def configuration(parent_package='',top_path=None):
# Generate the config.h file from moredefs
target_f = open(target, 'w')
for d in moredefs:
- if isinstance(d,str):
+ if isinstance(d, str):
target_f.write('#define %s\n' % (d))
else:
- target_f.write('#define %s %s\n' % (d[0],d[1]))
+ target_f.write('#define %s %s\n' % (d[0], d[1]))
# define inline to our keyword, or nothing
target_f.write('#ifndef __cplusplus\n')
@@ -493,7 +493,7 @@ def configuration(parent_package='',top_path=None):
""")
target_f.close()
- print('File:',target)
+ print('File:', target)
target_f = open(target)
print(target_f.read())
target_f.close()
@@ -523,13 +523,13 @@ def configuration(parent_package='',top_path=None):
def generate_numpyconfig_h(ext, build_dir):
"""Depends on config.h: generate_config_h has to be called before !"""
- target = join(build_dir,header_dir,'_numpyconfig.h')
+ target = join(build_dir, header_dir, '_numpyconfig.h')
d = os.path.dirname(target)
if not os.path.exists(d):
os.makedirs(d)
- if newer(__file__,target):
+ if newer(__file__, target):
config_cmd = config.get_config_cmd()
- log.info('Generating %s',target)
+ log.info('Generating %s', target)
# Check sizeof
ignored, moredefs = cocache.check_types(config_cmd, ext, build_dir)
@@ -567,10 +567,10 @@ def configuration(parent_package='',top_path=None):
# Add moredefs to header
target_f = open(target, 'w')
for d in moredefs:
- if isinstance(d,str):
+ if isinstance(d, str):
target_f.write('#define %s\n' % (d))
else:
- target_f.write('#define %s %s\n' % (d[0],d[1]))
+ target_f.write('#define %s %s\n' % (d[0], d[1]))
# Define __STDC_FORMAT_MACROS
target_f.write("""
@@ -621,11 +621,11 @@ def configuration(parent_package='',top_path=None):
config.numpy_include_dirs.extend(config.paths('include'))
- deps = [join('src','npymath','_signbit.c'),
- join('include','numpy','*object.h'),
+ deps = [join('src', 'npymath', '_signbit.c'),
+ join('include', 'numpy', '*object.h'),
'include/numpy/fenv/fenv.c',
'include/numpy/fenv/fenv.h',
- join(codegen_dir,'genapi.py'),
+ join(codegen_dir, 'genapi.py'),
]
# Don't install fenv unless we need them.
@@ -643,7 +643,7 @@ def configuration(parent_package='',top_path=None):
# generate_numpyconfig_h as sources *before* adding npymath.
config.add_extension('_dummy',
- sources = [join('src','dummymodule.c'),
+ sources = [join('src', 'dummymodule.c'),
generate_config_h,
generate_numpyconfig_h,
generate_numpy_api]
@@ -826,7 +826,7 @@ def configuration(parent_package='',top_path=None):
[generate_config_h,
generate_numpyconfig_h,
generate_numpy_api,
- join(codegen_dir,'generate_numpy_api.py'),
+ join(codegen_dir, 'generate_numpy_api.py'),
join('*.py')],
depends = deps + multiarray_deps,
libraries = ['npymath', 'npysort'])
@@ -857,13 +857,13 @@ def configuration(parent_package='',top_path=None):
def generate_umath_c(ext, build_dir):
- target = join(build_dir,header_dir,'__umath_generated.c')
+ target = join(build_dir, header_dir, '__umath_generated.c')
dir = os.path.dirname(target)
if not os.path.exists(dir):
os.makedirs(dir)
script = generate_umath_py
- if newer(script,target):
- f = open(target,'w')
+ if newer(script, target):
+ f = open(target, 'w')
f.write(generate_umath.make_code(generate_umath.defdict,
generate_umath.__file__))
f.close()
@@ -881,7 +881,7 @@ def configuration(parent_package='',top_path=None):
umath_deps = [
generate_umath_py,
join('src', 'umath', 'simd.inc.src'),
- join(codegen_dir,'generate_ufunc_api.py')]
+ join(codegen_dir, 'generate_ufunc_api.py')]
if not ENABLE_SEPARATE_COMPILATION:
umath_deps.extend(umath_src)
@@ -905,7 +905,7 @@ def configuration(parent_package='',top_path=None):
#######################################################################
config.add_extension('scalarmath',
- sources = [join('src','scalarmathmodule.c.src'),
+ sources = [join('src', 'scalarmathmodule.c.src'),
generate_config_h,
generate_numpyconfig_h,
generate_numpy_api,
@@ -919,19 +919,19 @@ def configuration(parent_package='',top_path=None):
#######################################################################
# Configure blasdot
- blas_info = get_info('blas_opt',0)
+ blas_info = get_info('blas_opt', 0)
#blas_info = {}
def get_dotblas_sources(ext, build_dir):
if blas_info:
- if ('NO_ATLAS_INFO',1) in blas_info.get('define_macros',[]):
+ if ('NO_ATLAS_INFO', 1) in blas_info.get('define_macros', []):
return None # dotblas needs ATLAS, Fortran compiled blas will not be sufficient.
return ext.depends[:1]
return None # no extension module will be built
config.add_extension('_dotblas',
sources = [get_dotblas_sources],
- depends = [join('blasdot','_dotblas.c'),
- join('blasdot','cblas.h'),
+ depends = [join('blasdot', '_dotblas.c'),
+ join('blasdot', 'cblas.h'),
],
include_dirs = ['blasdot'],
extra_info = blas_info
@@ -942,21 +942,21 @@ def configuration(parent_package='',top_path=None):
#######################################################################
config.add_extension('umath_tests',
- sources = [join('src','umath', 'umath_tests.c.src')])
+ sources = [join('src', 'umath', 'umath_tests.c.src')])
#######################################################################
# custom rational dtype module #
#######################################################################
config.add_extension('test_rational',
- sources = [join('src','umath', 'test_rational.c.src')])
+ sources = [join('src', 'umath', 'test_rational.c.src')])
#######################################################################
# struct_ufunc_test module #
#######################################################################
config.add_extension('struct_ufunc_test',
- sources = [join('src','umath', 'struct_ufunc_test.c.src')])
+ sources = [join('src', 'umath', 'struct_ufunc_test.c.src')])
#######################################################################
# multiarray_tests module #
@@ -970,7 +970,7 @@ def configuration(parent_package='',top_path=None):
#######################################################################
config.add_extension('operand_flag_tests',
- sources = [join('src','umath', 'operand_flag_tests.c.src')])
+ sources = [join('src', 'umath', 'operand_flag_tests.c.src')])
config.add_data_dir('tests')
config.add_data_dir('tests/data')
diff --git a/numpy/core/setup_common.py b/numpy/core/setup_common.py
index 7f0ad8bfe..1f3e6b44e 100644
--- a/numpy/core/setup_common.py
+++ b/numpy/core/setup_common.py
@@ -236,9 +236,9 @@ def pyod(filename):
else:
return _pyod3()
-_BEFORE_SEQ = ['000','000','000','000','000','000','000','000',
- '001','043','105','147','211','253','315','357']
-_AFTER_SEQ = ['376', '334','272','230','166','124','062','020']
+_BEFORE_SEQ = ['000', '000', '000', '000', '000', '000', '000', '000',
+ '001', '043', '105', '147', '211', '253', '315', '357']
+_AFTER_SEQ = ['376', '334', '272', '230', '166', '124', '062', '020']
_IEEE_DOUBLE_BE = ['301', '235', '157', '064', '124', '000', '000', '000']
_IEEE_DOUBLE_LE = _IEEE_DOUBLE_BE[::-1]
diff --git a/numpy/core/shape_base.py b/numpy/core/shape_base.py
index 3671033e9..ae684fb42 100644
--- a/numpy/core/shape_base.py
+++ b/numpy/core/shape_base.py
@@ -1,6 +1,6 @@
from __future__ import division, absolute_import, print_function
-__all__ = ['atleast_1d','atleast_2d','atleast_3d','vstack','hstack']
+__all__ = ['atleast_1d', 'atleast_2d', 'atleast_3d', 'vstack', 'hstack']
from . import numeric as _nx
from .numeric import array, asanyarray, newaxis
@@ -100,7 +100,7 @@ def atleast_2d(*arys):
if len(ary.shape) == 0 :
result = ary.reshape(1, 1)
elif len(ary.shape) == 1 :
- result = ary[newaxis, :]
+ result = ary[newaxis,:]
else :
result = ary
res.append(result)
@@ -162,11 +162,11 @@ def atleast_3d(*arys):
for ary in arys:
ary = asanyarray(ary)
if len(ary.shape) == 0:
- result = ary.reshape(1,1,1)
+ result = ary.reshape(1, 1, 1)
elif len(ary.shape) == 1:
- result = ary[newaxis,:,newaxis]
+ result = ary[newaxis,:, newaxis]
elif len(ary.shape) == 2:
- result = ary[:,:,newaxis]
+ result = ary[:,:, newaxis]
else:
result = ary
res.append(result)
diff --git a/numpy/core/src/multiarray/testcalcs.py b/numpy/core/src/multiarray/testcalcs.py
index 9182ae2c3..e8b7b1734 100644
--- a/numpy/core/src/multiarray/testcalcs.py
+++ b/numpy/core/src/multiarray/testcalcs.py
@@ -33,7 +33,7 @@ def year_offset(year):
else
return_val = year*365 + (year-3)/4 - (year-99)/100 + (year-399)/400;
"""
- return weave.inline(code,['year'])
+ return weave.inline(code, ['year'])
def days_from_ymd(year, month, day):
diff --git a/numpy/core/tests/test_api.py b/numpy/core/tests/test_api.py
index e8dacba2e..0bec38f22 100644
--- a/numpy/core/tests/test_api.py
+++ b/numpy/core/tests/test_api.py
@@ -167,19 +167,19 @@ def test_fastCopyAndTranspose():
assert_(b.flags.owndata)
# 1D array
- a = np.array([3,2,7,0])
+ a = np.array([3, 2, 7, 0])
b = np.fastCopyAndTranspose(a)
assert_equal(b, a.T)
assert_(b.flags.owndata)
# 2D array
- a = np.arange(6).reshape(2,3)
+ a = np.arange(6).reshape(2, 3)
b = np.fastCopyAndTranspose(a)
assert_equal(b, a.T)
assert_(b.flags.owndata)
def test_array_astype():
- a = np.arange(6, dtype='f4').reshape(2,3)
+ a = np.arange(6, dtype='f4').reshape(2, 3)
# Default behavior: allows unsafe casts, keeps memory layout,
# always copies.
b = a.astype('i4')
@@ -221,7 +221,7 @@ def test_array_astype():
b = a.astype('f4', subok=0, copy=False)
assert_(a is b)
- a = np.matrix([[0,1,2],[3,4,5]], dtype='f4')
+ a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
# subok=True passes through a matrix
b = a.astype('f4', subok=True, copy=False)
@@ -276,7 +276,7 @@ def test_array_astype():
def test_copyto_fromscalar():
- a = np.arange(6, dtype='f4').reshape(2,3)
+ a = np.arange(6, dtype='f4').reshape(2, 3)
# Simple copy
np.copyto(a, 1.5)
@@ -285,23 +285,23 @@ def test_copyto_fromscalar():
assert_equal(a, 2.5)
# Where-masked copy
- mask = np.array([[0,1,0],[0,0,1]], dtype='?')
+ mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
np.copyto(a, 3.5, where=mask)
- assert_equal(a, [[2.5,3.5,2.5],[2.5,2.5,3.5]])
- mask = np.array([[0,1],[1,1],[1,0]], dtype='?')
+ assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
+ mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
np.copyto(a.T, 4.5, where=mask)
- assert_equal(a, [[2.5,4.5,4.5],[4.5,4.5,3.5]])
+ assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
def test_copyto():
- a = np.arange(6, dtype='i4').reshape(2,3)
+ a = np.arange(6, dtype='i4').reshape(2, 3)
# Simple copy
- np.copyto(a, [[3,1,5], [6,2,1]])
- assert_equal(a, [[3,1,5], [6,2,1]])
+ np.copyto(a, [[3, 1, 5], [6, 2, 1]])
+ assert_equal(a, [[3, 1, 5], [6, 2, 1]])
# Overlapping copy should work
- np.copyto(a[:,:2], a[::-1, 1::-1])
- assert_equal(a, [[2,6,5], [1,3,1]])
+ np.copyto(a[:, :2], a[::-1, 1::-1])
+ assert_equal(a, [[2, 6, 5], [1, 3, 1]])
# Defaults to 'same_kind' casting
assert_raises(TypeError, np.copyto, a, 1.5)
@@ -311,27 +311,27 @@ def test_copyto():
assert_equal(a, 1)
# Copying with a mask
- np.copyto(a, 3, where=[True,False,True])
- assert_equal(a, [[3,1,3],[3,1,3]])
+ np.copyto(a, 3, where=[True, False, True])
+ assert_equal(a, [[3, 1, 3], [3, 1, 3]])
# Casting rule still applies with a mask
- assert_raises(TypeError, np.copyto, a, 3.5, where=[True,False,True])
+ assert_raises(TypeError, np.copyto, a, 3.5, where=[True, False, True])
# Lists of integer 0's and 1's is ok too
- np.copyto(a, 4.0, casting='unsafe', where=[[0,1,1], [1,0,0]])
- assert_equal(a, [[3,4,4], [4,1,3]])
+ np.copyto(a, 4.0, casting='unsafe', where=[[0, 1, 1], [1, 0, 0]])
+ assert_equal(a, [[3, 4, 4], [4, 1, 3]])
# Overlapping copy with mask should work
- np.copyto(a[:,:2], a[::-1, 1::-1], where=[[0,1],[1,1]])
- assert_equal(a, [[3,4,4], [4,3,3]])
+ np.copyto(a[:, :2], a[::-1, 1::-1], where=[[0, 1], [1, 1]])
+ assert_equal(a, [[3, 4, 4], [4, 3, 3]])
# 'dst' must be an array
- assert_raises(TypeError, np.copyto, [1,2,3], [2,3,4])
+ assert_raises(TypeError, np.copyto, [1, 2, 3], [2, 3, 4])
def test_copy_order():
- a = np.arange(24).reshape(2,1,3,4)
+ a = np.arange(24).reshape(2, 1, 3, 4)
b = a.copy(order='F')
- c = np.arange(24).reshape(2,1,4,3).swapaxes(2,3)
+ c = np.arange(24).reshape(2, 1, 4, 3).swapaxes(2, 3)
def check_copy_result(x, y, ccontig, fcontig, strides=False):
assert_(not (x is y))
@@ -397,10 +397,10 @@ def test_copy_order():
check_copy_result(res, c, ccontig=False, fcontig=False, strides=True)
def test_contiguous_flags():
- a = np.ones((4,4,1))[::2,:,:]
+ a = np.ones((4, 4, 1))[::2,:,:]
if NPY_RELAXED_STRIDES_CHECKING:
a.strides = a.strides[:2] + (-123,)
- b = np.ones((2,2,1,2,2)).swapaxes(3,4)
+ b = np.ones((2, 2, 1, 2, 2)).swapaxes(3, 4)
def check_contig(a, ccontig, fcontig):
assert_(a.flags.c_contiguous == ccontig)
@@ -410,13 +410,13 @@ def test_contiguous_flags():
check_contig(a, False, False)
check_contig(b, False, False)
if NPY_RELAXED_STRIDES_CHECKING:
- check_contig(np.empty((2,2,0,2,2)), True, True)
- check_contig(np.array([[[1],[2]]], order='F'), True, True)
+ check_contig(np.empty((2, 2, 0, 2, 2)), True, True)
+ check_contig(np.array([[[1], [2]]], order='F'), True, True)
else:
- check_contig(np.empty((2,2,0,2,2)), True, False)
- check_contig(np.array([[[1],[2]]], order='F'), False, True)
- check_contig(np.empty((2,2)), True, False)
- check_contig(np.empty((2,2), order='F'), False, True)
+ check_contig(np.empty((2, 2, 0, 2, 2)), True, False)
+ check_contig(np.array([[[1], [2]]], order='F'), False, True)
+ check_contig(np.empty((2, 2)), True, False)
+ check_contig(np.empty((2, 2), order='F'), False, True)
# Check that np.array creates correct contiguous flags:
check_contig(np.array(a, copy=False), False, False)
@@ -426,27 +426,27 @@ def test_contiguous_flags():
if NPY_RELAXED_STRIDES_CHECKING:
# Check slicing update of flags and :
check_contig(a[0], True, True)
- check_contig(a[None,::4,...,None], True, True)
- check_contig(b[0,0,...], False, True)
- check_contig(b[:,:,0:0,:,:], True, True)
+ check_contig(a[None, ::4, ..., None], True, True)
+ check_contig(b[0, 0, ...], False, True)
+ check_contig(b[:,:, 0:0,:,:], True, True)
else:
# Check slicing update of flags:
check_contig(a[0], True, False)
# Would be nice if this was C-Contiguous:
- check_contig(a[None,0,...,None], False, False)
- check_contig(b[0,0,0,...], False, True)
+ check_contig(a[None, 0, ..., None], False, False)
+ check_contig(b[0, 0, 0, ...], False, True)
# Test ravel and squeeze.
check_contig(a.ravel(), True, True)
- check_contig(np.ones((1,3,1)).squeeze(), True, True)
+ check_contig(np.ones((1, 3, 1)).squeeze(), True, True)
def test_broadcast_arrays():
# Test user defined dtypes
- a = np.array([(1,2,3)], dtype='u4,u4,u4')
- b = np.array([(1,2,3),(4,5,6),(7,8,9)], dtype='u4,u4,u4')
+ a = np.array([(1, 2, 3)], dtype='u4,u4,u4')
+ b = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4')
result = np.broadcast_arrays(a, b)
- assert_equal(result[0], np.array([(1,2,3),(1,2,3),(1,2,3)], dtype='u4,u4,u4'))
- assert_equal(result[1], np.array([(1,2,3),(4,5,6),(7,8,9)], dtype='u4,u4,u4'))
+ assert_equal(result[0], np.array([(1, 2, 3), (1, 2, 3), (1, 2, 3)], dtype='u4,u4,u4'))
+ assert_equal(result[1], np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4'))
if __name__ == "__main__":
run_module_suite()
diff --git a/numpy/core/tests/test_blasdot.py b/numpy/core/tests/test_blasdot.py
index 2e99cf5b0..624c617d3 100644
--- a/numpy/core/tests/test_blasdot.py
+++ b/numpy/core/tests/test_blasdot.py
@@ -50,16 +50,16 @@ def test_dot_3args():
r = np.empty((1024, 32))
for i in range(12):
- np.dot(f,v,r)
+ np.dot(f, v, r)
assert_equal(sys.getrefcount(r), 2)
- r2 = np.dot(f,v,out=None)
+ r2 = np.dot(f, v, out=None)
assert_array_equal(r2, r)
- assert_(r is np.dot(f,v,out=r))
+ assert_(r is np.dot(f, v, out=r))
- v = v[:,0].copy() # v.shape == (16,)
- r = r[:,0].copy() # r.shape == (1024,)
- r2 = np.dot(f,v)
- assert_(r is np.dot(f,v,r))
+ v = v[:, 0].copy() # v.shape == (16,)
+ r = r[:, 0].copy() # r.shape == (1024,)
+ r2 = np.dot(f, v)
+ assert_(r is np.dot(f, v, r))
assert_array_equal(r2, r)
def test_dot_3args_errors():
@@ -81,8 +81,8 @@ def test_dot_3args_errors():
assert_raises(ValueError, np.dot, f, v, r.T)
r = np.empty((1024, 64))
- assert_raises(ValueError, np.dot, f, v, r[:,::2])
- assert_raises(ValueError, np.dot, f, v, r[:,:32])
+ assert_raises(ValueError, np.dot, f, v, r[:, ::2])
+ assert_raises(ValueError, np.dot, f, v, r[:, :32])
r = np.empty((1024, 32), dtype=np.float32)
assert_raises(ValueError, np.dot, f, v, r)
diff --git a/numpy/core/tests/test_datetime.py b/numpy/core/tests/test_datetime.py
index 4ba0c048a..84efd87b3 100644
--- a/numpy/core/tests/test_datetime.py
+++ b/numpy/core/tests/test_datetime.py
@@ -159,26 +159,26 @@ class TestDateTime(TestCase):
# Construction from datetime.date
assert_equal(np.datetime64('1945-03-25'),
- np.datetime64(datetime.date(1945,3,25)))
+ np.datetime64(datetime.date(1945, 3, 25)))
assert_equal(np.datetime64('2045-03-25', 'D'),
- np.datetime64(datetime.date(2045,3,25), 'D'))
+ np.datetime64(datetime.date(2045, 3, 25), 'D'))
# Construction from datetime.datetime
assert_equal(np.datetime64('1980-01-25T14:36:22.5Z'),
- np.datetime64(datetime.datetime(1980,1,25,
- 14,36,22,500000)))
+ np.datetime64(datetime.datetime(1980, 1, 25,
+ 14, 36, 22, 500000)))
# Construction with time units from a date raises
assert_raises(TypeError, np.datetime64, '1920-03-13', 'h')
assert_raises(TypeError, np.datetime64, '1920-03', 'm')
assert_raises(TypeError, np.datetime64, '1920', 's')
- assert_raises(TypeError, np.datetime64, datetime.date(2045,3,25), 'ms')
+ assert_raises(TypeError, np.datetime64, datetime.date(2045, 3, 25), 'ms')
# Construction with date units from a datetime raises
assert_raises(TypeError, np.datetime64, '1920-03-13T18Z', 'D')
assert_raises(TypeError, np.datetime64, '1920-03-13T18:33Z', 'W')
assert_raises(TypeError, np.datetime64, '1920-03-13T18:33:12Z', 'M')
assert_raises(TypeError, np.datetime64, '1920-03-13T18:33:12.5Z', 'Y')
assert_raises(TypeError, np.datetime64,
- datetime.datetime(1920,4,14,13,20), 'D')
+ datetime.datetime(1920, 4, 14, 13, 20), 'D')
def test_datetime_array_find_type(self):
dt = np.datetime64('1970-01-01', 'M')
@@ -351,12 +351,12 @@ class TestDateTime(TestCase):
np.dtype('M8[as]'))
# Python date object
- assert_equal(np.datetime64(datetime.date(2010,4,16)).dtype,
+ assert_equal(np.datetime64(datetime.date(2010, 4, 16)).dtype,
np.dtype('M8[D]'))
# Python datetime object
assert_equal(np.datetime64(
- datetime.datetime(2010,4,16,13,45,18)).dtype,
+ datetime.datetime(2010, 4, 16, 13, 45, 18)).dtype,
np.dtype('M8[us]'))
# 'today' special value
@@ -592,7 +592,7 @@ class TestDateTime(TestCase):
def test_pyobject_roundtrip(self):
# All datetime types should be able to roundtrip through object
- a = np.array([0,0,0,0,0,0,0,0,0,
+ a = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0,
-1020040340, -2942398, -1, 0, 1, 234523453, 1199164176],
dtype=np.int64)
# With date units
@@ -878,11 +878,11 @@ class TestDateTime(TestCase):
# M8 - M8 with different goes to higher precision
assert_equal(np.subtract(dtc, dtd, casting='unsafe'),
- np.timedelta64(0,'h'))
+ np.timedelta64(0, 'h'))
assert_equal(np.subtract(dtc, dtd, casting='unsafe').dtype,
np.dtype('m8[h]'))
assert_equal(np.subtract(dtd, dtc, casting='unsafe'),
- np.timedelta64(0,'h'))
+ np.timedelta64(0, 'h'))
assert_equal(np.subtract(dtd, dtc, casting='unsafe').dtype,
np.dtype('m8[h]'))
@@ -1004,40 +1004,40 @@ class TestDateTime(TestCase):
# of the operand metadata
a = np.array('1999-03-12T13Z', dtype='M8[2m]')
b = np.array('1999-03-12T12Z', dtype='M8[s]')
- assert_equal(np.minimum(a,b), b)
- assert_equal(np.minimum(a,b).dtype, np.dtype('M8[s]'))
- assert_equal(np.fmin(a,b), b)
- assert_equal(np.fmin(a,b).dtype, np.dtype('M8[s]'))
- assert_equal(np.maximum(a,b), a)
- assert_equal(np.maximum(a,b).dtype, np.dtype('M8[s]'))
- assert_equal(np.fmax(a,b), a)
- assert_equal(np.fmax(a,b).dtype, np.dtype('M8[s]'))
+ assert_equal(np.minimum(a, b), b)
+ assert_equal(np.minimum(a, b).dtype, np.dtype('M8[s]'))
+ assert_equal(np.fmin(a, b), b)
+ assert_equal(np.fmin(a, b).dtype, np.dtype('M8[s]'))
+ assert_equal(np.maximum(a, b), a)
+ assert_equal(np.maximum(a, b).dtype, np.dtype('M8[s]'))
+ assert_equal(np.fmax(a, b), a)
+ assert_equal(np.fmax(a, b).dtype, np.dtype('M8[s]'))
# Viewed as integers, the comparison is opposite because
# of the units chosen
- assert_equal(np.minimum(a.view('i8'),b.view('i8')), a.view('i8'))
+ assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))
# Interaction with NaT
a = np.array('1999-03-12T13Z', dtype='M8[2m]')
dtnat = np.array('NaT', dtype='M8[h]')
- assert_equal(np.minimum(a,dtnat), a)
- assert_equal(np.minimum(dtnat,a), a)
- assert_equal(np.maximum(a,dtnat), a)
- assert_equal(np.maximum(dtnat,a), a)
+ assert_equal(np.minimum(a, dtnat), a)
+ assert_equal(np.minimum(dtnat, a), a)
+ assert_equal(np.maximum(a, dtnat), a)
+ assert_equal(np.maximum(dtnat, a), a)
# Also do timedelta
a = np.array(3, dtype='m8[h]')
b = np.array(3*3600 - 3, dtype='m8[s]')
- assert_equal(np.minimum(a,b), b)
- assert_equal(np.minimum(a,b).dtype, np.dtype('m8[s]'))
- assert_equal(np.fmin(a,b), b)
- assert_equal(np.fmin(a,b).dtype, np.dtype('m8[s]'))
- assert_equal(np.maximum(a,b), a)
- assert_equal(np.maximum(a,b).dtype, np.dtype('m8[s]'))
- assert_equal(np.fmax(a,b), a)
- assert_equal(np.fmax(a,b).dtype, np.dtype('m8[s]'))
+ assert_equal(np.minimum(a, b), b)
+ assert_equal(np.minimum(a, b).dtype, np.dtype('m8[s]'))
+ assert_equal(np.fmin(a, b), b)
+ assert_equal(np.fmin(a, b).dtype, np.dtype('m8[s]'))
+ assert_equal(np.maximum(a, b), a)
+ assert_equal(np.maximum(a, b).dtype, np.dtype('m8[s]'))
+ assert_equal(np.fmax(a, b), a)
+ assert_equal(np.fmax(a, b).dtype, np.dtype('m8[s]'))
# Viewed as integers, the comparison is opposite because
# of the units chosen
- assert_equal(np.minimum(a.view('i8'),b.view('i8')), a.view('i8'))
+ assert_equal(np.minimum(a.view('i8'), b.view('i8')), a.view('i8'))
# should raise between datetime and timedelta
#
@@ -1394,18 +1394,18 @@ class TestDateTime(TestCase):
assert_raises(ValueError, np.arange, np.datetime64('today'),
np.datetime64('today') + 3, 0)
# Promotion across nonlinear unit boundaries is disallowed
- assert_raises(TypeError, np.arange, np.datetime64('2011-03-01','D'),
- np.timedelta64(5,'M'))
+ assert_raises(TypeError, np.arange, np.datetime64('2011-03-01', 'D'),
+ np.timedelta64(5, 'M'))
assert_raises(TypeError, np.arange,
- np.datetime64('2012-02-03T14Z','s'),
- np.timedelta64(5,'Y'))
+ np.datetime64('2012-02-03T14Z', 's'),
+ np.timedelta64(5, 'Y'))
def test_timedelta_arange(self):
a = np.arange(3, 10, dtype='m8')
assert_equal(a.dtype, np.dtype('m8'))
assert_equal(a, np.timedelta64(0) + np.arange(3, 10))
- a = np.arange(np.timedelta64(3,'s'), 10, 2, dtype='m8')
+ a = np.arange(np.timedelta64(3, 's'), 10, 2, dtype='m8')
assert_equal(a.dtype, np.dtype('m8[s]'))
assert_equal(a, np.timedelta64(0, 's') + np.arange(3, 10, 2))
@@ -1413,18 +1413,18 @@ class TestDateTime(TestCase):
assert_raises(ValueError, np.arange, np.timedelta64(0),
np.timedelta64(5), 0)
# Promotion across nonlinear unit boundaries is disallowed
- assert_raises(TypeError, np.arange, np.timedelta64(0,'D'),
- np.timedelta64(5,'M'))
- assert_raises(TypeError, np.arange, np.timedelta64(0,'Y'),
- np.timedelta64(5,'D'))
+ assert_raises(TypeError, np.arange, np.timedelta64(0, 'D'),
+ np.timedelta64(5, 'M'))
+ assert_raises(TypeError, np.arange, np.timedelta64(0, 'Y'),
+ np.timedelta64(5, 'D'))
def test_datetime_maximum_reduce(self):
- a = np.array(['2010-01-02','1999-03-14','1833-03'], dtype='M8[D]')
+ a = np.array(['2010-01-02', '1999-03-14', '1833-03'], dtype='M8[D]')
assert_equal(np.maximum.reduce(a).dtype, np.dtype('M8[D]'))
assert_equal(np.maximum.reduce(a),
np.datetime64('2010-01-02'))
- a = np.array([1,4,0,7,2], dtype='m8[s]')
+ a = np.array([1, 4, 0, 7, 2], dtype='m8[s]')
assert_equal(np.maximum.reduce(a).dtype, np.dtype('m8[s]'))
assert_equal(np.maximum.reduce(a),
np.timedelta64(7, 's'))
@@ -1432,14 +1432,14 @@ class TestDateTime(TestCase):
def test_datetime_busday_offset(self):
# First Monday in June
assert_equal(
- np.busday_offset('2011-06',0,roll='forward',weekmask='Mon'),
+ np.busday_offset('2011-06', 0, roll='forward', weekmask='Mon'),
np.datetime64('2011-06-06'))
# Last Monday in June
assert_equal(
- np.busday_offset('2011-07',-1,roll='forward',weekmask='Mon'),
+ np.busday_offset('2011-07', -1, roll='forward', weekmask='Mon'),
np.datetime64('2011-06-27'))
assert_equal(
- np.busday_offset('2011-07',-1,roll='forward',weekmask='Mon'),
+ np.busday_offset('2011-07', -1, roll='forward', weekmask='Mon'),
np.datetime64('2011-06-27'))
# Default M-F business days, different roll modes
@@ -1481,26 +1481,26 @@ class TestDateTime(TestCase):
# and sorts the result.
bdd = np.busdaycalendar(
holidays=['NaT', '2011-01-17', '2011-03-06', 'NaT',
- '2011-12-26','2011-05-30','2011-01-17'])
+ '2011-12-26', '2011-05-30', '2011-01-17'])
assert_equal(bdd.holidays,
- np.array(['2011-01-17','2011-05-30','2011-12-26'], dtype='M8'))
+ np.array(['2011-01-17', '2011-05-30', '2011-12-26'], dtype='M8'))
# Default M-F weekmask
- assert_equal(bdd.weekmask, np.array([1,1,1,1,1,0,0], dtype='?'))
+ assert_equal(bdd.weekmask, np.array([1, 1, 1, 1, 1, 0, 0], dtype='?'))
# Check string weekmask with varying whitespace.
bdd = np.busdaycalendar(weekmask="Sun TueWed Thu\tFri")
- assert_equal(bdd.weekmask, np.array([0,1,1,1,1,0,1], dtype='?'))
+ assert_equal(bdd.weekmask, np.array([0, 1, 1, 1, 1, 0, 1], dtype='?'))
# Check length 7 0/1 string
bdd = np.busdaycalendar(weekmask="0011001")
- assert_equal(bdd.weekmask, np.array([0,0,1,1,0,0,1], dtype='?'))
+ assert_equal(bdd.weekmask, np.array([0, 0, 1, 1, 0, 0, 1], dtype='?'))
# Check length 7 string weekmask.
bdd = np.busdaycalendar(weekmask="Mon Tue")
- assert_equal(bdd.weekmask, np.array([1,1,0,0,0,0,0], dtype='?'))
+ assert_equal(bdd.weekmask, np.array([1, 1, 0, 0, 0, 0, 0], dtype='?'))
# All-zeros weekmask should raise
- assert_raises(ValueError, np.busdaycalendar, weekmask=[0,0,0,0,0,0,0])
+ assert_raises(ValueError, np.busdaycalendar, weekmask=[0, 0, 0, 0, 0, 0, 0])
# weekday names must be correct case
assert_raises(ValueError, np.busdaycalendar, weekmask="satsun")
# All-zeros weekmask should raise
diff --git a/numpy/core/tests/test_defchararray.py b/numpy/core/tests/test_defchararray.py
index 4656c842f..09fcff0d0 100644
--- a/numpy/core/tests/test_defchararray.py
+++ b/numpy/core/tests/test_defchararray.py
@@ -37,14 +37,14 @@ class TestBasic(TestCase):
assert_array_equal(B, A)
assert_equal(B.dtype, A.dtype)
assert_equal(B.shape, A.shape)
- B[0,0] = 'changed'
- assert_(B[0,0] != A[0,0])
+ B[0, 0] = 'changed'
+ assert_(B[0, 0] != A[0, 0])
C = np.char.asarray(A)
assert_array_equal(C, A)
assert_equal(C.dtype, A.dtype)
- C[0,0] = 'changed again'
- assert_(C[0,0] != B[0,0])
- assert_(C[0,0] == A[0,0])
+ C[0, 0] = 'changed again'
+ assert_(C[0, 0] != B[0, 0])
+ assert_(C[0, 0] == A[0, 0])
def test_from_unicode_array(self):
A = np.array([['abc', sixu('Sigma \u03a3')],
@@ -572,9 +572,9 @@ class TestOperations(TestCase):
def test_mul(self):
A = self.A
- for r in (2,3,5,7,197):
- Ar = np.array([[A[0,0]*r, A[0,1]*r],
- [A[1,0]*r, A[1,1]*r]]).view(np.chararray)
+ for r in (2, 3, 5, 7, 197):
+ Ar = np.array([[A[0, 0]*r, A[0, 1]*r],
+ [A[1, 0]*r, A[1, 1]*r]]).view(np.chararray)
assert_array_equal(Ar, (self.A * r))
@@ -588,9 +588,9 @@ class TestOperations(TestCase):
def test_rmul(self):
A = self.A
- for r in (2,3,5,7,197):
- Ar = np.array([[A[0,0]*r, A[0,1]*r],
- [A[1,0]*r, A[1,1]*r]]).view(np.chararray)
+ for r in (2, 3, 5, 7, 197):
+ Ar = np.array([[A[0, 0]*r, A[0, 1]*r],
+ [A[1, 0]*r, A[1, 1]*r]]).view(np.chararray)
assert_array_equal(Ar, (r * self.A))
for ob in [object(), 'qrs']:
@@ -603,18 +603,18 @@ class TestOperations(TestCase):
def test_mod(self):
"""Ticket #856"""
- F = np.array([['%d', '%f'],['%s','%r']]).view(np.chararray)
- C = np.array([[3,7],[19,1]])
+ F = np.array([['%d', '%f'], ['%s', '%r']]).view(np.chararray)
+ C = np.array([[3, 7], [19, 1]])
FC = np.array([['3', '7.000000'],
['19', '1']]).view(np.chararray)
assert_array_equal(FC, F % C)
- A = np.array([['%.3f','%d'],['%s','%r']]).view(np.chararray)
- A1 = np.array([['1.000','1'],['1','1']]).view(np.chararray)
+ A = np.array([['%.3f', '%d'], ['%s', '%r']]).view(np.chararray)
+ A1 = np.array([['1.000', '1'], ['1', '1']]).view(np.chararray)
assert_array_equal(A1, (A % 1))
- A2 = np.array([['1.000','2'],['3','4']]).view(np.chararray)
- assert_array_equal(A2, (A % [[1,2],[3,4]]))
+ A2 = np.array([['1.000', '2'], ['3', '4']]).view(np.chararray)
+ assert_array_equal(A2, (A % [[1, 2], [3, 4]]))
def test_rmod(self):
assert_(("%s" % self.A) == str(self.A))
diff --git a/numpy/core/tests/test_deprecations.py b/numpy/core/tests/test_deprecations.py
index 2bedbca09..11e572ada 100644
--- a/numpy/core/tests/test_deprecations.py
+++ b/numpy/core/tests/test_deprecations.py
@@ -148,20 +148,20 @@ class TestFloatNonIntegerArgumentDeprecation(_DeprecationTestCase):
assert_deprecated(lambda: a[0.0])
assert_deprecated(lambda: a[0, 0.0])
assert_deprecated(lambda: a[0.0, 0])
- assert_deprecated(lambda: a[0.0, :])
+ assert_deprecated(lambda: a[0.0,:])
assert_deprecated(lambda: a[:, 0.0])
- assert_deprecated(lambda: a[:, 0.0, :])
- assert_deprecated(lambda: a[0.0, :, :], num=2) # [1]
+ assert_deprecated(lambda: a[:, 0.0,:])
+ assert_deprecated(lambda: a[0.0,:,:], num=2) # [1]
assert_deprecated(lambda: a[0, 0, 0.0])
assert_deprecated(lambda: a[0.0, 0, 0])
assert_deprecated(lambda: a[0, 0.0, 0])
assert_deprecated(lambda: a[-1.4])
assert_deprecated(lambda: a[0, -1.4])
assert_deprecated(lambda: a[-1.4, 0])
- assert_deprecated(lambda: a[-1.4, :])
+ assert_deprecated(lambda: a[-1.4,:])
assert_deprecated(lambda: a[:, -1.4])
- assert_deprecated(lambda: a[:, -1.4, :])
- assert_deprecated(lambda: a[-1.4, :, :], num=2) # [1]
+ assert_deprecated(lambda: a[:, -1.4,:])
+ assert_deprecated(lambda: a[-1.4,:,:], num=2) # [1]
assert_deprecated(lambda: a[0, 0, -1.4])
assert_deprecated(lambda: a[-1.4, 0, 0])
assert_deprecated(lambda: a[0, -1.4, 0])
@@ -170,7 +170,7 @@ class TestFloatNonIntegerArgumentDeprecation(_DeprecationTestCase):
# Test that the slice parameter deprecation warning doesn't mask
# the scalar index warning.
assert_deprecated(lambda: a[0.0:, 0.0], num=2)
- assert_deprecated(lambda: a[0.0:, 0.0, :], num=2)
+ assert_deprecated(lambda: a[0.0:, 0.0,:], num=2)
def test_valid_indexing(self):
@@ -180,8 +180,8 @@ class TestFloatNonIntegerArgumentDeprecation(_DeprecationTestCase):
assert_not_deprecated(lambda: a[np.array([0])])
assert_not_deprecated(lambda: a[[0, 0]])
assert_not_deprecated(lambda: a[:, [0, 0]])
- assert_not_deprecated(lambda: a[:, 0, :])
- assert_not_deprecated(lambda: a[:, :, :])
+ assert_not_deprecated(lambda: a[:, 0,:])
+ assert_not_deprecated(lambda: a[:,:,:])
def test_slicing(self):
@@ -193,26 +193,26 @@ class TestFloatNonIntegerArgumentDeprecation(_DeprecationTestCase):
assert_deprecated(lambda: a[0.0:])
assert_deprecated(lambda: a[0:, 0.0:2])
assert_deprecated(lambda: a[0.0::2, :0])
- assert_deprecated(lambda: a[0.0:1:2, :])
+ assert_deprecated(lambda: a[0.0:1:2,:])
assert_deprecated(lambda: a[:, 0.0:])
# stop as float.
assert_deprecated(lambda: a[:0.0])
assert_deprecated(lambda: a[:0, 1:2.0])
assert_deprecated(lambda: a[:0.0:2, :0])
- assert_deprecated(lambda: a[:0.0, :])
+ assert_deprecated(lambda: a[:0.0,:])
assert_deprecated(lambda: a[:, 0:4.0:2])
# step as float.
assert_deprecated(lambda: a[::1.0])
assert_deprecated(lambda: a[0:, :2:2.0])
assert_deprecated(lambda: a[1::4.0, :0])
- assert_deprecated(lambda: a[::5.0, :])
+ assert_deprecated(lambda: a[::5.0,:])
assert_deprecated(lambda: a[:, 0:4:2.0])
# mixed.
assert_deprecated(lambda: a[1.0:2:2.0], num=2)
assert_deprecated(lambda: a[1.0::2.0], num=2)
assert_deprecated(lambda: a[0:, :2.0:2.0], num=2)
assert_deprecated(lambda: a[1.0:1:4.0, :0], num=2)
- assert_deprecated(lambda: a[1.0:5.0:5.0, :], num=3)
+ assert_deprecated(lambda: a[1.0:5.0:5.0,:], num=3)
assert_deprecated(lambda: a[:, 0.4:4.0:2.0], num=3)
# should still get the DeprecationWarning if step = 0.
assert_deprecated(lambda: a[::0.0], function_fails=True)
@@ -261,8 +261,8 @@ class TestBooleanArgumentDeprecation(_DeprecationTestCase):
assert_raises(TypeError, operator.index, np.array(True))
self.assert_deprecated(np.take, args=(a, [0], False))
self.assert_deprecated(lambda: a[False:True:True], exceptions=IndexError, num=3)
- self.assert_deprecated(lambda: a[False,0], exceptions=IndexError)
- self.assert_deprecated(lambda: a[False,0,0], exceptions=IndexError)
+ self.assert_deprecated(lambda: a[False, 0], exceptions=IndexError)
+ self.assert_deprecated(lambda: a[False, 0, 0], exceptions=IndexError)
class TestArrayToIndexDeprecation(_DeprecationTestCase):
diff --git a/numpy/core/tests/test_dtype.py b/numpy/core/tests/test_dtype.py
index fed7375b7..83017ea6a 100644
--- a/numpy/core/tests/test_dtype.py
+++ b/numpy/core/tests/test_dtype.py
@@ -85,21 +85,21 @@ class TestBuiltin(TestCase):
def test_bad_param(self):
# Can't give a size that's too small
assert_raises(ValueError, np.dtype,
- {'names':['f0','f1'],
+ {'names':['f0', 'f1'],
'formats':['i4', 'i1'],
- 'offsets':[0,4],
+ 'offsets':[0, 4],
'itemsize':4})
# If alignment is enabled, the alignment (4) must divide the itemsize
assert_raises(ValueError, np.dtype,
- {'names':['f0','f1'],
+ {'names':['f0', 'f1'],
'formats':['i4', 'i1'],
- 'offsets':[0,4],
+ 'offsets':[0, 4],
'itemsize':9}, align=True)
# If alignment is enabled, the individual fields must be aligned
assert_raises(ValueError, np.dtype,
- {'names':['f0','f1'],
- 'formats':['i1','f4'],
- 'offsets':[0,2]}, align=True)
+ {'names':['f0', 'f1'],
+ 'formats':['i1', 'f4'],
+ 'offsets':[0, 2]}, align=True)
class TestRecord(TestCase):
def test_equivalent_record(self):
@@ -116,10 +116,10 @@ class TestRecord(TestCase):
def test_different_titles(self):
# In theory, they may hash the same (collision) ?
- a = np.dtype({'names': ['r','b'],
+ a = np.dtype({'names': ['r', 'b'],
'formats': ['u1', 'u1'],
'titles': ['Red pixel', 'Blue pixel']})
- b = np.dtype({'names': ['r','b'],
+ b = np.dtype({'names': ['r', 'b'],
'formats': ['u1', 'u1'],
'titles': ['RRed pixel', 'Blue pixel']})
assert_dtype_not_equal(a, b)
@@ -139,9 +139,9 @@ class TestRecord(TestCase):
assert_equal(dt.itemsize, 8)
dt = np.dtype([('f0', 'i4'), ('f1', 'i1')], align=True)
assert_equal(dt.itemsize, 8)
- dt = np.dtype({'names':['f0','f1'],
+ dt = np.dtype({'names':['f0', 'f1'],
'formats':['i4', 'u1'],
- 'offsets':[0,4]}, align=True)
+ 'offsets':[0, 4]}, align=True)
assert_equal(dt.itemsize, 8)
dt = np.dtype({'f0': ('i4', 0), 'f1':('u1', 4)}, align=True)
assert_equal(dt.itemsize, 8)
@@ -150,7 +150,7 @@ class TestRecord(TestCase):
('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]),
('f2', 'i1')], align=True)
assert_equal(dt1.itemsize, 20)
- dt2 = np.dtype({'names':['f0','f1','f2'],
+ dt2 = np.dtype({'names':['f0', 'f1', 'f2'],
'formats':['i4',
[('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')],
'i1'],
@@ -167,7 +167,7 @@ class TestRecord(TestCase):
('f1', [('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')]),
('f2', 'i1')], align=False)
assert_equal(dt1.itemsize, 11)
- dt2 = np.dtype({'names':['f0','f1','f2'],
+ dt2 = np.dtype({'names':['f0', 'f1', 'f2'],
'formats':['i4',
[('f1', 'i1'), ('f2', 'i4'), ('f3', 'i1')],
'i1'],
@@ -182,22 +182,22 @@ class TestRecord(TestCase):
def test_union_struct(self):
# Should be able to create union dtypes
- dt = np.dtype({'names':['f0','f1','f2'], 'formats':['<u4', '<u2','<u2'],
- 'offsets':[0,0,2]}, align=True)
+ dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'],
+ 'offsets':[0, 0, 2]}, align=True)
assert_equal(dt.itemsize, 4)
a = np.array([3], dtype='<u4').view(dt)
a['f1'] = 10
a['f2'] = 36
assert_equal(a['f0'], 10 + 36*256*256)
# Should be able to specify fields out of order
- dt = np.dtype({'names':['f0','f1','f2'], 'formats':['<u4', '<u2','<u2'],
- 'offsets':[4,0,2]}, align=True)
+ dt = np.dtype({'names':['f0', 'f1', 'f2'], 'formats':['<u4', '<u2', '<u2'],
+ 'offsets':[4, 0, 2]}, align=True)
assert_equal(dt.itemsize, 8)
- dt2 = np.dtype({'names':['f2','f0','f1'],
- 'formats':['<u2', '<u4','<u2'],
- 'offsets':[2,4,0]}, align=True)
- vals = [(0,1,2), (3,-1,4)]
- vals2 = [(2,0,1), (4,3,-1)]
+ dt2 = np.dtype({'names':['f2', 'f0', 'f1'],
+ 'formats':['<u2', '<u4', '<u2'],
+ 'offsets':[2, 4, 0]}, align=True)
+ vals = [(0, 1, 2), (3, -1, 4)]
+ vals2 = [(2, 0, 1), (4, 3, -1)]
a = np.array(vals, dt)
b = np.array(vals2, dt2)
assert_equal(a.astype(dt2), b)
@@ -206,23 +206,23 @@ class TestRecord(TestCase):
assert_equal(b.view(dt), a)
# Should not be able to overlap objects with other types
assert_raises(TypeError, np.dtype,
- {'names':['f0','f1'],
+ {'names':['f0', 'f1'],
'formats':['O', 'i1'],
- 'offsets':[0,2]})
+ 'offsets':[0, 2]})
assert_raises(TypeError, np.dtype,
- {'names':['f0','f1'],
+ {'names':['f0', 'f1'],
'formats':['i4', 'O'],
- 'offsets':[0,3]})
+ 'offsets':[0, 3]})
assert_raises(TypeError, np.dtype,
- {'names':['f0','f1'],
- 'formats':[[('a','O')], 'i1'],
- 'offsets':[0,2]})
+ {'names':['f0', 'f1'],
+ 'formats':[[('a', 'O')], 'i1'],
+ 'offsets':[0, 2]})
assert_raises(TypeError, np.dtype,
- {'names':['f0','f1'],
- 'formats':['i4', [('a','O')]],
- 'offsets':[0,3]})
+ {'names':['f0', 'f1'],
+ 'formats':['i4', [('a', 'O')]],
+ 'offsets':[0, 3]})
# Out of order should still be ok, however
- dt = np.dtype({'names':['f0','f1'],
+ dt = np.dtype({'names':['f0', 'f1'],
'formats':['i1', 'O'],
'offsets':[np.dtype('intp').itemsize, 0]})
@@ -263,38 +263,38 @@ class TestSubarray(TestCase):
def test_shape_equal(self):
"""Test some data types that are equal"""
- assert_dtype_equal(np.dtype('f8'), np.dtype(('f8',tuple())))
- assert_dtype_equal(np.dtype('f8'), np.dtype(('f8',1)))
- assert_dtype_equal(np.dtype((np.int,2)), np.dtype((np.int,(2,))))
- assert_dtype_equal(np.dtype(('<f4',(3,2))), np.dtype(('<f4',(3,2))))
- d = ([('a','f4',(1,2)),('b','f8',(3,1))],(3,2))
+ assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', tuple())))
+ assert_dtype_equal(np.dtype('f8'), np.dtype(('f8', 1)))
+ assert_dtype_equal(np.dtype((np.int, 2)), np.dtype((np.int, (2,))))
+ assert_dtype_equal(np.dtype(('<f4', (3, 2))), np.dtype(('<f4', (3, 2))))
+ d = ([('a', 'f4', (1, 2)), ('b', 'f8', (3, 1))], (3, 2))
assert_dtype_equal(np.dtype(d), np.dtype(d))
def test_shape_simple(self):
"""Test some simple cases that shouldn't be equal"""
- assert_dtype_not_equal(np.dtype('f8'), np.dtype(('f8',(1,))))
- assert_dtype_not_equal(np.dtype(('f8',(1,))), np.dtype(('f8',(1,1))))
- assert_dtype_not_equal(np.dtype(('f4',(3,2))), np.dtype(('f4',(2,3))))
+ assert_dtype_not_equal(np.dtype('f8'), np.dtype(('f8', (1,))))
+ assert_dtype_not_equal(np.dtype(('f8', (1,))), np.dtype(('f8', (1, 1))))
+ assert_dtype_not_equal(np.dtype(('f4', (3, 2))), np.dtype(('f4', (2, 3))))
def test_shape_monster(self):
"""Test some more complicated cases that shouldn't be equal"""
assert_dtype_not_equal(
- np.dtype(([('a','f4',(2,1)), ('b','f8',(1,3))],(2,2))),
- np.dtype(([('a','f4',(1,2)), ('b','f8',(1,3))],(2,2))))
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
+ np.dtype(([('a', 'f4', (1, 2)), ('b', 'f8', (1, 3))], (2, 2))))
assert_dtype_not_equal(
- np.dtype(([('a','f4',(2,1)), ('b','f8',(1,3))],(2,2))),
- np.dtype(([('a','f4',(2,1)), ('b','i8',(1,3))],(2,2))))
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'i8', (1, 3))], (2, 2))))
assert_dtype_not_equal(
- np.dtype(([('a','f4',(2,1)), ('b','f8',(1,3))],(2,2))),
- np.dtype(([('e','f8',(1,3)), ('d','f4',(2,1))],(2,2))))
+ np.dtype(([('a', 'f4', (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
+ np.dtype(([('e', 'f8', (1, 3)), ('d', 'f4', (2, 1))], (2, 2))))
assert_dtype_not_equal(
- np.dtype(([('a',[('a','i4',6)],(2,1)), ('b','f8',(1,3))],(2,2))),
- np.dtype(([('a',[('a','u4',6)],(2,1)), ('b','f8',(1,3))],(2,2))))
+ np.dtype(([('a', [('a', 'i4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2))),
+ np.dtype(([('a', [('a', 'u4', 6)], (2, 1)), ('b', 'f8', (1, 3))], (2, 2))))
class TestMonsterType(TestCase):
"""Test deeply nested subtypes."""
def test1(self):
- simple1 = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'],
+ simple1 = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
'titles': ['Red pixel', 'Blue pixel']})
a = np.dtype([('yo', np.int), ('ye', simple1),
('yi', np.dtype((np.int, (3, 2))))])
@@ -357,7 +357,7 @@ class TestString(TestCase):
"'aligned':True}")
assert_equal(np.dtype(eval(str(dt))), dt)
- dt = np.dtype({'names': ['r','g','b'], 'formats': ['u1', 'u1', 'u1'],
+ dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'],
'offsets': [0, 1, 2],
'titles': ['Red pixel', 'Green pixel', 'Blue pixel']})
assert_equal(str(dt),
@@ -365,7 +365,7 @@ class TestString(TestCase):
"(('Green pixel', 'g'), 'u1'), "
"(('Blue pixel', 'b'), 'u1')]")
- dt = np.dtype({'names': ['rgba', 'r','g','b'],
+ dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'],
'formats': ['<u4', 'u1', 'u1', 'u1'],
'offsets': [0, 0, 1, 2],
'titles': ['Color', 'Red pixel',
@@ -378,7 +378,7 @@ class TestString(TestCase):
"'Green pixel','Blue pixel'],"
" 'itemsize':4}")
- dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'],
+ dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
'offsets': [0, 2],
'titles': ['Red pixel', 'Blue pixel']})
assert_equal(str(dt),
@@ -403,7 +403,7 @@ class TestString(TestCase):
"('bottom', [('bleft', ('>f4', (8, 64)), (1,)), "
"('bright', '>f4', (8, 36))])])")
- dt = np.dtype({'names': ['r','g','b'], 'formats': ['u1', 'u1', 'u1'],
+ dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'],
'offsets': [0, 1, 2],
'titles': ['Red pixel', 'Green pixel', 'Blue pixel']},
align=True)
@@ -412,7 +412,7 @@ class TestString(TestCase):
"(('Green pixel', 'g'), 'u1'), "
"(('Blue pixel', 'b'), 'u1')], align=True)")
- dt = np.dtype({'names': ['rgba', 'r','g','b'],
+ dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'],
'formats': ['<u4', 'u1', 'u1', 'u1'],
'offsets': [0, 0, 1, 2],
'titles': ['Color', 'Red pixel',
@@ -425,7 +425,7 @@ class TestString(TestCase):
"'Green pixel','Blue pixel'],"
" 'itemsize':4}, align=True)")
- dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'],
+ dt = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'],
'offsets': [0, 2],
'titles': ['Red pixel', 'Blue pixel'],
'itemsize': 4})
diff --git a/numpy/core/tests/test_einsum.py b/numpy/core/tests/test_einsum.py
index e7480a269..31f94bf07 100644
--- a/numpy/core/tests/test_einsum.py
+++ b/numpy/core/tests/test_einsum.py
@@ -38,42 +38,42 @@ class TestEinSum(TestCase):
# can't have more subscripts than dimensions in the operand
assert_raises(ValueError, np.einsum, "i", 0)
- assert_raises(ValueError, np.einsum, "ij", [0,0])
+ assert_raises(ValueError, np.einsum, "ij", [0, 0])
assert_raises(ValueError, np.einsum, "...i", 0)
- assert_raises(ValueError, np.einsum, "i...j", [0,0])
+ assert_raises(ValueError, np.einsum, "i...j", [0, 0])
assert_raises(ValueError, np.einsum, "i...", 0)
- assert_raises(ValueError, np.einsum, "ij...", [0,0])
+ assert_raises(ValueError, np.einsum, "ij...", [0, 0])
# invalid ellipsis
- assert_raises(ValueError, np.einsum, "i..", [0,0])
- assert_raises(ValueError, np.einsum, ".i...", [0,0])
- assert_raises(ValueError, np.einsum, "j->..j", [0,0])
- assert_raises(ValueError, np.einsum, "j->.j...", [0,0])
+ assert_raises(ValueError, np.einsum, "i..", [0, 0])
+ assert_raises(ValueError, np.einsum, ".i...", [0, 0])
+ assert_raises(ValueError, np.einsum, "j->..j", [0, 0])
+ assert_raises(ValueError, np.einsum, "j->.j...", [0, 0])
# invalid subscript character
- assert_raises(ValueError, np.einsum, "i%...", [0,0])
- assert_raises(ValueError, np.einsum, "...j$", [0,0])
- assert_raises(ValueError, np.einsum, "i->&", [0,0])
+ assert_raises(ValueError, np.einsum, "i%...", [0, 0])
+ assert_raises(ValueError, np.einsum, "...j$", [0, 0])
+ assert_raises(ValueError, np.einsum, "i->&", [0, 0])
# output subscripts must appear in input
- assert_raises(ValueError, np.einsum, "i->ij", [0,0])
+ assert_raises(ValueError, np.einsum, "i->ij", [0, 0])
# output subscripts may only be specified once
- assert_raises(ValueError, np.einsum, "ij->jij", [[0,0],[0,0]])
+ assert_raises(ValueError, np.einsum, "ij->jij", [[0, 0], [0, 0]])
# dimensions much match when being collapsed
- assert_raises(ValueError, np.einsum, "ii", np.arange(6).reshape(2,3))
- assert_raises(ValueError, np.einsum, "ii->i", np.arange(6).reshape(2,3))
+ assert_raises(ValueError, np.einsum, "ii", np.arange(6).reshape(2, 3))
+ assert_raises(ValueError, np.einsum, "ii->i", np.arange(6).reshape(2, 3))
# broadcasting to new dimensions must be enabled explicitly
- assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2,3))
- assert_raises(ValueError, np.einsum, "i->i", [[0,1],[0,1]],
- out=np.arange(4).reshape(2,2))
+ assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2, 3))
+ assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]],
+ out=np.arange(4).reshape(2, 2))
def test_einsum_views(self):
# pass-through
a = np.arange(6)
- a.shape = (2,3)
+ a.shape = (2, 3)
b = np.einsum("...", a)
assert_(b.base is a)
@@ -85,186 +85,186 @@ class TestEinSum(TestCase):
assert_(b.base is a)
assert_equal(b, a)
- b = np.einsum(a, [0,1])
+ b = np.einsum(a, [0, 1])
assert_(b.base is a)
assert_equal(b, a)
# transpose
a = np.arange(6)
- a.shape = (2,3)
+ a.shape = (2, 3)
b = np.einsum("ji", a)
assert_(b.base is a)
assert_equal(b, a.T)
- b = np.einsum(a, [1,0])
+ b = np.einsum(a, [1, 0])
assert_(b.base is a)
assert_equal(b, a.T)
# diagonal
a = np.arange(9)
- a.shape = (3,3)
+ a.shape = (3, 3)
b = np.einsum("ii->i", a)
assert_(b.base is a)
- assert_equal(b, [a[i,i] for i in range(3)])
+ assert_equal(b, [a[i, i] for i in range(3)])
- b = np.einsum(a, [0,0], [0])
+ b = np.einsum(a, [0, 0], [0])
assert_(b.base is a)
- assert_equal(b, [a[i,i] for i in range(3)])
+ assert_equal(b, [a[i, i] for i in range(3)])
# diagonal with various ways of broadcasting an additional dimension
a = np.arange(27)
- a.shape = (3,3,3)
+ a.shape = (3, 3, 3)
b = np.einsum("...ii->...i", a)
assert_(b.base is a)
- assert_equal(b, [[x[i,i] for i in range(3)] for x in a])
+ assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
- b = np.einsum(a, [Ellipsis,0,0], [Ellipsis,0])
+ b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0])
assert_(b.base is a)
- assert_equal(b, [[x[i,i] for i in range(3)] for x in a])
+ assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
b = np.einsum("ii...->...i", a)
assert_(b.base is a)
- assert_equal(b, [[x[i,i] for i in range(3)]
- for x in a.transpose(2,0,1)])
+ assert_equal(b, [[x[i, i] for i in range(3)]
+ for x in a.transpose(2, 0, 1)])
- b = np.einsum(a, [0,0,Ellipsis], [Ellipsis,0])
+ b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0])
assert_(b.base is a)
- assert_equal(b, [[x[i,i] for i in range(3)]
- for x in a.transpose(2,0,1)])
+ assert_equal(b, [[x[i, i] for i in range(3)]
+ for x in a.transpose(2, 0, 1)])
b = np.einsum("...ii->i...", a)
assert_(b.base is a)
- assert_equal(b, [a[:,i,i] for i in range(3)])
+ assert_equal(b, [a[:, i, i] for i in range(3)])
- b = np.einsum(a, [Ellipsis,0,0], [0,Ellipsis])
+ b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis])
assert_(b.base is a)
- assert_equal(b, [a[:,i,i] for i in range(3)])
+ assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum("jii->ij", a)
assert_(b.base is a)
- assert_equal(b, [a[:,i,i] for i in range(3)])
+ assert_equal(b, [a[:, i, i] for i in range(3)])
- b = np.einsum(a, [1,0,0], [0,1])
+ b = np.einsum(a, [1, 0, 0], [0, 1])
assert_(b.base is a)
- assert_equal(b, [a[:,i,i] for i in range(3)])
+ assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum("ii...->i...", a)
assert_(b.base is a)
- assert_equal(b, [a.transpose(2,0,1)[:,i,i] for i in range(3)])
+ assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
- b = np.einsum(a, [0,0,Ellipsis], [0,Ellipsis])
+ b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis])
assert_(b.base is a)
- assert_equal(b, [a.transpose(2,0,1)[:,i,i] for i in range(3)])
+ assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
b = np.einsum("i...i->i...", a)
assert_(b.base is a)
- assert_equal(b, [a.transpose(1,0,2)[:,i,i] for i in range(3)])
+ assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
- b = np.einsum(a, [0,Ellipsis,0], [0,Ellipsis])
+ b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis])
assert_(b.base is a)
- assert_equal(b, [a.transpose(1,0,2)[:,i,i] for i in range(3)])
+ assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
b = np.einsum("i...i->...i", a)
assert_(b.base is a)
- assert_equal(b, [[x[i,i] for i in range(3)]
- for x in a.transpose(1,0,2)])
+ assert_equal(b, [[x[i, i] for i in range(3)]
+ for x in a.transpose(1, 0, 2)])
- b = np.einsum(a, [0,Ellipsis,0], [Ellipsis,0])
+ b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0])
assert_(b.base is a)
- assert_equal(b, [[x[i,i] for i in range(3)]
- for x in a.transpose(1,0,2)])
+ assert_equal(b, [[x[i, i] for i in range(3)]
+ for x in a.transpose(1, 0, 2)])
# triple diagonal
a = np.arange(27)
- a.shape = (3,3,3)
+ a.shape = (3, 3, 3)
b = np.einsum("iii->i", a)
assert_(b.base is a)
- assert_equal(b, [a[i,i,i] for i in range(3)])
+ assert_equal(b, [a[i, i, i] for i in range(3)])
- b = np.einsum(a, [0,0,0], [0])
+ b = np.einsum(a, [0, 0, 0], [0])
assert_(b.base is a)
- assert_equal(b, [a[i,i,i] for i in range(3)])
+ assert_equal(b, [a[i, i, i] for i in range(3)])
# swap axes
a = np.arange(24)
- a.shape = (2,3,4)
+ a.shape = (2, 3, 4)
b = np.einsum("ijk->jik", a)
assert_(b.base is a)
- assert_equal(b, a.swapaxes(0,1))
+ assert_equal(b, a.swapaxes(0, 1))
- b = np.einsum(a, [0,1,2], [1,0,2])
+ b = np.einsum(a, [0, 1, 2], [1, 0, 2])
assert_(b.base is a)
- assert_equal(b, a.swapaxes(0,1))
+ assert_equal(b, a.swapaxes(0, 1))
def check_einsum_sums(self, dtype):
# Check various sums. Does many sizes to exercise unrolled loops.
# sum(a, axis=-1)
- for n in range(1,17):
+ for n in range(1, 17):
a = np.arange(n, dtype=dtype)
assert_equal(np.einsum("i->", a), np.sum(a, axis=-1).astype(dtype))
assert_equal(np.einsum(a, [0], []),
np.sum(a, axis=-1).astype(dtype))
- for n in range(1,17):
- a = np.arange(2*3*n, dtype=dtype).reshape(2,3,n)
+ for n in range(1, 17):
+ a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
assert_equal(np.einsum("...i->...", a),
np.sum(a, axis=-1).astype(dtype))
- assert_equal(np.einsum(a, [Ellipsis,0], [Ellipsis]),
+ assert_equal(np.einsum(a, [Ellipsis, 0], [Ellipsis]),
np.sum(a, axis=-1).astype(dtype))
# sum(a, axis=0)
- for n in range(1,17):
- a = np.arange(2*n, dtype=dtype).reshape(2,n)
+ for n in range(1, 17):
+ a = np.arange(2*n, dtype=dtype).reshape(2, n)
assert_equal(np.einsum("i...->...", a),
np.sum(a, axis=0).astype(dtype))
- assert_equal(np.einsum(a, [0,Ellipsis], [Ellipsis]),
+ assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis]),
np.sum(a, axis=0).astype(dtype))
- for n in range(1,17):
- a = np.arange(2*3*n, dtype=dtype).reshape(2,3,n)
+ for n in range(1, 17):
+ a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
assert_equal(np.einsum("i...->...", a),
np.sum(a, axis=0).astype(dtype))
- assert_equal(np.einsum(a, [0,Ellipsis], [Ellipsis]),
+ assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis]),
np.sum(a, axis=0).astype(dtype))
# trace(a)
- for n in range(1,17):
- a = np.arange(n*n, dtype=dtype).reshape(n,n)
+ for n in range(1, 17):
+ a = np.arange(n*n, dtype=dtype).reshape(n, n)
assert_equal(np.einsum("ii", a), np.trace(a).astype(dtype))
- assert_equal(np.einsum(a, [0,0]), np.trace(a).astype(dtype))
+ assert_equal(np.einsum(a, [0, 0]), np.trace(a).astype(dtype))
# multiply(a, b)
assert_equal(np.einsum("..., ...", 3, 4), 12) # scalar case
- for n in range(1,17):
- a = np.arange(3*n, dtype=dtype).reshape(3,n)
- b = np.arange(2*3*n, dtype=dtype).reshape(2,3,n)
+ for n in range(1, 17):
+ a = np.arange(3*n, dtype=dtype).reshape(3, n)
+ b = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
assert_equal(np.einsum("..., ...", a, b), np.multiply(a, b))
assert_equal(np.einsum(a, [Ellipsis], b, [Ellipsis]),
np.multiply(a, b))
# inner(a,b)
- for n in range(1,17):
- a = np.arange(2*3*n, dtype=dtype).reshape(2,3,n)
+ for n in range(1, 17):
+ a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
b = np.arange(n, dtype=dtype)
assert_equal(np.einsum("...i, ...i", a, b), np.inner(a, b))
- assert_equal(np.einsum(a, [Ellipsis,0], b, [Ellipsis,0]),
+ assert_equal(np.einsum(a, [Ellipsis, 0], b, [Ellipsis, 0]),
np.inner(a, b))
- for n in range(1,11):
- a = np.arange(n*3*2, dtype=dtype).reshape(n,3,2)
+ for n in range(1, 11):
+ a = np.arange(n*3*2, dtype=dtype).reshape(n, 3, 2)
b = np.arange(n, dtype=dtype)
assert_equal(np.einsum("i..., i...", a, b), np.inner(a.T, b.T).T)
- assert_equal(np.einsum(a, [0,Ellipsis], b, [0,Ellipsis]),
+ assert_equal(np.einsum(a, [0, Ellipsis], b, [0, Ellipsis]),
np.inner(a.T, b.T).T)
# outer(a,b)
- for n in range(1,17):
+ for n in range(1, 17):
a = np.arange(3, dtype=dtype)+1
b = np.arange(n, dtype=dtype)+1
assert_equal(np.einsum("i,j", a, b), np.outer(a, b))
@@ -275,11 +275,11 @@ class TestEinSum(TestCase):
warnings.simplefilter('ignore', np.ComplexWarning)
# matvec(a,b) / a.dot(b) where a is matrix, b is vector
- for n in range(1,17):
- a = np.arange(4*n, dtype=dtype).reshape(4,n)
+ for n in range(1, 17):
+ a = np.arange(4*n, dtype=dtype).reshape(4, n)
b = np.arange(n, dtype=dtype)
assert_equal(np.einsum("ij, j", a, b), np.dot(a, b))
- assert_equal(np.einsum(a, [0,1], b, [1]), np.dot(a, b))
+ assert_equal(np.einsum(a, [0, 1], b, [1]), np.dot(a, b))
c = np.arange(4, dtype=dtype)
np.einsum("ij,j", a, b, out=c,
@@ -288,17 +288,17 @@ class TestEinSum(TestCase):
np.dot(a.astype('f8'),
b.astype('f8')).astype(dtype))
c[...] = 0
- np.einsum(a, [0,1], b, [1], out=c,
+ np.einsum(a, [0, 1], b, [1], out=c,
dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(a.astype('f8'),
b.astype('f8')).astype(dtype))
- for n in range(1,17):
- a = np.arange(4*n, dtype=dtype).reshape(4,n)
+ for n in range(1, 17):
+ a = np.arange(4*n, dtype=dtype).reshape(4, n)
b = np.arange(n, dtype=dtype)
assert_equal(np.einsum("ji,j", a.T, b.T), np.dot(b.T, a.T))
- assert_equal(np.einsum(a.T, [1,0], b.T, [1]), np.dot(b.T, a.T))
+ assert_equal(np.einsum(a.T, [1, 0], b.T, [1]), np.dot(b.T, a.T))
c = np.arange(4, dtype=dtype)
np.einsum("ji,j", a.T, b.T, out=c, dtype='f8', casting='unsafe')
@@ -306,30 +306,30 @@ class TestEinSum(TestCase):
np.dot(b.T.astype('f8'),
a.T.astype('f8')).astype(dtype))
c[...] = 0
- np.einsum(a.T, [1,0], b.T, [1], out=c,
+ np.einsum(a.T, [1, 0], b.T, [1], out=c,
dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(b.T.astype('f8'),
a.T.astype('f8')).astype(dtype))
# matmat(a,b) / a.dot(b) where a is matrix, b is matrix
- for n in range(1,17):
+ for n in range(1, 17):
if n < 8 or dtype != 'f2':
- a = np.arange(4*n, dtype=dtype).reshape(4,n)
- b = np.arange(n*6, dtype=dtype).reshape(n,6)
+ a = np.arange(4*n, dtype=dtype).reshape(4, n)
+ b = np.arange(n*6, dtype=dtype).reshape(n, 6)
assert_equal(np.einsum("ij,jk", a, b), np.dot(a, b))
- assert_equal(np.einsum(a, [0,1], b, [1,2]), np.dot(a, b))
+ assert_equal(np.einsum(a, [0, 1], b, [1, 2]), np.dot(a, b))
- for n in range(1,17):
- a = np.arange(4*n, dtype=dtype).reshape(4,n)
- b = np.arange(n*6, dtype=dtype).reshape(n,6)
- c = np.arange(24, dtype=dtype).reshape(4,6)
+ for n in range(1, 17):
+ a = np.arange(4*n, dtype=dtype).reshape(4, n)
+ b = np.arange(n*6, dtype=dtype).reshape(n, 6)
+ c = np.arange(24, dtype=dtype).reshape(4, 6)
np.einsum("ij,jk", a, b, out=c, dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(a.astype('f8'),
b.astype('f8')).astype(dtype))
c[...] = 0
- np.einsum(a, [0,1], b, [1,2], out=c,
+ np.einsum(a, [0, 1], b, [1, 2], out=c,
dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(a.astype('f8'),
@@ -337,50 +337,50 @@ class TestEinSum(TestCase):
# matrix triple product (note this is not currently an efficient
# way to multiply 3 matrices)
- a = np.arange(12, dtype=dtype).reshape(3,4)
- b = np.arange(20, dtype=dtype).reshape(4,5)
- c = np.arange(30, dtype=dtype).reshape(5,6)
+ a = np.arange(12, dtype=dtype).reshape(3, 4)
+ b = np.arange(20, dtype=dtype).reshape(4, 5)
+ c = np.arange(30, dtype=dtype).reshape(5, 6)
if dtype != 'f2':
assert_equal(np.einsum("ij,jk,kl", a, b, c),
a.dot(b).dot(c))
- assert_equal(np.einsum(a, [0,1], b, [1,2], c, [2,3]),
+ assert_equal(np.einsum(a, [0, 1], b, [1, 2], c, [2, 3]),
a.dot(b).dot(c))
- d = np.arange(18, dtype=dtype).reshape(3,6)
+ d = np.arange(18, dtype=dtype).reshape(3, 6)
np.einsum("ij,jk,kl", a, b, c, out=d,
dtype='f8', casting='unsafe')
assert_equal(d, a.astype('f8').dot(b.astype('f8')
).dot(c.astype('f8')).astype(dtype))
d[...] = 0
- np.einsum(a, [0,1], b, [1,2], c, [2,3], out=d,
+ np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], out=d,
dtype='f8', casting='unsafe')
assert_equal(d, a.astype('f8').dot(b.astype('f8')
).dot(c.astype('f8')).astype(dtype))
# tensordot(a, b)
if np.dtype(dtype) != np.dtype('f2'):
- a = np.arange(60, dtype=dtype).reshape(3,4,5)
- b = np.arange(24, dtype=dtype).reshape(4,3,2)
+ a = np.arange(60, dtype=dtype).reshape(3, 4, 5)
+ b = np.arange(24, dtype=dtype).reshape(4, 3, 2)
assert_equal(np.einsum("ijk, jil -> kl", a, b),
- np.tensordot(a,b, axes=([1,0],[0,1])))
- assert_equal(np.einsum(a, [0,1,2], b, [1,0,3], [2,3]),
- np.tensordot(a,b, axes=([1,0],[0,1])))
+ np.tensordot(a, b, axes=([1, 0], [0, 1])))
+ assert_equal(np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3]),
+ np.tensordot(a, b, axes=([1, 0], [0, 1])))
- c = np.arange(10, dtype=dtype).reshape(5,2)
+ c = np.arange(10, dtype=dtype).reshape(5, 2)
np.einsum("ijk,jil->kl", a, b, out=c,
dtype='f8', casting='unsafe')
assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
- axes=([1,0],[0,1])).astype(dtype))
+ axes=([1, 0], [0, 1])).astype(dtype))
c[...] = 0
- np.einsum(a, [0,1,2], b, [1,0,3], [2,3], out=c,
+ np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3], out=c,
dtype='f8', casting='unsafe')
assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
- axes=([1,0],[0,1])).astype(dtype))
+ axes=([1, 0], [0, 1])).astype(dtype))
# logical_and(logical_and(a!=0, b!=0), c!=0)
a = np.array([1, 3, -2, 0, 12, 13, 0, 1], dtype=dtype)
b = np.array([0, 3.5, 0., -2, 0, 1, 3, 12], dtype=dtype)
- c = np.array([True,True,False,True,True,False,True,True])
+ c = np.array([True, True, False, True, True, False, True, True])
assert_equal(np.einsum("i,i,i->i", a, b, c,
dtype='?', casting='unsafe'),
np.logical_and(np.logical_and(a!=0, b!=0), c!=0))
@@ -395,20 +395,20 @@ class TestEinSum(TestCase):
assert_equal(np.einsum(a, [0], 3, [], []), 3*np.sum(a))
# Various stride0, contiguous, and SSE aligned variants
- for n in range(1,25):
+ for n in range(1, 25):
a = np.arange(n, dtype=dtype)
if np.dtype(dtype).itemsize > 1:
- assert_equal(np.einsum("...,...",a,a), np.multiply(a,a))
- assert_equal(np.einsum("i,i", a, a), np.dot(a,a))
+ assert_equal(np.einsum("...,...", a, a), np.multiply(a, a))
+ assert_equal(np.einsum("i,i", a, a), np.dot(a, a))
assert_equal(np.einsum("i,->i", a, 2), 2*a)
assert_equal(np.einsum(",i->i", 2, a), 2*a)
assert_equal(np.einsum("i,->", a, 2), 2*np.sum(a))
assert_equal(np.einsum(",i->", 2, a), 2*np.sum(a))
- assert_equal(np.einsum("...,...",a[1:],a[:-1]),
- np.multiply(a[1:],a[:-1]))
+ assert_equal(np.einsum("...,...", a[1:], a[:-1]),
+ np.multiply(a[1:], a[:-1]))
assert_equal(np.einsum("i,i", a[1:], a[:-1]),
- np.dot(a[1:],a[:-1]))
+ np.dot(a[1:], a[:-1]))
assert_equal(np.einsum("i,->i", a[1:], 2), 2*a[1:])
assert_equal(np.einsum(",i->i", 2, a[1:]), 2*a[1:])
assert_equal(np.einsum("i,->", a[1:], 2), 2*np.sum(a[1:]))
@@ -427,8 +427,8 @@ class TestEinSum(TestCase):
# A case which was failing (ticket #1885)
p = np.arange(2) + 1
- q = np.arange(4).reshape(2,2) + 3
- r = np.arange(4).reshape(2,2) + 7
+ q = np.arange(4).reshape(2, 2) + 3
+ r = np.arange(4).reshape(2, 2) + 7
assert_equal(np.einsum('z,mz,zm->', p, q, r), 253)
def test_einsum_sums_int8(self):
@@ -479,15 +479,15 @@ class TestEinSum(TestCase):
def test_einsum_misc(self):
# This call used to crash because of a bug in
# PyArray_AssignZero
- a = np.ones((1,2))
- b = np.ones((2,2,1))
- assert_equal(np.einsum('ij...,j...->i...',a,b), [[[2],[2]]])
+ a = np.ones((1, 2))
+ b = np.ones((2, 2, 1))
+ assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])
# The iterator had an issue with buffering this reduction
a = np.ones((5, 12, 4, 2, 3), np.int64)
b = np.ones((5, 12, 11), np.int64)
- assert_equal(np.einsum('ijklm,ijn,ijn->',a,b,b),
- np.einsum('ijklm,ijn->',a,b))
+ assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
+ np.einsum('ijklm,ijn->', a, b))
# Issue #2027, was a problem in the contiguous 3-argument
# inner loop implementation
diff --git a/numpy/core/tests/test_function_base.py b/numpy/core/tests/test_function_base.py
index 6f239a979..efca9ef8a 100644
--- a/numpy/core/tests/test_function_base.py
+++ b/numpy/core/tests/test_function_base.py
@@ -5,33 +5,33 @@ from numpy import logspace, linspace
class TestLogspace(TestCase):
def test_basic(self):
- y = logspace(0,6)
+ y = logspace(0, 6)
assert_(len(y)==50)
- y = logspace(0,6,num=100)
+ y = logspace(0, 6, num=100)
assert_(y[-1] == 10**6)
- y = logspace(0,6,endpoint=0)
+ y = logspace(0, 6, endpoint=0)
assert_(y[-1] < 10**6)
- y = logspace(0,6,num=7)
- assert_array_equal(y,[1,10,100,1e3,1e4,1e5,1e6])
+ y = logspace(0, 6, num=7)
+ assert_array_equal(y, [1, 10, 100, 1e3, 1e4, 1e5, 1e6])
class TestLinspace(TestCase):
def test_basic(self):
- y = linspace(0,10)
+ y = linspace(0, 10)
assert_(len(y)==50)
- y = linspace(2,10,num=100)
+ y = linspace(2, 10, num=100)
assert_(y[-1] == 10)
- y = linspace(2,10,endpoint=0)
+ y = linspace(2, 10, endpoint=0)
assert_(y[-1] < 10)
def test_corner(self):
- y = list(linspace(0,1,1))
+ y = list(linspace(0, 1, 1))
assert_(y == [0.0], y)
- y = list(linspace(0,1,2.5))
+ y = list(linspace(0, 1, 2.5))
assert_(y == [0.0, 1.0])
def test_type(self):
- t1 = linspace(0,1,0).dtype
- t2 = linspace(0,1,1).dtype
- t3 = linspace(0,1,2).dtype
+ t1 = linspace(0, 1, 0).dtype
+ t2 = linspace(0, 1, 1).dtype
+ t3 = linspace(0, 1, 2).dtype
assert_equal(t1, t2)
assert_equal(t2, t3)
diff --git a/numpy/core/tests/test_getlimits.py b/numpy/core/tests/test_getlimits.py
index 96ca66b10..6ccdbd5de 100644
--- a/numpy/core/tests/test_getlimits.py
+++ b/numpy/core/tests/test_getlimits.py
@@ -15,31 +15,31 @@ class TestPythonFloat(TestCase):
def test_singleton(self):
ftype = finfo(float)
ftype2 = finfo(float)
- assert_equal(id(ftype),id(ftype2))
+ assert_equal(id(ftype), id(ftype2))
class TestHalf(TestCase):
def test_singleton(self):
ftype = finfo(half)
ftype2 = finfo(half)
- assert_equal(id(ftype),id(ftype2))
+ assert_equal(id(ftype), id(ftype2))
class TestSingle(TestCase):
def test_singleton(self):
ftype = finfo(single)
ftype2 = finfo(single)
- assert_equal(id(ftype),id(ftype2))
+ assert_equal(id(ftype), id(ftype2))
class TestDouble(TestCase):
def test_singleton(self):
ftype = finfo(double)
ftype2 = finfo(double)
- assert_equal(id(ftype),id(ftype2))
+ assert_equal(id(ftype), id(ftype2))
class TestLongdouble(TestCase):
def test_singleton(self,level=2):
ftype = finfo(longdouble)
ftype2 = finfo(longdouble)
- assert_equal(id(ftype),id(ftype2))
+ assert_equal(id(ftype), id(ftype2))
class TestIinfo(TestCase):
def test_basic(self):
diff --git a/numpy/core/tests/test_half.py b/numpy/core/tests/test_half.py
index e5f2eaf9b..928db48b7 100644
--- a/numpy/core/tests/test_half.py
+++ b/numpy/core/tests/test_half.py
@@ -28,8 +28,8 @@ class TestHalf(TestCase):
# An array of all non-NaN float16 values, in sorted order
self.nonan_f16 = np.concatenate(
- (np.arange(0xfc00,0x7fff,-1, dtype=uint16),
- np.arange(0x0000,0x7c01,1, dtype=uint16))
+ (np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
+ np.arange(0x0000, 0x7c01, 1, dtype=uint16))
)
self.nonan_f16.dtype = float16
self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
@@ -65,10 +65,10 @@ class TestHalf(TestCase):
b.view(dtype=uint16))
# Check the range for which all integers can be represented
- i_int = np.arange(-2048,2049)
+ i_int = np.arange(-2048, 2049)
i_f16 = np.array(i_int, dtype=float16)
j = np.array(i_f16, dtype=np.int)
- assert_equal(i_int,j)
+ assert_equal(i_int, j)
def test_nans_infs(self):
with np.errstate(all='ignore'):
@@ -223,17 +223,17 @@ class TestHalf(TestCase):
assert_equal(a, np.ones((5,), dtype=float16))
# nonzero and copyswap
- a = np.array([0,0,-1,-1/1e20,0,2.0**-24, 7.629e-6], dtype=float16)
+ a = np.array([0, 0, -1, -1/1e20, 0, 2.0**-24, 7.629e-6], dtype=float16)
assert_equal(a.nonzero()[0],
- [2,5,6])
+ [2, 5, 6])
a = a.byteswap().newbyteorder()
assert_equal(a.nonzero()[0],
- [2,5,6])
+ [2, 5, 6])
# dot
a = np.arange(0, 10, 0.5, dtype=float16)
b = np.ones((20,), dtype=float16)
- assert_equal(np.dot(a,b),
+ assert_equal(np.dot(a, b),
95)
# argmax
@@ -247,7 +247,7 @@ class TestHalf(TestCase):
# getitem
a = np.arange(10, dtype=float16)
for i in range(10):
- assert_equal(a.item(i),i)
+ assert_equal(a.item(i), i)
def test_spacing_nextafter(self):
"""Test np.spacing and np.nextafter"""
@@ -276,127 +276,127 @@ class TestHalf(TestCase):
def test_half_ufuncs(self):
"""Test the various ufuncs"""
- a = np.array([0,1,2,4,2], dtype=float16)
- b = np.array([-2,5,1,4,3], dtype=float16)
- c = np.array([0,-1,-np.inf,np.nan,6], dtype=float16)
-
- assert_equal(np.add(a,b), [-2,6,3,8,5])
- assert_equal(np.subtract(a,b), [2,-4,1,0,-1])
- assert_equal(np.multiply(a,b), [0,5,2,16,6])
- assert_equal(np.divide(a,b), [0,0.199951171875,2,1,0.66650390625])
-
- assert_equal(np.equal(a,b), [False,False,False,True,False])
- assert_equal(np.not_equal(a,b), [True,True,True,False,True])
- assert_equal(np.less(a,b), [False,True,False,False,True])
- assert_equal(np.less_equal(a,b), [False,True,False,True,True])
- assert_equal(np.greater(a,b), [True,False,True,False,False])
- assert_equal(np.greater_equal(a,b), [True,False,True,True,False])
- assert_equal(np.logical_and(a,b), [False,True,True,True,True])
- assert_equal(np.logical_or(a,b), [True,True,True,True,True])
- assert_equal(np.logical_xor(a,b), [True,False,False,False,False])
- assert_equal(np.logical_not(a), [True,False,False,False,False])
-
- assert_equal(np.isnan(c), [False,False,False,True,False])
- assert_equal(np.isinf(c), [False,False,True,False,False])
- assert_equal(np.isfinite(c), [True,True,False,False,True])
- assert_equal(np.signbit(b), [True,False,False,False,False])
-
- assert_equal(np.copysign(b,a), [2,5,1,4,3])
-
- assert_equal(np.maximum(a,b), [0,5,2,4,3])
- x = np.maximum(b,c)
+ a = np.array([0, 1, 2, 4, 2], dtype=float16)
+ b = np.array([-2, 5, 1, 4, 3], dtype=float16)
+ c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)
+
+ assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
+ assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
+ assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
+ assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])
+
+ assert_equal(np.equal(a, b), [False, False, False, True, False])
+ assert_equal(np.not_equal(a, b), [True, True, True, False, True])
+ assert_equal(np.less(a, b), [False, True, False, False, True])
+ assert_equal(np.less_equal(a, b), [False, True, False, True, True])
+ assert_equal(np.greater(a, b), [True, False, True, False, False])
+ assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
+ assert_equal(np.logical_and(a, b), [False, True, True, True, True])
+ assert_equal(np.logical_or(a, b), [True, True, True, True, True])
+ assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
+ assert_equal(np.logical_not(a), [True, False, False, False, False])
+
+ assert_equal(np.isnan(c), [False, False, False, True, False])
+ assert_equal(np.isinf(c), [False, False, True, False, False])
+ assert_equal(np.isfinite(c), [True, True, False, False, True])
+ assert_equal(np.signbit(b), [True, False, False, False, False])
+
+ assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])
+
+ assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])
+ x = np.maximum(b, c)
assert_(np.isnan(x[3]))
x[3] = 0
- assert_equal(x, [0,5,1,0,6])
- assert_equal(np.minimum(a,b), [-2,1,1,4,2])
- x = np.minimum(b,c)
+ assert_equal(x, [0, 5, 1, 0, 6])
+ assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])
+ x = np.minimum(b, c)
assert_(np.isnan(x[3]))
x[3] = 0
- assert_equal(x, [-2,-1,-np.inf,0,3])
- assert_equal(np.fmax(a,b), [0,5,2,4,3])
- assert_equal(np.fmax(b,c), [0,5,1,4,6])
- assert_equal(np.fmin(a,b), [-2,1,1,4,2])
- assert_equal(np.fmin(b,c), [-2,-1,-np.inf,4,3])
-
- assert_equal(np.floor_divide(a,b), [0,0,2,1,0])
- assert_equal(np.remainder(a,b), [0,1,0,0,2])
- assert_equal(np.square(b), [4,25,1,16,9])
- assert_equal(np.reciprocal(b), [-0.5,0.199951171875,1,0.25,0.333251953125])
- assert_equal(np.ones_like(b), [1,1,1,1,1])
+ assert_equal(x, [-2, -1, -np.inf, 0, 3])
+ assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
+ assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
+ assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
+ assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])
+
+ assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
+ assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
+ assert_equal(np.square(b), [4, 25, 1, 16, 9])
+ assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
+ assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
assert_equal(np.conjugate(b), b)
- assert_equal(np.absolute(b), [2,5,1,4,3])
- assert_equal(np.negative(b), [2,-5,-1,-4,-3])
- assert_equal(np.sign(b), [-1,1,1,1,1])
- assert_equal(np.modf(b), ([0,0,0,0,0],b))
- assert_equal(np.frexp(b), ([-0.5,0.625,0.5,0.5,0.75],[2,3,1,3,2]))
- assert_equal(np.ldexp(b,[0,1,2,4,2]), [-2,10,4,64,12])
+ assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
+ assert_equal(np.negative(b), [2, -5, -1, -4, -3])
+ assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
+ assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
+ assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
+ assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])
def test_half_coercion(self):
"""Test that half gets coerced properly with the other types"""
- a16 = np.array((1,),dtype=float16)
- a32 = np.array((1,),dtype=float32)
+ a16 = np.array((1,), dtype=float16)
+ a32 = np.array((1,), dtype=float32)
b16 = float16(1)
b32 = float32(1)
- assert_equal(np.power(a16,2).dtype, float16)
- assert_equal(np.power(a16,2.0).dtype, float16)
- assert_equal(np.power(a16,b16).dtype, float16)
- assert_equal(np.power(a16,b32).dtype, float16)
- assert_equal(np.power(a16,a16).dtype, float16)
- assert_equal(np.power(a16,a32).dtype, float32)
-
- assert_equal(np.power(b16,2).dtype, float64)
- assert_equal(np.power(b16,2.0).dtype, float64)
- assert_equal(np.power(b16,b16).dtype, float16)
- assert_equal(np.power(b16,b32).dtype, float32)
- assert_equal(np.power(b16,a16).dtype, float16)
- assert_equal(np.power(b16,a32).dtype, float32)
-
- assert_equal(np.power(a32,a16).dtype, float32)
- assert_equal(np.power(a32,b16).dtype, float32)
- assert_equal(np.power(b32,a16).dtype, float16)
- assert_equal(np.power(b32,b16).dtype, float32)
+ assert_equal(np.power(a16, 2).dtype, float16)
+ assert_equal(np.power(a16, 2.0).dtype, float16)
+ assert_equal(np.power(a16, b16).dtype, float16)
+ assert_equal(np.power(a16, b32).dtype, float16)
+ assert_equal(np.power(a16, a16).dtype, float16)
+ assert_equal(np.power(a16, a32).dtype, float32)
+
+ assert_equal(np.power(b16, 2).dtype, float64)
+ assert_equal(np.power(b16, 2.0).dtype, float64)
+ assert_equal(np.power(b16, b16).dtype, float16)
+ assert_equal(np.power(b16, b32).dtype, float32)
+ assert_equal(np.power(b16, a16).dtype, float16)
+ assert_equal(np.power(b16, a32).dtype, float32)
+
+ assert_equal(np.power(a32, a16).dtype, float32)
+ assert_equal(np.power(a32, b16).dtype, float32)
+ assert_equal(np.power(b32, a16).dtype, float16)
+ assert_equal(np.power(b32, b16).dtype, float32)
@dec.skipif(platform.machine() == "armv5tel", "See gh-413.")
def test_half_fpe(self):
with np.errstate(all='raise'):
- sx16 = np.array((1e-4,),dtype=float16)
- bx16 = np.array((1e4,),dtype=float16)
+ sx16 = np.array((1e-4,), dtype=float16)
+ bx16 = np.array((1e4,), dtype=float16)
sy16 = float16(1e-4)
by16 = float16(1e4)
# Underflow errors
- assert_raises_fpe('underflow', lambda a,b:a*b, sx16, sx16)
- assert_raises_fpe('underflow', lambda a,b:a*b, sx16, sy16)
- assert_raises_fpe('underflow', lambda a,b:a*b, sy16, sx16)
- assert_raises_fpe('underflow', lambda a,b:a*b, sy16, sy16)
- assert_raises_fpe('underflow', lambda a,b:a/b, sx16, bx16)
- assert_raises_fpe('underflow', lambda a,b:a/b, sx16, by16)
- assert_raises_fpe('underflow', lambda a,b:a/b, sy16, bx16)
- assert_raises_fpe('underflow', lambda a,b:a/b, sy16, by16)
- assert_raises_fpe('underflow', lambda a,b:a/b,
+ assert_raises_fpe('underflow', lambda a, b:a*b, sx16, sx16)
+ assert_raises_fpe('underflow', lambda a, b:a*b, sx16, sy16)
+ assert_raises_fpe('underflow', lambda a, b:a*b, sy16, sx16)
+ assert_raises_fpe('underflow', lambda a, b:a*b, sy16, sy16)
+ assert_raises_fpe('underflow', lambda a, b:a/b, sx16, bx16)
+ assert_raises_fpe('underflow', lambda a, b:a/b, sx16, by16)
+ assert_raises_fpe('underflow', lambda a, b:a/b, sy16, bx16)
+ assert_raises_fpe('underflow', lambda a, b:a/b, sy16, by16)
+ assert_raises_fpe('underflow', lambda a, b:a/b,
float16(2.**-14), float16(2**11))
- assert_raises_fpe('underflow', lambda a,b:a/b,
+ assert_raises_fpe('underflow', lambda a, b:a/b,
float16(-2.**-14), float16(2**11))
- assert_raises_fpe('underflow', lambda a,b:a/b,
+ assert_raises_fpe('underflow', lambda a, b:a/b,
float16(2.**-14+2**-24), float16(2))
- assert_raises_fpe('underflow', lambda a,b:a/b,
+ assert_raises_fpe('underflow', lambda a, b:a/b,
float16(-2.**-14-2**-24), float16(2))
- assert_raises_fpe('underflow', lambda a,b:a/b,
+ assert_raises_fpe('underflow', lambda a, b:a/b,
float16(2.**-14+2**-23), float16(4))
# Overflow errors
- assert_raises_fpe('overflow', lambda a,b:a*b, bx16, bx16)
- assert_raises_fpe('overflow', lambda a,b:a*b, bx16, by16)
- assert_raises_fpe('overflow', lambda a,b:a*b, by16, bx16)
- assert_raises_fpe('overflow', lambda a,b:a*b, by16, by16)
- assert_raises_fpe('overflow', lambda a,b:a/b, bx16, sx16)
- assert_raises_fpe('overflow', lambda a,b:a/b, bx16, sy16)
- assert_raises_fpe('overflow', lambda a,b:a/b, by16, sx16)
- assert_raises_fpe('overflow', lambda a,b:a/b, by16, sy16)
- assert_raises_fpe('overflow', lambda a,b:a+b,
+ assert_raises_fpe('overflow', lambda a, b:a*b, bx16, bx16)
+ assert_raises_fpe('overflow', lambda a, b:a*b, bx16, by16)
+ assert_raises_fpe('overflow', lambda a, b:a*b, by16, bx16)
+ assert_raises_fpe('overflow', lambda a, b:a*b, by16, by16)
+ assert_raises_fpe('overflow', lambda a, b:a/b, bx16, sx16)
+ assert_raises_fpe('overflow', lambda a, b:a/b, bx16, sy16)
+ assert_raises_fpe('overflow', lambda a, b:a/b, by16, sx16)
+ assert_raises_fpe('overflow', lambda a, b:a/b, by16, sy16)
+ assert_raises_fpe('overflow', lambda a, b:a+b,
float16(65504), float16(17))
- assert_raises_fpe('overflow', lambda a,b:a-b,
+ assert_raises_fpe('overflow', lambda a, b:a-b,
float16(-65504), float16(17))
assert_raises_fpe('overflow', np.nextafter, float16(65504), float16(np.inf))
assert_raises_fpe('overflow', np.nextafter, float16(-65504), float16(-np.inf))
diff --git a/numpy/core/tests/test_indexerrors.py b/numpy/core/tests/test_indexerrors.py
index 263c505de..e5dc9dbab 100644
--- a/numpy/core/tests/test_indexerrors.py
+++ b/numpy/core/tests/test_indexerrors.py
@@ -54,34 +54,34 @@ class TestIndexErrors(TestCase):
def assign(obj, ind, val):
obj[ind] = val
- a = np.zeros([1,2,3])
- assert_raises(IndexError, lambda: a[0,5,None,2])
- assert_raises(IndexError, lambda: a[0,5,0,2])
- assert_raises(IndexError, lambda: assign(a, (0,5,None,2), 1))
- assert_raises(IndexError, lambda: assign(a, (0,5,0,2), 1))
+ a = np.zeros([1, 2, 3])
+ assert_raises(IndexError, lambda: a[0, 5, None, 2])
+ assert_raises(IndexError, lambda: a[0, 5, 0, 2])
+ assert_raises(IndexError, lambda: assign(a, (0, 5, None, 2), 1))
+ assert_raises(IndexError, lambda: assign(a, (0, 5, 0, 2), 1))
- a = np.zeros([1,0,3])
- assert_raises(IndexError, lambda: a[0,0,None,2])
- assert_raises(IndexError, lambda: assign(a, (0,0,None,2), 1))
+ a = np.zeros([1, 0, 3])
+ assert_raises(IndexError, lambda: a[0, 0, None, 2])
+ assert_raises(IndexError, lambda: assign(a, (0, 0, None, 2), 1))
- a = np.zeros([1,2,3])
+ a = np.zeros([1, 2, 3])
assert_raises(IndexError, lambda: a.flat[10])
assert_raises(IndexError, lambda: assign(a.flat, 10, 5))
- a = np.zeros([1,0,3])
+ a = np.zeros([1, 0, 3])
assert_raises(IndexError, lambda: a.flat[10])
assert_raises(IndexError, lambda: assign(a.flat, 10, 5))
- a = np.zeros([1,2,3])
+ a = np.zeros([1, 2, 3])
assert_raises(IndexError, lambda: a.flat[np.array(10)])
assert_raises(IndexError, lambda: assign(a.flat, np.array(10), 5))
- a = np.zeros([1,0,3])
+ a = np.zeros([1, 0, 3])
assert_raises(IndexError, lambda: a.flat[np.array(10)])
assert_raises(IndexError, lambda: assign(a.flat, np.array(10), 5))
- a = np.zeros([1,2,3])
+ a = np.zeros([1, 2, 3])
assert_raises(IndexError, lambda: a.flat[np.array([10])])
assert_raises(IndexError, lambda: assign(a.flat, np.array([10]), 5))
- a = np.zeros([1,0,3])
+ a = np.zeros([1, 0, 3])
assert_raises(IndexError, lambda: a.flat[np.array([10])])
assert_raises(IndexError, lambda: assign(a.flat, np.array([10]), 5))
@@ -94,10 +94,10 @@ class TestIndexErrors(TestCase):
a = np.zeros((0, 10))
assert_raises(IndexError, lambda: a[12])
- a = np.zeros((3,5))
+ a = np.zeros((3, 5))
assert_raises(IndexError, lambda: a[(10, 20)])
assert_raises(IndexError, lambda: assign(a, (10, 20), 1))
- a = np.zeros((3,0))
+ a = np.zeros((3, 0))
assert_raises(IndexError, lambda: a[(1, 0)])
assert_raises(IndexError, lambda: assign(a, (1, 0), 1))
@@ -106,10 +106,10 @@ class TestIndexErrors(TestCase):
a = np.zeros((0,))
assert_raises(IndexError, lambda: assign(a, 10, 1))
- a = np.zeros((3,5))
+ a = np.zeros((3, 5))
assert_raises(IndexError, lambda: a[(1, [1, 20])])
assert_raises(IndexError, lambda: assign(a, (1, [1, 20]), 1))
- a = np.zeros((3,0))
+ a = np.zeros((3, 0))
assert_raises(IndexError, lambda: a[(1, [0, 1])])
assert_raises(IndexError, lambda: assign(a, (1, [0, 1]), 1))
diff --git a/numpy/core/tests/test_indexing.py b/numpy/core/tests/test_indexing.py
index ecd93ec71..89e28af78 100644
--- a/numpy/core/tests/test_indexing.py
+++ b/numpy/core/tests/test_indexing.py
@@ -39,7 +39,7 @@ class TestIndexing(TestCase):
def test_ellipsis_index(self):
# Ellipsis index does not create a view
a = np.array([[1, 2, 3],
- [4 ,5, 6],
+ [4, 5, 6],
[7, 8, 9]])
assert_equal(a[...], a)
assert_(a[...] is a)
@@ -47,7 +47,7 @@ class TestIndexing(TestCase):
# Slicing with ellipsis can skip an
# arbitrary number of dimensions
assert_equal(a[0, ...], a[0])
- assert_equal(a[0, ...], a[0, :])
+ assert_equal(a[0, ...], a[0,:])
assert_equal(a[..., 0], a[:, 0])
# Slicing with ellipsis always results
@@ -57,7 +57,7 @@ class TestIndexing(TestCase):
def test_single_int_index(self):
# Single integer index selects one row
a = np.array([[1, 2, 3],
- [4 ,5, 6],
+ [4, 5, 6],
[7, 8, 9]])
assert_equal(a[0], [1, 2, 3])
@@ -71,7 +71,7 @@ class TestIndexing(TestCase):
def test_single_bool_index(self):
# Single boolean index
a = np.array([[1, 2, 3],
- [4 ,5, 6],
+ [4, 5, 6],
[7, 8, 9]])
# Python boolean converts to integer
@@ -108,7 +108,7 @@ class TestIndexing(TestCase):
# Indexing a 2-dimensional array with
# 2-dimensional boolean array
a = np.array([[1, 2, 3],
- [4 ,5, 6],
+ [4, 5, 6],
[7, 8, 9]])
b = np.array([[ True, False, True],
[False, True, False],
@@ -140,8 +140,8 @@ class TestMultiIndexingAutomated(TestCase):
will usually not be the same one. They are *not* tested.
"""
def setUp(self):
- self.a = np.arange(np.prod([3,1,5,6])).reshape(3,1,5,6)
- self.b = np.empty((3,0,5,6))
+ self.a = np.arange(np.prod([3, 1, 5, 6])).reshape(3, 1, 5, 6)
+ self.b = np.empty((3, 0, 5, 6))
self.complex_indices = ['skip', Ellipsis,
0,
# Boolean indices, up to 3-d for some special cases of eating up
@@ -154,19 +154,19 @@ class TestMultiIndexingAutomated(TestCase):
slice(-5, 5, 2),
slice(1, 1, 100),
slice(4, -1, -2),
- slice(None,None,-3),
+ slice(None, None, -3),
# Some Fancy indexes:
- np.empty((0,1,1), dtype=np.intp), # empty broadcastable
- np.array([0,1,-2]),
- np.array([[2],[0],[1]]),
- np.array([[0,-1], [0,1]]),
- np.array([2,-1]),
+ np.empty((0, 1, 1), dtype=np.intp), # empty broadcastable
+ np.array([0, 1, -2]),
+ np.array([[2], [0], [1]]),
+ np.array([[0, -1], [0, 1]]),
+ np.array([2, -1]),
np.zeros([1]*31, dtype=int), # trigger too large array.
np.array([0., 1.])] # invalid datatype
# Some simpler indices that still cover a bit more
self.simple_indices = [Ellipsis, None, -1, [1], np.array([True]), 'skip']
# Very simple ones to fill the rest:
- self.fill_indices = [slice(None,None), 0]
+ self.fill_indices = [slice(None, None), 0]
def _get_multi_index(self, arr, indices):
@@ -226,7 +226,7 @@ class TestMultiIndexingAutomated(TestCase):
if ellipsis_pos is None:
ellipsis_pos = i
continue # do not increment ndim counter
- in_indices[i] = slice(None,None)
+ in_indices[i] = slice(None, None)
ndim += 1
continue
if isinstance(indx, slice):
@@ -258,7 +258,7 @@ class TestMultiIndexingAutomated(TestCase):
return arr.copy(), no_copy
if ellipsis_pos is not None:
- in_indices[ellipsis_pos:ellipsis_pos+1] = [slice(None,None)] * (arr.ndim - ndim)
+ in_indices[ellipsis_pos:ellipsis_pos+1] = [slice(None, None)] * (arr.ndim - ndim)
for ax, indx in enumerate(in_indices):
if isinstance(indx, slice):
@@ -481,8 +481,8 @@ class TestMultiIndexingAutomated(TestCase):
# consistency with arr[boolean_array,] also no broadcasting
# is done at all
self._check_multi_index(self.a, (np.zeros_like(self.a, dtype=bool),))
- self._check_multi_index(self.a, (np.zeros_like(self.a, dtype=bool)[...,0],))
- self._check_multi_index(self.a, (np.zeros_like(self.a, dtype=bool)[None,...],))
+ self._check_multi_index(self.a, (np.zeros_like(self.a, dtype=bool)[..., 0],))
+ self._check_multi_index(self.a, (np.zeros_like(self.a, dtype=bool)[None, ...],))
def test_multidim(self):
@@ -492,7 +492,7 @@ class TestMultiIndexingAutomated(TestCase):
# This is so that np.array(True) is not accepted in a full integer
# index, when running the file seperatly.
warnings.filterwarnings('error', '', DeprecationWarning)
- for simple_pos in [0,2,3]:
+ for simple_pos in [0, 2, 3]:
tocheck = [self.fill_indices, self.complex_indices,
self.fill_indices, self.fill_indices]
tocheck[simple_pos] = self.simple_indices
@@ -502,13 +502,13 @@ class TestMultiIndexingAutomated(TestCase):
self._check_multi_index(self.b, index)
# Check very simple item getting:
- self._check_multi_index(self.a, (0,0,0,0))
- self._check_multi_index(self.b, (0,0,0,0))
+ self._check_multi_index(self.a, (0, 0, 0, 0))
+ self._check_multi_index(self.b, (0, 0, 0, 0))
# Also check (simple cases of) too many indices:
- assert_raises(IndexError, self.a.__getitem__, (0,0,0,0,0))
- assert_raises(IndexError, self.a.__setitem__, (0,0,0,0,0), 0)
- assert_raises(IndexError, self.a.__getitem__, (0,0,[1],0,0))
- assert_raises(IndexError, self.a.__setitem__, (0,0,[1],0,0), 0)
+ assert_raises(IndexError, self.a.__getitem__, (0, 0, 0, 0, 0))
+ assert_raises(IndexError, self.a.__setitem__, (0, 0, 0, 0, 0), 0)
+ assert_raises(IndexError, self.a.__getitem__, (0, 0, [1], 0, 0))
+ assert_raises(IndexError, self.a.__setitem__, (0, 0, [1], 0, 0), 0)
def test_1d(self):
diff --git a/numpy/core/tests/test_item_selection.py b/numpy/core/tests/test_item_selection.py
index 9954e1e0f..e501588c9 100644
--- a/numpy/core/tests/test_item_selection.py
+++ b/numpy/core/tests/test_item_selection.py
@@ -8,12 +8,12 @@ import sys, warnings
class TestTake(TestCase):
def test_simple(self):
a = [[1, 2], [3, 4]]
- a_str = [[b'1', b'2'],[b'3', b'4']]
+ a_str = [[b'1', b'2'], [b'3', b'4']]
modes = ['raise', 'wrap', 'clip']
indices = [-1, 4]
index_arrays = [np.empty(0, dtype=np.intp),
np.empty(tuple(), dtype=np.intp),
- np.empty((1,1), dtype=np.intp)]
+ np.empty((1, 1), dtype=np.intp)]
real_indices = {}
real_indices['raise'] = {-1:1, 4:IndexError}
real_indices['wrap'] = {-1:1, 4:0}
diff --git a/numpy/core/tests/test_memmap.py b/numpy/core/tests/test_memmap.py
index 97afb68a2..6de6319ef 100644
--- a/numpy/core/tests/test_memmap.py
+++ b/numpy/core/tests/test_memmap.py
@@ -11,7 +11,7 @@ from numpy.testing import *
class TestMemmap(TestCase):
def setUp(self):
self.tmpfp = NamedTemporaryFile(prefix='mmap')
- self.shape = (3,4)
+ self.shape = (3, 4)
self.dtype = 'float32'
self.data = arange(12, dtype=self.dtype)
self.data.resize(self.shape)
@@ -33,7 +33,7 @@ class TestMemmap(TestCase):
assert_array_equal(self.data, newfp)
def test_open_with_filename(self):
- tmpname = mktemp('','mmap')
+ tmpname = mktemp('', 'mmap')
fp = memmap(tmpname, dtype=self.dtype, mode='w+',
shape=self.shape)
fp[:] = self.data[:]
@@ -55,7 +55,7 @@ class TestMemmap(TestCase):
del fp
def test_filename(self):
- tmpname = mktemp('','mmap')
+ tmpname = mktemp('', 'mmap')
fp = memmap(tmpname, dtype=self.dtype, mode='w+',
shape=self.shape)
abspath = os.path.abspath(tmpname)
diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py
index 40847aab8..12d1e8ea9 100644
--- a/numpy/core/tests/test_multiarray.py
+++ b/numpy/core/tests/test_multiarray.py
@@ -63,16 +63,16 @@ class TestFlags(TestCase):
class TestAttributes(TestCase):
def setUp(self):
self.one = arange(10)
- self.two = arange(20).reshape(4,5)
- self.three = arange(60,dtype=float64).reshape(2,5,6)
+ self.two = arange(20).reshape(4, 5)
+ self.three = arange(60, dtype=float64).reshape(2, 5, 6)
def test_attributes(self):
assert_equal(self.one.shape, (10,))
- assert_equal(self.two.shape, (4,5))
- assert_equal(self.three.shape, (2,5,6))
- self.three.shape = (10,3,2)
- assert_equal(self.three.shape, (10,3,2))
- self.three.shape = (2,5,6)
+ assert_equal(self.two.shape, (4, 5))
+ assert_equal(self.three.shape, (2, 5, 6))
+ self.three.shape = (10, 3, 2)
+ assert_equal(self.three.shape, (10, 3, 2))
+ self.three.shape = (2, 5, 6)
assert_equal(self.one.strides, (self.one.itemsize,))
num = self.two.itemsize
assert_equal(self.two.strides, (5*num, num))
@@ -137,13 +137,13 @@ class TestAttributes(TestCase):
r.strides = strides=strides*x.itemsize
return r
assert_equal(make_array(4, 4, -1), array([4, 3, 2, 1]))
- assert_equal(make_array(7,3,1), array([3, 4, 5, 6, 7, 8, 9]))
+ assert_equal(make_array(7, 3, 1), array([3, 4, 5, 6, 7, 8, 9]))
self.assertRaises(ValueError, make_array, 4, 4, -2)
self.assertRaises(ValueError, make_array, 4, 2, -1)
self.assertRaises(RuntimeError, make_array, 8, 3, 1)
# Check that the true extent of the array is used.
# Test relies on as_strided base not exposing a buffer.
- x = np.lib.stride_tricks.as_strided(arange(1), (10,10), (0,0))
+ x = np.lib.stride_tricks.as_strided(arange(1), (10, 10), (0, 0))
def set_strides(arr, strides):
arr.strides = strides
self.assertRaises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize))
@@ -158,15 +158,15 @@ class TestAttributes(TestCase):
def test_fill(self):
for t in "?bhilqpBHILQPfdgFDGO":
- x = empty((3,2,1), t)
- y = empty((3,2,1), t)
+ x = empty((3, 2, 1), t)
+ y = empty((3, 2, 1), t)
x.fill(1)
y[...] = 1
- assert_equal(x,y)
+ assert_equal(x, y)
def test_fill_struct_array(self):
# Filling from a scalar
- x = array([(0,0.0), (1,1.0)], dtype='i4,f8')
+ x = array([(0, 0.0), (1, 1.0)], dtype='i4,f8')
x.fill(x[0])
assert_equal(x['f1'][1], x['f1'][0])
# Filling from a tuple that can be converted
@@ -178,13 +178,13 @@ class TestAttributes(TestCase):
class TestAssignment(TestCase):
def test_assignment_broadcasting(self):
- a = np.arange(6).reshape(2,3)
+ a = np.arange(6).reshape(2, 3)
# Broadcasting the input to the output
a[...] = np.arange(3)
- assert_equal(a, [[0,1,2],[0,1,2]])
- a[...] = np.arange(2).reshape(2,1)
- assert_equal(a, [[0,0,0],[1,1,1]])
+ assert_equal(a, [[0, 1, 2], [0, 1, 2]])
+ a[...] = np.arange(2).reshape(2, 1)
+ assert_equal(a, [[0, 0, 0], [1, 1, 1]])
# For compatibility with <= 1.5, a limited version of broadcasting
# the output to the input.
@@ -194,12 +194,12 @@ class TestAssignment(TestCase):
# rules (adding a new "1" dimension to the left of the shape),
# applied to the output instead of an input. In NumPy 2.0, this kind
# of broadcasting assignment will likely be disallowed.
- a[...] = np.arange(6)[::-1].reshape(1,2,3)
- assert_equal(a, [[5,4,3],[2,1,0]])
+ a[...] = np.arange(6)[::-1].reshape(1, 2, 3)
+ assert_equal(a, [[5, 4, 3], [2, 1, 0]])
# The other type of broadcasting would require a reduction operation.
- def assign(a,b):
+ def assign(a, b):
a[...] = b
- assert_raises(ValueError, assign, a, np.arange(12).reshape(2,2,3))
+ assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3))
class TestDtypedescr(TestCase):
def test_construction(self):
@@ -213,42 +213,42 @@ class TestZeroRank(TestCase):
self.d = array(0), array('x', object)
def test_ellipsis_subscript(self):
- a,b = self.d
+ a, b = self.d
self.assertEqual(a[...], 0)
self.assertEqual(b[...], 'x')
self.assertTrue(a[...] is a)
self.assertTrue(b[...] is b)
def test_empty_subscript(self):
- a,b = self.d
+ a, b = self.d
self.assertEqual(a[()], 0)
self.assertEqual(b[()], 'x')
self.assertTrue(type(a[()]) is a.dtype.type)
self.assertTrue(type(b[()]) is str)
def test_invalid_subscript(self):
- a,b = self.d
+ a, b = self.d
self.assertRaises(IndexError, lambda x: x[0], a)
self.assertRaises(IndexError, lambda x: x[0], b)
self.assertRaises(IndexError, lambda x: x[array([], int)], a)
self.assertRaises(IndexError, lambda x: x[array([], int)], b)
def test_ellipsis_subscript_assignment(self):
- a,b = self.d
+ a, b = self.d
a[...] = 42
self.assertEqual(a, 42)
b[...] = ''
self.assertEqual(b.item(), '')
def test_empty_subscript_assignment(self):
- a,b = self.d
+ a, b = self.d
a[()] = 42
self.assertEqual(a, 42)
b[()] = ''
self.assertEqual(b.item(), '')
def test_invalid_subscript_assignment(self):
- a,b = self.d
+ a, b = self.d
def assign(x, i, v):
x[i] = v
self.assertRaises(IndexError, assign, a, 0, 42)
@@ -256,18 +256,18 @@ class TestZeroRank(TestCase):
self.assertRaises(ValueError, assign, a, (), '')
def test_newaxis(self):
- a,b = self.d
+ a, b = self.d
self.assertEqual(a[newaxis].shape, (1,))
self.assertEqual(a[..., newaxis].shape, (1,))
self.assertEqual(a[newaxis, ...].shape, (1,))
self.assertEqual(a[..., newaxis].shape, (1,))
- self.assertEqual(a[newaxis, ..., newaxis].shape, (1,1))
- self.assertEqual(a[..., newaxis, newaxis].shape, (1,1))
- self.assertEqual(a[newaxis, newaxis, ...].shape, (1,1))
+ self.assertEqual(a[newaxis, ..., newaxis].shape, (1, 1))
+ self.assertEqual(a[..., newaxis, newaxis].shape, (1, 1))
+ self.assertEqual(a[newaxis, newaxis, ...].shape, (1, 1))
self.assertEqual(a[(newaxis,)*10].shape, (1,)*10)
def test_invalid_newaxis(self):
- a,b = self.d
+ a, b = self.d
def subscript(x, i): x[i]
self.assertRaises(IndexError, subscript, a, (newaxis, 0))
self.assertRaises(IndexError, subscript, a, (newaxis,)*50)
@@ -276,7 +276,7 @@ class TestZeroRank(TestCase):
x = ndarray(())
x[()] = 5
self.assertEqual(x[()], 5)
- y = ndarray((),buffer=x)
+ y = ndarray((), buffer=x)
y[()] = 6
self.assertEqual(x[()], 6)
@@ -287,17 +287,17 @@ class TestZeroRank(TestCase):
class TestScalarIndexing(TestCase):
def setUp(self):
- self.d = array([0,1])[0]
+ self.d = array([0, 1])[0]
def test_ellipsis_subscript(self):
a = self.d
self.assertEqual(a[...], 0)
- self.assertEqual(a[...].shape,())
+ self.assertEqual(a[...].shape, ())
def test_empty_subscript(self):
a = self.d
self.assertEqual(a[()], 0)
- self.assertEqual(a[()].shape,())
+ self.assertEqual(a[()].shape, ())
def test_invalid_subscript(self):
a = self.d
@@ -316,9 +316,9 @@ class TestScalarIndexing(TestCase):
self.assertEqual(a[..., newaxis].shape, (1,))
self.assertEqual(a[newaxis, ...].shape, (1,))
self.assertEqual(a[..., newaxis].shape, (1,))
- self.assertEqual(a[newaxis, ..., newaxis].shape, (1,1))
- self.assertEqual(a[..., newaxis, newaxis].shape, (1,1))
- self.assertEqual(a[newaxis, newaxis, ...].shape, (1,1))
+ self.assertEqual(a[newaxis, ..., newaxis].shape, (1, 1))
+ self.assertEqual(a[..., newaxis, newaxis].shape, (1, 1))
+ self.assertEqual(a[newaxis, newaxis, ...].shape, (1, 1))
self.assertEqual(a[(newaxis,)*10].shape, (1,)*10)
def test_invalid_newaxis(self):
@@ -331,49 +331,49 @@ class TestScalarIndexing(TestCase):
# With positive strides
a = np.arange(4)
a[:-1] = a[1:]
- assert_equal(a, [1,2,3,3])
+ assert_equal(a, [1, 2, 3, 3])
a = np.arange(4)
a[1:] = a[:-1]
- assert_equal(a, [0,0,1,2])
+ assert_equal(a, [0, 0, 1, 2])
# With positive and negative strides
a = np.arange(4)
a[:] = a[::-1]
- assert_equal(a, [3,2,1,0])
+ assert_equal(a, [3, 2, 1, 0])
- a = np.arange(6).reshape(2,3)
- a[::-1,:] = a[:,::-1]
- assert_equal(a, [[5,4,3],[2,1,0]])
+ a = np.arange(6).reshape(2, 3)
+ a[::-1,:] = a[:, ::-1]
+ assert_equal(a, [[5, 4, 3], [2, 1, 0]])
- a = np.arange(6).reshape(2,3)
- a[::-1,::-1] = a[:,::-1]
- assert_equal(a, [[3,4,5],[0,1,2]])
+ a = np.arange(6).reshape(2, 3)
+ a[::-1, ::-1] = a[:, ::-1]
+ assert_equal(a, [[3, 4, 5], [0, 1, 2]])
# With just one element overlapping
a = np.arange(5)
a[:3] = a[2:]
- assert_equal(a, [2,3,4,3,4])
+ assert_equal(a, [2, 3, 4, 3, 4])
a = np.arange(5)
a[2:] = a[:3]
- assert_equal(a, [0,1,0,1,2])
+ assert_equal(a, [0, 1, 0, 1, 2])
a = np.arange(5)
a[2::-1] = a[2:]
- assert_equal(a, [4,3,2,3,4])
+ assert_equal(a, [4, 3, 2, 3, 4])
a = np.arange(5)
a[2:] = a[2::-1]
- assert_equal(a, [0,1,2,1,0])
+ assert_equal(a, [0, 1, 2, 1, 0])
a = np.arange(5)
a[2::-1] = a[:1:-1]
- assert_equal(a, [2,3,4,3,4])
+ assert_equal(a, [2, 3, 4, 3, 4])
a = np.arange(5)
a[:1:-1] = a[2::-1]
- assert_equal(a, [0,1,0,1,2])
+ assert_equal(a, [0, 1, 0, 1, 2])
class TestCreation(TestCase):
def test_from_attribute(self):
@@ -384,7 +384,7 @@ class TestCreation(TestCase):
def test_from_string(self) :
types = np.typecodes['AllInteger'] + np.typecodes['Float']
- nstr = ['123','123']
+ nstr = ['123', '123']
result = array([123, 123], dtype=int)
for type in types :
msg = 'String conversion for %s' % type
@@ -459,52 +459,52 @@ class TestStructured(TestCase):
# Check that comparisons between record arrays with
# multi-dimensional field types work properly
a = np.rec.fromrecords(
- [([1,2,3],'a', [[1,2],[3,4]]),([3,3,3],'b',[[0,0],[0,0]])],
- dtype=[('a', ('f4',3)), ('b', np.object), ('c', ('i4',(2,2)))])
+ [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])],
+ dtype=[('a', ('f4', 3)), ('b', np.object), ('c', ('i4', (2, 2)))])
b = a.copy()
- assert_equal(a==b, [True,True])
- assert_equal(a!=b, [False,False])
+ assert_equal(a==b, [True, True])
+ assert_equal(a!=b, [False, False])
b[1].b = 'c'
- assert_equal(a==b, [True,False])
- assert_equal(a!=b, [False,True])
+ assert_equal(a==b, [True, False])
+ assert_equal(a!=b, [False, True])
for i in range(3):
b[0].a = a[0].a
b[0].a[i] = 5
- assert_equal(a==b, [False,False])
- assert_equal(a!=b, [True,True])
+ assert_equal(a==b, [False, False])
+ assert_equal(a!=b, [True, True])
for i in range(2):
for j in range(2):
b = a.copy()
- b[0].c[i,j] = 10
- assert_equal(a==b, [False,True])
- assert_equal(a!=b, [True,False])
+ b[0].c[i, j] = 10
+ assert_equal(a==b, [False, True])
+ assert_equal(a!=b, [True, False])
# Check that broadcasting with a subarray works
- a = np.array([[(0,)],[(1,)]],dtype=[('a','f8')])
- b = np.array([(0,),(0,),(1,)],dtype=[('a','f8')])
+ a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')])
+ b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')])
assert_equal(a==b, [[True, True, False], [False, False, True]])
assert_equal(b==a, [[True, True, False], [False, False, True]])
- a = np.array([[(0,)],[(1,)]],dtype=[('a','f8',(1,))])
- b = np.array([(0,),(0,),(1,)],dtype=[('a','f8',(1,))])
+ a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))])
+ b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))])
assert_equal(a==b, [[True, True, False], [False, False, True]])
assert_equal(b==a, [[True, True, False], [False, False, True]])
- a = np.array([[([0,0],)],[([1,1],)]],dtype=[('a','f8',(2,))])
- b = np.array([([0,0],),([0,1],),([1,1],)],dtype=[('a','f8',(2,))])
+ a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))])
+ b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
assert_equal(a==b, [[True, False, False], [False, False, True]])
assert_equal(b==a, [[True, False, False], [False, False, True]])
# Check that broadcasting Fortran-style arrays with a subarray work
- a = np.array([[([0,0],)],[([1,1],)]],dtype=[('a','f8',(2,))], order='F')
- b = np.array([([0,0],),([0,1],),([1,1],)],dtype=[('a','f8',(2,))])
+ a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F')
+ b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
assert_equal(a==b, [[True, False, False], [False, False, True]])
assert_equal(b==a, [[True, False, False], [False, False, True]])
# Check that incompatible sub-array shapes don't result to broadcasting
- x = np.zeros((1,), dtype=[('a', ('f4', (1,2))), ('b', 'i1')])
+ x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')])
y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
assert_equal(x == y, False)
- x = np.zeros((1,), dtype=[('a', ('f4', (2,1))), ('b', 'i1')])
+ x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')])
y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
assert_equal(x == y, False)
@@ -523,17 +523,17 @@ class TestBool(TestCase):
class TestMethods(TestCase):
def test_test_round(self):
- assert_equal(array([1.2,1.5]).round(), [1,2])
+ assert_equal(array([1.2, 1.5]).round(), [1, 2])
assert_equal(array(1.5).round(), 2)
- assert_equal(array([12.2,15.5]).round(-1), [10,20])
- assert_equal(array([12.15,15.51]).round(1), [12.2,15.5])
+ assert_equal(array([12.2, 15.5]).round(-1), [10, 20])
+ assert_equal(array([12.15, 15.51]).round(1), [12.2, 15.5])
def test_transpose(self):
- a = array([[1,2],[3,4]])
- assert_equal(a.transpose(), [[1,3],[2,4]])
+ a = array([[1, 2], [3, 4]])
+ assert_equal(a.transpose(), [[1, 3], [2, 4]])
self.assertRaises(ValueError, lambda: a.transpose(0))
- self.assertRaises(ValueError, lambda: a.transpose(0,0))
- self.assertRaises(ValueError, lambda: a.transpose(0,1,2))
+ self.assertRaises(ValueError, lambda: a.transpose(0, 0))
+ self.assertRaises(ValueError, lambda: a.transpose(0, 1, 2))
def test_sort(self):
# test ordering for floats and complex containing nans. It is only
@@ -561,7 +561,7 @@ class TestMethods(TestCase):
# sort for small arrays.
a = np.arange(101)
b = a[::-1].copy()
- for kind in ['q','m','h'] :
+ for kind in ['q', 'm', 'h'] :
msg = "scalar sort, kind=%s" % kind
c = a.copy();
c.sort(kind=kind)
@@ -574,7 +574,7 @@ class TestMethods(TestCase):
# but the compare fuction differs.
ai = a*1j + 1
bi = b*1j + 1
- for kind in ['q','m','h'] :
+ for kind in ['q', 'm', 'h'] :
msg = "complex sort, real part == 1, kind=%s" % kind
c = ai.copy();
c.sort(kind=kind)
@@ -584,7 +584,7 @@ class TestMethods(TestCase):
assert_equal(c, ai, msg)
ai = a + 1j
bi = b + 1j
- for kind in ['q','m','h'] :
+ for kind in ['q', 'm', 'h'] :
msg = "complex sort, imag part == 1, kind=%s" % kind
c = ai.copy();
c.sort(kind=kind)
@@ -633,8 +633,8 @@ class TestMethods(TestCase):
assert_equal(c, a, msg)
# test record array sorts.
- dt = np.dtype([('f',float),('i',int)])
- a = array([(i,i) for i in range(101)], dtype = dt)
+ dt = np.dtype([('f', float), ('i', int)])
+ a = array([(i, i) for i in range(101)], dtype = dt)
b = a[::-1]
for kind in ['q', 'h', 'm'] :
msg = "object sort, kind=%s" % kind
@@ -671,9 +671,9 @@ class TestMethods(TestCase):
# check axis handling. This should be the same for all type
# specific sorts, so we only check it for one type and one kind
- a = np.array([[3,2],[1,0]])
- b = np.array([[1,0],[3,2]])
- c = np.array([[2,3],[0,1]])
+ a = np.array([[3, 2], [1, 0]])
+ b = np.array([[1, 0], [3, 2]])
+ c = np.array([[2, 3], [0, 1]])
d = a.copy()
d.sort(axis=0)
assert_equal(d, b, "test sort with axis=0")
@@ -711,32 +711,32 @@ class TestMethods(TestCase):
def test_sort_order(self):
# Test sorting an array with fields
- x1=np.array([21,32,14])
- x2=np.array(['my','first','name'])
- x3=np.array([3.1,4.5,6.2])
- r=np.rec.fromarrays([x1,x2,x3],names='id,word,number')
+ x1=np.array([21, 32, 14])
+ x2=np.array(['my', 'first', 'name'])
+ x3=np.array([3.1, 4.5, 6.2])
+ r=np.rec.fromarrays([x1, x2, x3], names='id,word,number')
r.sort(order=['id'])
- assert_equal(r.id, array([14,21,32]))
- assert_equal(r.word, array(['name','my','first']))
- assert_equal(r.number, array([6.2,3.1,4.5]))
+ assert_equal(r.id, array([14, 21, 32]))
+ assert_equal(r.word, array(['name', 'my', 'first']))
+ assert_equal(r.number, array([6.2, 3.1, 4.5]))
r.sort(order=['word'])
- assert_equal(r.id, array([32,21,14]))
- assert_equal(r.word, array(['first','my','name']))
- assert_equal(r.number, array([4.5,3.1,6.2]))
+ assert_equal(r.id, array([32, 21, 14]))
+ assert_equal(r.word, array(['first', 'my', 'name']))
+ assert_equal(r.number, array([4.5, 3.1, 6.2]))
r.sort(order=['number'])
- assert_equal(r.id, array([21,32,14]))
- assert_equal(r.word, array(['my','first','name']))
- assert_equal(r.number, array([3.1,4.5,6.2]))
+ assert_equal(r.id, array([21, 32, 14]))
+ assert_equal(r.word, array(['my', 'first', 'name']))
+ assert_equal(r.number, array([3.1, 4.5, 6.2]))
if sys.byteorder == 'little':
strtype = '>i2'
else:
strtype = '<i2'
- mydtype = [('name', strchar + '5'),('col2',strtype)]
- r = np.array([('a', 1),('b', 255), ('c', 3), ('d', 258)],
+ mydtype = [('name', strchar + '5'), ('col2', strtype)]
+ r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)],
dtype= mydtype)
r.sort(order='col2')
assert_equal(r['col2'], [1, 3, 255, 258])
@@ -751,7 +751,7 @@ class TestMethods(TestCase):
# sort for small arrays.
a = np.arange(101)
b = a[::-1].copy()
- for kind in ['q','m','h'] :
+ for kind in ['q', 'm', 'h'] :
msg = "scalar argsort, kind=%s" % kind
assert_equal(a.copy().argsort(kind=kind), a, msg)
assert_equal(b.copy().argsort(kind=kind), b, msg)
@@ -760,13 +760,13 @@ class TestMethods(TestCase):
# but the compare fuction differs.
ai = a*1j + 1
bi = b*1j + 1
- for kind in ['q','m','h'] :
+ for kind in ['q', 'm', 'h'] :
msg = "complex argsort, kind=%s" % kind
assert_equal(ai.copy().argsort(kind=kind), a, msg)
assert_equal(bi.copy().argsort(kind=kind), b, msg)
ai = a + 1j
bi = b + 1j
- for kind in ['q','m','h'] :
+ for kind in ['q', 'm', 'h'] :
msg = "complex argsort, kind=%s" % kind
assert_equal(ai.copy().argsort(kind=kind), a, msg)
assert_equal(bi.copy().argsort(kind=kind), b, msg)
@@ -805,8 +805,8 @@ class TestMethods(TestCase):
assert_equal(b.copy().argsort(kind=kind), rr, msg)
# test structured array argsorts.
- dt = np.dtype([('f',float),('i',int)])
- a = array([(i,i) for i in range(101)], dtype = dt)
+ dt = np.dtype([('f', float), ('i', int)])
+ a = array([(i, i) for i in range(101)], dtype = dt)
b = a[::-1]
r = np.arange(101)
rr = r[::-1]
@@ -838,9 +838,9 @@ class TestMethods(TestCase):
# check axis handling. This should be the same for all type
# specific argsorts, so we only check it for one type and one kind
- a = np.array([[3,2],[1,0]])
- b = np.array([[1,1],[0,0]])
- c = np.array([[1,0],[1,0]])
+ a = np.array([[3, 2], [1, 0]])
+ b = np.array([[1, 1], [0, 0]])
+ c = np.array([[1, 0], [1, 0]])
assert_equal(a.copy().argsort(axis=0), b)
assert_equal(a.copy().argsort(axis=1), c)
assert_equal(a.copy().argsort(), c)
@@ -876,7 +876,7 @@ class TestMethods(TestCase):
assert_equal(b, np.arange(3), msg)
msg = "Test real searchsorted with nans, side='r'"
b = a.searchsorted(a, side='r')
- assert_equal(b, np.arange(1,4), msg)
+ assert_equal(b, np.arange(1, 4), msg)
# check double complex
a = np.zeros(9, dtype=np.complex128)
a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan]
@@ -886,14 +886,14 @@ class TestMethods(TestCase):
assert_equal(b, np.arange(9), msg)
msg = "Test complex searchsorted with nans, side='r'"
b = a.searchsorted(a, side='r')
- assert_equal(b, np.arange(1,10), msg)
+ assert_equal(b, np.arange(1, 10), msg)
msg = "Test searchsorted with little endian, side='l'"
- a = np.array([0,128],dtype='<i4')
- b = a.searchsorted(np.array(128,dtype='<i4'))
+ a = np.array([0, 128], dtype='<i4')
+ b = a.searchsorted(np.array(128, dtype='<i4'))
assert_equal(b, 1, msg)
msg = "Test searchsorted with big endian, side='l'"
- a = np.array([0,128],dtype='>i4')
- b = a.searchsorted(np.array(128,dtype='>i4'))
+ a = np.array([0, 128], dtype='>i4')
+ b = a.searchsorted(np.array(128, dtype='>i4'))
assert_equal(b, 1, msg)
# Check 0 elements
@@ -959,17 +959,17 @@ class TestMethods(TestCase):
assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1)
def test_searchsorted_with_sorter(self):
- a = np.array([5,2,1,3,4])
+ a = np.array([5, 2, 1, 3, 4])
s = np.argsort(a)
- assert_raises(TypeError, np.searchsorted, a, 0, sorter=(1,(2,3)))
+ assert_raises(TypeError, np.searchsorted, a, 0, sorter=(1, (2, 3)))
assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1])
- assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1,2,3,4])
- assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1,2,3,4,5,6])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6])
# bounds check
- assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0,1,2,3,5])
- assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1,0,1,2,3])
- assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4,0,-1,2,3])
+ assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3])
a = np.random.rand(300)
s = a.argsort()
@@ -1156,23 +1156,23 @@ class TestMethods(TestCase):
aae(p, d[np.argpartition(d, i, kind=k)])
p = np.partition(d1, i, axis=1, kind=k)
- aae(p[:,i], np.array([i] * d1.shape[0], dtype=dt))
+ aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt))
# array_less does not seem to work right
at((p[:, :i].T <= p[:, i]).all(),
msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T))
at((p[:, i + 1:].T > p[:, i]).all(),
msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T))
- aae(p, d1[np.arange(d1.shape[0])[:,None],
+ aae(p, d1[np.arange(d1.shape[0])[:, None],
np.argpartition(d1, i, axis=1, kind=k)])
p = np.partition(d0, i, axis=0, kind=k)
- aae(p[i, :], np.array([i] * d1.shape[0],
+ aae(p[i,:], np.array([i] * d1.shape[0],
dtype=dt))
# array_less does not seem to work right
- at((p[:i, :] <= p[i, :]).all(),
- msg="%d: %r <= %r" % (i, p[i, :], p[:i, :]))
- at((p[i + 1:, :] > p[i, :]).all(),
- msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1:]))
+ at((p[:i,:] <= p[i,:]).all(),
+ msg="%d: %r <= %r" % (i, p[i,:], p[:i,:]))
+ at((p[i + 1:,:] > p[i,:]).all(),
+ msg="%d: %r < %r" % (i, p[i,:], p[:, i + 1:]))
aae(p, d0[np.argpartition(d0, i, axis=0, kind=k),
np.arange(d0.shape[1])[None,:]])
@@ -1253,11 +1253,11 @@ class TestMethods(TestCase):
kth = (1, 6, 7, -1)
p = np.partition(d1, kth, axis=1)
- pa = d1[np.arange(d1.shape[0])[:,None],
+ pa = d1[np.arange(d1.shape[0])[:, None],
d1.argpartition(kth, axis=1)]
assert_array_equal(p, pa)
for i in range(d1.shape[0]):
- self.assert_partitioned(p[i, :], kth)
+ self.assert_partitioned(p[i,:], kth)
p = np.partition(d0, kth, axis=0)
pa = d0[np.argpartition(d0, kth, axis=0),
np.arange(d0.shape[1])[None,:]]
@@ -1293,12 +1293,12 @@ class TestMethods(TestCase):
def test_flatten(self):
- x0 = np.array([[1,2,3],[4,5,6]], np.int32)
- x1 = np.array([[[1,2],[3,4]],[[5,6],[7,8]]], np.int32)
- y0 = np.array([1,2,3,4,5,6], np.int32)
- y0f = np.array([1,4,2,5,3,6], np.int32)
- y1 = np.array([1,2,3,4,5,6,7,8], np.int32)
- y1f = np.array([1,5,3,7,2,6,4,8], np.int32)
+ x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
+ x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32)
+ y0 = np.array([1, 2, 3, 4, 5, 6], np.int32)
+ y0f = np.array([1, 4, 2, 5, 3, 6], np.int32)
+ y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32)
+ y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32)
assert_equal(x0.flatten(), y0)
assert_equal(x0.flatten('F'), y0f)
assert_equal(x0.flatten('F'), x0.T.flatten())
@@ -1316,13 +1316,13 @@ class TestMethods(TestCase):
# test passing in an output array
c = np.zeros_like(a)
- a.dot(b,c)
- assert_equal(c, np.dot(a,b))
+ a.dot(b, c)
+ assert_equal(c, np.dot(a, b))
# test keyword args
c = np.zeros_like(a)
- a.dot(b=b,out=c)
- assert_equal(c, np.dot(a,b))
+ a.dot(b=b, out=c)
+ assert_equal(c, np.dot(a, b))
def test_diagonal(self):
a = np.arange(12).reshape((3, 4))
@@ -1470,39 +1470,39 @@ class TestMethods(TestCase):
assert_(sys.getrefcount(a) < 50)
def test_ravel(self):
- a = np.array([[0,1],[2,3]])
- assert_equal(a.ravel(), [0,1,2,3])
+ a = np.array([[0, 1], [2, 3]])
+ assert_equal(a.ravel(), [0, 1, 2, 3])
assert_(not a.ravel().flags.owndata)
- assert_equal(a.ravel('F'), [0,2,1,3])
- assert_equal(a.ravel(order='C'), [0,1,2,3])
- assert_equal(a.ravel(order='F'), [0,2,1,3])
- assert_equal(a.ravel(order='A'), [0,1,2,3])
+ assert_equal(a.ravel('F'), [0, 2, 1, 3])
+ assert_equal(a.ravel(order='C'), [0, 1, 2, 3])
+ assert_equal(a.ravel(order='F'), [0, 2, 1, 3])
+ assert_equal(a.ravel(order='A'), [0, 1, 2, 3])
assert_(not a.ravel(order='A').flags.owndata)
- assert_equal(a.ravel(order='K'), [0,1,2,3])
+ assert_equal(a.ravel(order='K'), [0, 1, 2, 3])
assert_(not a.ravel(order='K').flags.owndata)
assert_equal(a.ravel(), a.reshape(-1))
- a = np.array([[0,1],[2,3]], order='F')
- assert_equal(a.ravel(), [0,1,2,3])
- assert_equal(a.ravel(order='A'), [0,2,1,3])
- assert_equal(a.ravel(order='K'), [0,2,1,3])
+ a = np.array([[0, 1], [2, 3]], order='F')
+ assert_equal(a.ravel(), [0, 1, 2, 3])
+ assert_equal(a.ravel(order='A'), [0, 2, 1, 3])
+ assert_equal(a.ravel(order='K'), [0, 2, 1, 3])
assert_(not a.ravel(order='A').flags.owndata)
assert_(not a.ravel(order='K').flags.owndata)
assert_equal(a.ravel(), a.reshape(-1))
assert_equal(a.ravel(order='A'), a.reshape(-1, order='A'))
- a = np.array([[0,1],[2,3]])[::-1,:]
- assert_equal(a.ravel(), [2,3,0,1])
- assert_equal(a.ravel(order='C'), [2,3,0,1])
- assert_equal(a.ravel(order='F'), [2,0,3,1])
- assert_equal(a.ravel(order='A'), [2,3,0,1])
+ a = np.array([[0, 1], [2, 3]])[::-1,:]
+ assert_equal(a.ravel(), [2, 3, 0, 1])
+ assert_equal(a.ravel(order='C'), [2, 3, 0, 1])
+ assert_equal(a.ravel(order='F'), [2, 0, 3, 1])
+ assert_equal(a.ravel(order='A'), [2, 3, 0, 1])
# 'K' doesn't reverse the axes of negative strides
- assert_equal(a.ravel(order='K'), [2,3,0,1])
+ assert_equal(a.ravel(order='K'), [2, 3, 0, 1])
assert_(a.ravel(order='K').flags.owndata)
class TestSubscripting(TestCase):
def test_test_zero_rank(self):
- x = array([1,2,3])
+ x = array([1, 2, 3])
self.assertTrue(isinstance(x[0], np.int_))
if sys.version_info[0] < 3:
self.assertTrue(isinstance(x[0], int))
@@ -1512,11 +1512,11 @@ class TestSubscripting(TestCase):
class TestPickling(TestCase):
def test_roundtrip(self):
import pickle
- carray = array([[2,9],[7,0],[3,8]])
+ carray = array([[2, 9], [7, 0], [3, 8]])
DATA = [
carray,
transpose(carray),
- array([('xxx', 1, 2.0)], dtype=[('a', (str,3)), ('b', int),
+ array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int),
('c', float)])
]
@@ -1533,7 +1533,7 @@ class TestPickling(TestCase):
# version 0 doesn't have a version field
def test_version0_int8(self):
s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
- a = array([1,2,3,4], dtype=int8)
+ a = array([1, 2, 3, 4], dtype=int8)
p = self._loads(asbytes(s))
assert_equal(a, p)
@@ -1552,7 +1552,7 @@ class TestPickling(TestCase):
# version 1 pickles, using protocol=2 to pickle
def test_version1_int8(self):
s = '\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
- a = array([1,2,3,4], dtype=int8)
+ a = array([1, 2, 3, 4], dtype=int8)
p = self._loads(asbytes(s))
assert_equal(a, p)
@@ -1570,78 +1570,78 @@ class TestPickling(TestCase):
def test_subarray_int_shape(self):
s = "cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb."
- a = np.array([(1,(1,2))], dtype=[('a', 'i1', (2,2)), ('b', 'i1', 2)])
+ a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)])
p = self._loads(asbytes(s))
assert_equal(a, p)
class TestFancyIndexing(TestCase):
def test_list(self):
- x = ones((1,1))
- x[:,[0]] = 2.0
+ x = ones((1, 1))
+ x[:, [0]] = 2.0
assert_array_equal(x, array([[2.0]]))
- x = ones((1,1,1))
- x[:,:,[0]] = 2.0
+ x = ones((1, 1, 1))
+ x[:,:, [0]] = 2.0
assert_array_equal(x, array([[[2.0]]]))
def test_tuple(self):
- x = ones((1,1))
- x[:,(0,)] = 2.0
+ x = ones((1, 1))
+ x[:, (0,)] = 2.0
assert_array_equal(x, array([[2.0]]))
- x = ones((1,1,1))
- x[:,:,(0,)] = 2.0
+ x = ones((1, 1, 1))
+ x[:,:, (0,)] = 2.0
assert_array_equal(x, array([[[2.0]]]))
def test_mask(self):
- x = array([1,2,3,4])
- m = array([0,1],bool)
+ x = array([1, 2, 3, 4])
+ m = array([0, 1], bool)
assert_array_equal(x[m], array([2]))
def test_mask2(self):
- x = array([[1,2,3,4],[5,6,7,8]])
- m = array([0,1],bool)
- m2 = array([[0,1],[1,0]], bool)
- m3 = array([[0,1]], bool)
- assert_array_equal(x[m], array([[5,6,7,8]]))
- assert_array_equal(x[m2], array([2,5]))
+ x = array([[1, 2, 3, 4], [5, 6, 7, 8]])
+ m = array([0, 1], bool)
+ m2 = array([[0, 1], [1, 0]], bool)
+ m3 = array([[0, 1]], bool)
+ assert_array_equal(x[m], array([[5, 6, 7, 8]]))
+ assert_array_equal(x[m2], array([2, 5]))
assert_array_equal(x[m3], array([2]))
def test_assign_mask(self):
- x = array([1,2,3,4])
- m = array([0,1],bool)
+ x = array([1, 2, 3, 4])
+ m = array([0, 1], bool)
x[m] = 5
- assert_array_equal(x, array([1,5,3,4]))
+ assert_array_equal(x, array([1, 5, 3, 4]))
def test_assign_mask2(self):
- xorig = array([[1,2,3,4],[5,6,7,8]])
- m = array([0,1],bool)
- m2 = array([[0,1],[1,0]],bool)
- m3 = array([[0,1]], bool)
+ xorig = array([[1, 2, 3, 4], [5, 6, 7, 8]])
+ m = array([0, 1], bool)
+ m2 = array([[0, 1], [1, 0]], bool)
+ m3 = array([[0, 1]], bool)
x = xorig.copy()
x[m] = 10
- assert_array_equal(x, array([[1,2,3,4],[10,10,10,10]]))
+ assert_array_equal(x, array([[1, 2, 3, 4], [10, 10, 10, 10]]))
x = xorig.copy()
x[m2] = 10
- assert_array_equal(x, array([[1,10,3,4],[10,6,7,8]]))
+ assert_array_equal(x, array([[1, 10, 3, 4], [10, 6, 7, 8]]))
x = xorig.copy()
x[m3] = 10
- assert_array_equal(x, array([[1,10,3,4],[5,6,7,8]]))
+ assert_array_equal(x, array([[1, 10, 3, 4], [5, 6, 7, 8]]))
class TestStringCompare(TestCase):
def test_string(self):
- g1 = array(["This","is","example"])
- g2 = array(["This","was","example"])
- assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0,1,2]])
- assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0,1,2]])
- assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0,1,2]])
- assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0,1,2]])
- assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0,1,2]])
- assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0,1,2]])
+ g1 = array(["This", "is", "example"])
+ g2 = array(["This", "was", "example"])
+ assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]])
def test_mixed(self):
- g1 = array(["spam","spa","spammer","and eggs"])
+ g1 = array(["spam", "spa", "spammer", "and eggs"])
g2 = "spam"
assert_array_equal(g1 == g2, [x == g2 for x in g1])
assert_array_equal(g1 != g2, [x != g2 for x in g1])
@@ -1652,14 +1652,14 @@ class TestStringCompare(TestCase):
def test_unicode(self):
- g1 = array([sixu("This"),sixu("is"),sixu("example")])
- g2 = array([sixu("This"),sixu("was"),sixu("example")])
- assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0,1,2]])
- assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0,1,2]])
- assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0,1,2]])
- assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0,1,2]])
- assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0,1,2]])
- assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0,1,2]])
+ g1 = array([sixu("This"), sixu("is"), sixu("example")])
+ g2 = array([sixu("This"), sixu("was"), sixu("example")])
+ assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]])
class TestArgmax(TestCase):
@@ -1669,11 +1669,11 @@ class TestArgmax(TestCase):
([0, 1, 2, np.nan, 3], 3),
([np.nan, 0, 1, 2, 3], 0),
([np.nan, 0, np.nan, 2, 3], 0),
- ([0, 1, 2, 3, complex(0,np.nan)], 4),
- ([0, 1, 2, 3, complex(np.nan,0)], 4),
- ([0, 1, 2, complex(np.nan,0), 3], 3),
- ([0, 1, 2, complex(0,np.nan), 3], 3),
- ([complex(0,np.nan), 0, 1, 2, 3], 0),
+ ([0, 1, 2, 3, complex(0, np.nan)], 4),
+ ([0, 1, 2, 3, complex(np.nan, 0)], 4),
+ ([0, 1, 2, complex(np.nan, 0), 3], 3),
+ ([0, 1, 2, complex(0, np.nan), 3], 3),
+ ([complex(0, np.nan), 0, 1, 2, 3], 0),
([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
@@ -1716,7 +1716,7 @@ class TestArgmax(TestCase):
]
def test_all(self):
- a = np.random.normal(0,1,(4,5,6,7,8))
+ a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
for i in range(a.ndim):
amax = a.max(i)
aargmax = a.argmax(i)
@@ -1737,11 +1737,11 @@ class TestArgmin(TestCase):
([0, 1, 2, np.nan, 3], 3),
([np.nan, 0, 1, 2, 3], 0),
([np.nan, 0, np.nan, 2, 3], 0),
- ([0, 1, 2, 3, complex(0,np.nan)], 4),
- ([0, 1, 2, 3, complex(np.nan,0)], 4),
- ([0, 1, 2, complex(np.nan,0), 3], 3),
- ([0, 1, 2, complex(0,np.nan), 3], 3),
- ([complex(0,np.nan), 0, 1, 2, 3], 0),
+ ([0, 1, 2, 3, complex(0, np.nan)], 4),
+ ([0, 1, 2, 3, complex(np.nan, 0)], 4),
+ ([0, 1, 2, complex(np.nan, 0), 3], 3),
+ ([0, 1, 2, complex(0, np.nan), 3], 3),
+ ([complex(0, np.nan), 0, 1, 2, 3], 0),
([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
@@ -1784,7 +1784,7 @@ class TestArgmin(TestCase):
]
def test_all(self):
- a = np.random.normal(0,1,(4,5,6,7,8))
+ a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
for i in range(a.ndim):
amin = a.min(i)
aargmin = a.argmin(i)
@@ -1823,18 +1823,18 @@ class TestMinMax(TestCase):
assert_equal(np.amin(1, axis=None), 1)
def test_axis(self):
- assert_raises(ValueError, np.amax, [1,2,3], 1000)
- assert_equal(np.amax([[1,2,3]], axis=1), 3)
+ assert_raises(ValueError, np.amax, [1, 2, 3], 1000)
+ assert_equal(np.amax([[1, 2, 3]], axis=1), 3)
class TestNewaxis(TestCase):
def test_basic(self):
- sk = array([0,-0.1,0.1])
- res = 250*sk[:,newaxis]
- assert_almost_equal(res.ravel(),250*sk)
+ sk = array([0, -0.1, 0.1])
+ res = 250*sk[:, newaxis]
+ assert_almost_equal(res.ravel(), 250*sk)
class TestClip(TestCase):
- def _check_range(self,x,cmin,cmax):
+ def _check_range(self, x, cmin, cmax):
assert_(np.all(x >= cmin))
assert_(np.all(x <= cmax))
@@ -1848,45 +1848,45 @@ class TestClip(TestCase):
for T in np.sctypes[type_group]:
if sys.byteorder == 'little':
- byte_orders = ['=','>']
+ byte_orders = ['=', '>']
else:
- byte_orders = ['<','=']
+ byte_orders = ['<', '=']
for byteorder in byte_orders:
dtype = np.dtype(T).newbyteorder(byteorder)
x = (np.random.random(1000) * array_max).astype(dtype)
if inplace:
- x.clip(clip_min,clip_max,x)
+ x.clip(clip_min, clip_max, x)
else:
- x = x.clip(clip_min,clip_max)
+ x = x.clip(clip_min, clip_max)
byteorder = '='
if x.dtype.byteorder == '|': byteorder = '|'
- assert_equal(x.dtype.byteorder,byteorder)
- self._check_range(x,expected_min,expected_max)
+ assert_equal(x.dtype.byteorder, byteorder)
+ self._check_range(x, expected_min, expected_max)
return x
def test_basic(self):
for inplace in [False, True]:
- self._clip_type('float',1024,-12.8,100.2, inplace=inplace)
- self._clip_type('float',1024,0,0, inplace=inplace)
+ self._clip_type('float', 1024, -12.8, 100.2, inplace=inplace)
+ self._clip_type('float', 1024, 0, 0, inplace=inplace)
- self._clip_type('int',1024,-120,100.5, inplace=inplace)
- self._clip_type('int',1024,0,0, inplace=inplace)
+ self._clip_type('int', 1024, -120, 100.5, inplace=inplace)
+ self._clip_type('int', 1024, 0, 0, inplace=inplace)
- x = self._clip_type('uint',1024,-120,100,expected_min=0,
+ x = self._clip_type('uint', 1024, -120, 100, expected_min=0,
inplace=inplace)
- x = self._clip_type('uint',1024,0,0, inplace=inplace)
+ x = self._clip_type('uint', 1024, 0, 0, inplace=inplace)
def test_record_array(self):
rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
- y = rec['x'].clip(-0.3,0.5)
- self._check_range(y,-0.3,0.5)
+ y = rec['x'].clip(-0.3, 0.5)
+ self._check_range(y, -0.3, 0.5)
def test_max_or_min(self):
- val = np.array([0,1,2,3,4,5,6,7])
+ val = np.array([0, 1, 2, 3, 4, 5, 6, 7])
x = val.clip(3)
assert_(np.all(x >= 3))
x = val.clip(min=3)
@@ -1907,36 +1907,36 @@ class TestPutmask(object):
x = np.random.random(1000)*100
mask = x < 40
- for val in [-100,0,15]:
+ for val in [-100, 0, 15]:
for types in np.sctypes.values():
for T in types:
if T not in unchecked_types:
- yield self.tst_basic,x.copy().astype(T),T,mask,val
+ yield self.tst_basic, x.copy().astype(T), T, mask, val
def test_mask_size(self):
- assert_raises(ValueError, np.putmask, np.array([1,2,3]), [True], 5)
+ assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5)
- def tst_byteorder(self,dtype):
- x = np.array([1,2,3],dtype)
- np.putmask(x,[True,False,True],-1)
- assert_array_equal(x,[-1,2,-1])
+ def tst_byteorder(self, dtype):
+ x = np.array([1, 2, 3], dtype)
+ np.putmask(x, [True, False, True], -1)
+ assert_array_equal(x, [-1, 2, -1])
def test_ip_byteorder(self):
- for dtype in ('>i4','<i4'):
- yield self.tst_byteorder,dtype
+ for dtype in ('>i4', '<i4'):
+ yield self.tst_byteorder, dtype
def test_record_array(self):
# Note mixed byteorder.
rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
- np.putmask(rec['x'],[True,False],10)
- assert_array_equal(rec['x'],[10,5])
- assert_array_equal(rec['y'],[2,4])
- assert_array_equal(rec['z'],[3,3])
- np.putmask(rec['y'],[True,False],11)
- assert_array_equal(rec['x'],[10,5])
- assert_array_equal(rec['y'],[11,4])
- assert_array_equal(rec['z'],[3,3])
+ np.putmask(rec['x'], [True, False], 10)
+ assert_array_equal(rec['x'], [10, 5])
+ assert_array_equal(rec['y'], [2, 4])
+ assert_array_equal(rec['z'], [3, 3])
+ np.putmask(rec['y'], [True, False], 11)
+ assert_array_equal(rec['x'], [10, 5])
+ assert_array_equal(rec['y'], [11, 4])
+ assert_array_equal(rec['z'], [3, 3])
def test_masked_array(self):
## x = np.array([1,2,3])
@@ -1946,7 +1946,7 @@ class TestPutmask(object):
class TestTake(object):
- def tst_basic(self,x):
+ def tst_basic(self, x):
ind = list(range(x.shape[0]))
assert_array_equal(x.take(ind, axis=0), x)
@@ -1954,39 +1954,39 @@ class TestTake(object):
unchecked_types = [str, unicode, np.void, object]
x = np.random.random(24)*100
- x.shape = 2,3,4
+ x.shape = 2, 3, 4
for types in np.sctypes.values():
for T in types:
if T not in unchecked_types:
- yield self.tst_basic,x.copy().astype(T)
+ yield self.tst_basic, x.copy().astype(T)
def test_raise(self):
x = np.random.random(24)*100
- x.shape = 2,3,4
- assert_raises(IndexError, x.take, [0,1,2], axis=0)
+ x.shape = 2, 3, 4
+ assert_raises(IndexError, x.take, [0, 1, 2], axis=0)
assert_raises(IndexError, x.take, [-3], axis=0)
assert_array_equal(x.take([-1], axis=0)[0], x[1])
def test_clip(self):
x = np.random.random(24)*100
- x.shape = 2,3,4
+ x.shape = 2, 3, 4
assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0])
assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1])
def test_wrap(self):
x = np.random.random(24)*100
- x.shape = 2,3,4
+ x.shape = 2, 3, 4
assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1])
assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0])
assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1])
- def tst_byteorder(self,dtype):
- x = np.array([1,2,3],dtype)
- assert_array_equal(x.take([0,2,1]),[1,3,2])
+ def tst_byteorder(self, dtype):
+ x = np.array([1, 2, 3], dtype)
+ assert_array_equal(x.take([0, 2, 1]), [1, 3, 2])
def test_ip_byteorder(self):
- for dtype in ('>i4','<i4'):
- yield self.tst_byteorder,dtype
+ for dtype in ('>i4', '<i4'):
+ yield self.tst_byteorder, dtype
def test_record_array(self):
# Note mixed byteorder.
@@ -1998,27 +1998,27 @@ class TestTake(object):
class TestLexsort(TestCase):
def test_basic(self):
- a = [1,2,1,3,1,5]
- b = [0,4,5,6,2,3]
- idx = np.lexsort((b,a))
- expected_idx = np.array([0,4,2,1,3,5])
- assert_array_equal(idx,expected_idx)
+ a = [1, 2, 1, 3, 1, 5]
+ b = [0, 4, 5, 6, 2, 3]
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([0, 4, 2, 1, 3, 5])
+ assert_array_equal(idx, expected_idx)
- x = np.vstack((b,a))
+ x = np.vstack((b, a))
idx = np.lexsort(x)
- assert_array_equal(idx,expected_idx)
+ assert_array_equal(idx, expected_idx)
- assert_array_equal(x[1][idx],np.sort(x[1]))
+ assert_array_equal(x[1][idx], np.sort(x[1]))
class TestIO(object):
"""Test tofile, fromfile, tostring, and fromstring"""
def setUp(self):
- shape = (2,4,3)
+ shape = (2, 4, 3)
rand = np.random.random
self.x = rand(shape) + rand(shape).astype(np.complex)*1j
- self.x[0,:,1] = [nan, inf, -inf, nan]
+ self.x[0,:, 1] = [nan, inf, -inf, nan]
self.dtype = self.x.dtype
self.filename = tempfile.mktemp()
@@ -2028,7 +2028,7 @@ class TestIO(object):
#tmp_file.close()
def test_bool_fromstring(self):
- v = np.array([True,False,True,False], dtype=np.bool_)
+ v = np.array([True, False, True, False], dtype=np.bool_)
y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_)
assert_array_equal(v, y)
@@ -2109,7 +2109,7 @@ class TestIO(object):
def test_binary(self):
self._check_from('\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@',
- array([1,2,3,4]),
+ array([1, 2, 3, 4]),
dtype='<f4')
@dec.slow # takes > 1 minute on mechanical hard drive
@@ -2149,21 +2149,21 @@ class TestIO(object):
self._check_from('1 2 3 4 ', [1, 2, 3, 4], dtype=int, sep=' ')
def test_counted_string_with_ws(self):
- self._check_from('1 2 3 4 ', [1,2,3], count=3, dtype=int,
+ self._check_from('1 2 3 4 ', [1, 2, 3], count=3, dtype=int,
sep=' ')
def test_ascii(self):
- self._check_from('1 , 2 , 3 , 4', [1.,2.,3.,4.], sep=',')
- self._check_from('1,2,3,4', [1.,2.,3.,4.], dtype=float, sep=',')
+ self._check_from('1 , 2 , 3 , 4', [1., 2., 3., 4.], sep=',')
+ self._check_from('1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',')
def test_malformed(self):
self._check_from('1.234 1,234', [1.234, 1.], sep=' ')
def test_long_sep(self):
- self._check_from('1_x_3_x_4_x_5', [1,3,4,5], sep='_x_')
+ self._check_from('1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_')
def test_dtype(self):
- v = np.array([1,2,3,4], dtype=np.int_)
+ v = np.array([1, 2, 3, 4], dtype=np.int_)
self._check_from('1,2,3,4', v, sep=',', dtype=np.int_)
def test_dtype_bool(self):
@@ -2210,14 +2210,14 @@ class TestIO(object):
class TestFromBuffer(object):
- def tst_basic(self,buffer,expected,kwargs):
- assert_array_equal(np.frombuffer(buffer,**kwargs),expected)
+ def tst_basic(self, buffer, expected, kwargs):
+ assert_array_equal(np.frombuffer(buffer,**kwargs), expected)
def test_ip_basic(self):
- for byteorder in ['<','>']:
- for dtype in [float,int,np.complex]:
+ for byteorder in ['<', '>']:
+ for dtype in [float, int, np.complex]:
dt = np.dtype(dtype).newbyteorder(byteorder)
- x = (np.random.random((4,7))*5).astype(dt)
+ x = (np.random.random((4, 7))*5).astype(dt)
buf = x.tostring()
yield self.tst_basic, buf, x.flat, {'dtype':dt}
@@ -2228,13 +2228,13 @@ class TestFromBuffer(object):
class TestFlat(TestCase):
def setUp(self):
a0 = arange(20.0)
- a = a0.reshape(4,5)
- a0.shape = (4,5)
+ a = a0.reshape(4, 5)
+ a0.shape = (4, 5)
a.flags.writeable = False
self.a = a
- self.b = a[::2,::2]
+ self.b = a[::2, ::2]
self.a0 = a0
- self.b0 = a0[::2,::2]
+ self.b0 = a0[::2, ::2]
def test_contiguous(self):
testpassed = False
@@ -2274,15 +2274,15 @@ class TestFlat(TestCase):
class TestResize(TestCase):
def test_basic(self):
x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
- x.resize((5,5))
+ x.resize((5, 5))
assert_array_equal(x.flat[:9],
np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat)
- assert_array_equal(x[9:].flat,0)
+ assert_array_equal(x[9:].flat, 0)
def test_check_reference(self):
x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
y = x
- self.assertRaises(ValueError,x.resize,(5,1))
+ self.assertRaises(ValueError, x.resize, (5, 1))
def test_int_shape(self):
x = np.eye(3)
@@ -2304,21 +2304,21 @@ class TestResize(TestCase):
def test_freeform_shape(self):
x = np.eye(3)
- x.resize(3,2,1)
- assert_(x.shape == (3,2,1))
+ x.resize(3, 2, 1)
+ assert_(x.shape == (3, 2, 1))
def test_zeros_appended(self):
x = np.eye(3)
- x.resize(2,3,3)
+ x.resize(2, 3, 3)
assert_array_equal(x[0], np.eye(3))
- assert_array_equal(x[1], np.zeros((3,3)))
+ assert_array_equal(x[1], np.zeros((3, 3)))
class TestRecord(TestCase):
def test_field_rename(self):
- dt = np.dtype([('f',float),('i',int)])
- dt.names = ['p','q']
- assert_equal(dt.names,['p','q'])
+ dt = np.dtype([('f', float), ('i', int)])
+ dt.names = ['p', 'q']
+ assert_equal(dt.names, ['p', 'q'])
if sys.version_info[0] >= 3:
def test_bytes_fields(self):
@@ -2393,14 +2393,14 @@ class TestRecord(TestCase):
# multiple Subfields
fn2 = func('f2')
b[fn2] = 3
- assert_equal(b[['f1','f2']][0].tolist(), (2, 3))
- assert_equal(b[['f2','f1']][0].tolist(), (3, 2))
- assert_equal(b[['f1','f3']][0].tolist(), (2, (1,)))
+ assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3))
+ assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2))
+ assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,)))
# view of subfield view/copy
- assert_equal(b[['f1','f2']][0].view(('i4',2)).tolist(), (2, 3))
- assert_equal(b[['f2','f1']][0].view(('i4',2)).tolist(), (3, 2))
- view_dtype=[('f1', 'i4'),('f3', [('', 'i4')])]
- assert_equal(b[['f1','f3']][0].view(view_dtype).tolist(), (2, (1,)))
+ assert_equal(b[['f1', 'f2']][0].view(('i4', 2)).tolist(), (2, 3))
+ assert_equal(b[['f2', 'f1']][0].view(('i4', 2)).tolist(), (3, 2))
+ view_dtype=[('f1', 'i4'), ('f3', [('', 'i4')])]
+ assert_equal(b[['f1', 'f3']][0].view(view_dtype).tolist(), (2, (1,)))
# non-ascii unicode field indexing is well behaved
if not is_py3:
raise SkipTest('non ascii unicode field indexing skipped; '
@@ -2432,11 +2432,11 @@ class TestRecord(TestCase):
# All the different functions raise a warning, but not an error, and
# 'a' is not modified:
- assert_equal(collect_warning_types(a[['f1','f2']].__setitem__, 0, (10,20)),
+ assert_equal(collect_warning_types(a[['f1', 'f2']].__setitem__, 0, (10, 20)),
[FutureWarning])
assert_equal(a, b)
# Views also warn
- subset = a[['f1','f2']]
+ subset = a[['f1', 'f2']]
subset_view = subset.view()
assert_equal(collect_warning_types(subset_view['f1'].__setitem__, 0, 10),
[FutureWarning])
@@ -2448,11 +2448,11 @@ class TestRecord(TestCase):
[])
def test_record_hash(self):
- a = np.array([(1,2),(1,2)], dtype='i1,i2')
+ a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
a.flags.writeable = False
- b = np.array([(1,2),(3,4)], dtype=[('num1', 'i1'), ('num2', 'i2')])
+ b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')])
b.flags.writeable = False
- c = np.array([(1,2),(3,4)], dtype='i1,i2')
+ c = np.array([(1, 2), (3, 4)], dtype='i1,i2')
c.flags.writeable = False
self.assertTrue(hash(a[0]) == hash(a[1]))
self.assertTrue(hash(a[0]) == hash(b[0]))
@@ -2460,13 +2460,13 @@ class TestRecord(TestCase):
self.assertTrue(hash(c[0]) == hash(a[0]) and c[0] == a[0])
def test_record_no_hash(self):
- a = np.array([(1,2),(1,2)], dtype='i1,i2')
+ a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
self.assertRaises(TypeError, hash, a[0])
class TestView(TestCase):
def test_basic(self):
- x = np.array([(1,2,3,4),(5,6,7,8)],dtype=[('r',np.int8),('g',np.int8),
- ('b',np.int8),('a',np.int8)])
+ x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype=[('r', np.int8), ('g', np.int8),
+ ('b', np.int8), ('a', np.int8)])
# We must be specific about the endianness here:
y = x.view(dtype='<i4')
# ... and again without the keyword.
@@ -2605,7 +2605,7 @@ class TestStats(TestCase):
assert_(issubclass(w[0].category, RuntimeWarning))
def test_empty(self):
- A = np.zeros((0,3))
+ A = np.zeros((0, 3))
for f in self.funcs:
for axis in [0, None]:
with warnings.catch_warnings(record=True) as w:
@@ -2656,7 +2656,7 @@ class TestStats(TestCase):
def __array_finalize__(self, obj):
self.info = getattr(obj, "info", '')
- dat = TestArray([[1,2,3,4],[5,6,7,8]], 'jubba')
+ dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba')
res = dat.mean(1)
assert_(res.info == dat.info)
res = dat.std(1)
@@ -2684,16 +2684,16 @@ class TestDot(TestCase):
r = np.empty((1024, 32))
for i in range(12):
- dot(f,v,r)
+ dot(f, v, r)
assert_equal(sys.getrefcount(r), 2)
- r2 = dot(f,v,out=None)
+ r2 = dot(f, v, out=None)
assert_array_equal(r2, r)
- assert_(r is dot(f,v,out=r))
+ assert_(r is dot(f, v, out=r))
- v = v[:,0].copy() # v.shape == (16,)
- r = r[:,0].copy() # r.shape == (1024,)
- r2 = dot(f,v)
- assert_(r is dot(f,v,r))
+ v = v[:, 0].copy() # v.shape == (16,)
+ r = r[:, 0].copy() # r.shape == (1024,)
+ r2 = dot(f, v)
+ assert_(r is dot(f, v, r))
assert_array_equal(r2, r)
def test_dot_3args_errors(self):
@@ -2717,8 +2717,8 @@ class TestDot(TestCase):
assert_raises(ValueError, dot, f, v, r.T)
r = np.empty((1024, 64))
- assert_raises(ValueError, dot, f, v, r[:,::2])
- assert_raises(ValueError, dot, f, v, r[:,:32])
+ assert_raises(ValueError, dot, f, v, r[:, ::2])
+ assert_raises(ValueError, dot, f, v, r[:, :32])
r = np.empty((1024, 32), dtype=np.float32)
assert_raises(ValueError, dot, f, v, r)
@@ -2737,7 +2737,7 @@ class TestSummarization(TestCase):
assert_(repr(A) == reprA)
def test_2d(self):
- A = np.arange(1002).reshape(2,501)
+ A = np.arange(1002).reshape(2, 501)
strA = '[[ 0 1 2 ..., 498 499 500]\n' \
' [ 501 502 503 ..., 999 1000 1001]]'
assert_(str(A) == strA)
@@ -2749,23 +2749,23 @@ class TestSummarization(TestCase):
class TestChoose(TestCase):
def setUp(self):
- self.x = 2*ones((3,),dtype=int)
- self.y = 3*ones((3,),dtype=int)
- self.x2 = 2*ones((2,3), dtype=int)
- self.y2 = 3*ones((2,3), dtype=int)
- self.ind = [0,0,1]
+ self.x = 2*ones((3,), dtype=int)
+ self.y = 3*ones((3,), dtype=int)
+ self.x2 = 2*ones((2, 3), dtype=int)
+ self.y2 = 3*ones((2, 3), dtype=int)
+ self.ind = [0, 0, 1]
def test_basic(self):
A = np.choose(self.ind, (self.x, self.y))
- assert_equal(A, [2,2,3])
+ assert_equal(A, [2, 2, 3])
def test_broadcast1(self):
A = np.choose(self.ind, (self.x2, self.y2))
- assert_equal(A, [[2,2,3],[2,2,3]])
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
def test_broadcast2(self):
A = np.choose(self.ind, (self.x, self.y2))
- assert_equal(A, [[2,2,3],[2,2,3]])
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
def can_use_decimal():
try:
@@ -3052,13 +3052,13 @@ class TestStackedNeighborhoodIter(TestCase):
class TestWarnings(object):
def test_complex_warning(self):
- x = np.array([1,2])
- y = np.array([1-2j,1+2j])
+ x = np.array([1, 2])
+ y = np.array([1-2j, 1+2j])
with warnings.catch_warnings():
warnings.simplefilter("error", np.ComplexWarning)
assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y)
- assert_equal(x, [1,2])
+ assert_equal(x, [1, 2])
class TestMinScalarType(object):
@@ -3187,13 +3187,13 @@ class TestNewBufferProtocol(object):
assert_array_equal(obj, y2)
def test_roundtrip(self):
- x = np.array([1,2,3,4,5], dtype='i4')
+ x = np.array([1, 2, 3, 4, 5], dtype='i4')
self._check_roundtrip(x)
- x = np.array([[1,2],[3,4]], dtype=np.float64)
+ x = np.array([[1, 2], [3, 4]], dtype=np.float64)
self._check_roundtrip(x)
- x = np.zeros((3,3,3), dtype=np.float32)[:,0,:]
+ x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:]
self._check_roundtrip(x)
dt = [('a', 'b'),
@@ -3224,32 +3224,32 @@ class TestNewBufferProtocol(object):
dtype=dt)
self._check_roundtrip(x)
- x = np.array(([[1,2],[3,4]],), dtype=[('a', (int, (2,2)))])
+ x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))])
self._check_roundtrip(x)
- x = np.array([1,2,3], dtype='>i2')
+ x = np.array([1, 2, 3], dtype='>i2')
self._check_roundtrip(x)
- x = np.array([1,2,3], dtype='<i2')
+ x = np.array([1, 2, 3], dtype='<i2')
self._check_roundtrip(x)
- x = np.array([1,2,3], dtype='>i4')
+ x = np.array([1, 2, 3], dtype='>i4')
self._check_roundtrip(x)
- x = np.array([1,2,3], dtype='<i4')
+ x = np.array([1, 2, 3], dtype='<i4')
self._check_roundtrip(x)
# Native-only data types can be passed through the buffer interface
# only in native byte order
if sys.byteorder == 'little':
- x = np.array([1,2,3], dtype='>q')
+ x = np.array([1, 2, 3], dtype='>q')
assert_raises(ValueError, self._check_roundtrip, x)
- x = np.array([1,2,3], dtype='<q')
+ x = np.array([1, 2, 3], dtype='<q')
self._check_roundtrip(x)
else:
- x = np.array([1,2,3], dtype='>q')
+ x = np.array([1, 2, 3], dtype='>q')
self._check_roundtrip(x)
- x = np.array([1,2,3], dtype='<q')
+ x = np.array([1, 2, 3], dtype='<q')
assert_raises(ValueError, self._check_roundtrip, x)
def test_roundtrip_half(self):
@@ -3272,7 +3272,7 @@ class TestNewBufferProtocol(object):
self._check_roundtrip(x)
def test_export_simple_1d(self):
- x = np.array([1,2,3,4,5], dtype='i')
+ x = np.array([1, 2, 3, 4, 5], dtype='i')
y = memoryview(x)
assert_equal(y.format, 'i')
assert_equal(y.shape, (5,))
@@ -3282,7 +3282,7 @@ class TestNewBufferProtocol(object):
assert_equal(y.itemsize, 4)
def test_export_simple_nd(self):
- x = np.array([[1,2],[3,4]], dtype=np.float64)
+ x = np.array([[1, 2], [3, 4]], dtype=np.float64)
y = memoryview(x)
assert_equal(y.format, 'd')
assert_equal(y.shape, (2, 2))
@@ -3292,7 +3292,7 @@ class TestNewBufferProtocol(object):
assert_equal(y.itemsize, 8)
def test_export_discontiguous(self):
- x = np.zeros((3,3,3), dtype=np.float32)[:,0,:]
+ x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:]
y = memoryview(x)
assert_equal(y.format, 'f')
assert_equal(y.shape, (3, 3))
@@ -3344,7 +3344,7 @@ class TestNewBufferProtocol(object):
assert_equal(y.itemsize, sz)
def test_export_subarray(self):
- x = np.array(([[1,2],[3,4]],), dtype=[('a', ('i', (2,2)))])
+ x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))])
y = memoryview(x)
assert_equal(y.format, 'T{(2,2)i:a:}')
assert_equal(y.shape, EMPTY)
@@ -3354,14 +3354,14 @@ class TestNewBufferProtocol(object):
assert_equal(y.itemsize, 16)
def test_export_endian(self):
- x = np.array([1,2,3], dtype='>i')
+ x = np.array([1, 2, 3], dtype='>i')
y = memoryview(x)
if sys.byteorder == 'little':
assert_equal(y.format, '>i')
else:
assert_equal(y.format, 'i')
- x = np.array([1,2,3], dtype='<i')
+ x = np.array([1, 2, 3], dtype='<i')
y = memoryview(x)
if sys.byteorder == 'little':
assert_equal(y.format, 'i')
@@ -3374,7 +3374,7 @@ class TestNewBufferProtocol(object):
def test_padding(self):
for j in range(8):
- x = np.array([(1,),(2,)], dtype={'f0': (int, j)})
+ x = np.array([(1,), (2,)], dtype={'f0': (int, j)})
self._check_roundtrip(x)
def test_reference_leak(self):
@@ -3460,7 +3460,7 @@ def test_array_interface():
assert_equal(np.array(f), 0.5)
f.iface['shape'] = None
assert_raises(TypeError, np.array, f)
- f.iface['shape'] = (1,1)
+ f.iface['shape'] = (1, 1)
assert_equal(np.array(f), [[0.5]])
f.iface['shape'] = (2,)
assert_raises(ValueError, np.array, f)
@@ -3497,19 +3497,19 @@ class TestMapIter(TestCase):
# The actual tests are within the C code in
# multiarray/multiarray_tests.c.src
- a = arange(12).reshape((3,4)).astype(float)
- index = ([1,1,2,0],
- [0,0,2,3])
- vals = [50,50, 30,16]
+ a = arange(12).reshape((3, 4)).astype(float)
+ index = ([1, 1, 2, 0],
+ [0, 0, 2, 3])
+ vals = [50, 50, 30, 16]
test_inplace_increment(a, index, vals)
- assert_equal(a, [[ 0. , 1., 2., 19.,],
+ assert_equal(a, [[ 0., 1., 2., 19.,],
[ 104., 5., 6., 7.,],
[ 8., 9., 40., 11.,]])
b = arange(6).astype(float)
- index = (array([1,2,0]),)
- vals = [50,4,100.1]
+ index = (array([1, 2, 0]),)
+ vals = [50, 4, 100.1]
test_inplace_increment(b, index, vals)
assert_equal(b, [ 100.1, 51., 6., 3., 4., 5. ])
diff --git a/numpy/core/tests/test_nditer.py b/numpy/core/tests/test_nditer.py
index 76d85618f..bc20b900e 100644
--- a/numpy/core/tests/test_nditer.py
+++ b/numpy/core/tests/test_nditer.py
@@ -39,7 +39,7 @@ def test_iter_refcount():
rc_a = sys.getrefcount(a)
rc_dt = sys.getrefcount(dt)
it = nditer(a, [],
- [['readwrite','updateifcopy']],
+ [['readwrite', 'updateifcopy']],
casting='unsafe',
op_dtypes=[dt])
assert_(not it.iterationneedsapi)
@@ -74,14 +74,14 @@ def test_iter_best_order():
# with increasing memory addresses
# Test the ordering for 1-D to 5-D shapes
- for shape in [(5,), (3,4), (2,3,4), (2,3,4,3), (2,3,2,2,3)]:
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
a = arange(np.prod(shape))
# Test each combination of positive and negative strides
for dirs in range(2**len(shape)):
dirs_index = [slice(None)]*len(shape)
for bit in range(len(shape)):
if ((2**bit)&dirs):
- dirs_index[bit] = slice(None,None,-1)
+ dirs_index[bit] = slice(None, None, -1)
dirs_index = tuple(dirs_index)
aview = a.reshape(shape)[dirs_index]
@@ -93,21 +93,21 @@ def test_iter_best_order():
assert_equal([x for x in i], a)
# Other order
if len(shape) > 2:
- i = nditer(aview.swapaxes(0,1), [], [['readonly']])
+ i = nditer(aview.swapaxes(0, 1), [], [['readonly']])
assert_equal([x for x in i], a)
def test_iter_c_order():
# Test forcing C order
# Test the ordering for 1-D to 5-D shapes
- for shape in [(5,), (3,4), (2,3,4), (2,3,4,3), (2,3,2,2,3)]:
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
a = arange(np.prod(shape))
# Test each combination of positive and negative strides
for dirs in range(2**len(shape)):
dirs_index = [slice(None)]*len(shape)
for bit in range(len(shape)):
if ((2**bit)&dirs):
- dirs_index[bit] = slice(None,None,-1)
+ dirs_index[bit] = slice(None, None, -1)
dirs_index = tuple(dirs_index)
aview = a.reshape(shape)[dirs_index]
@@ -119,22 +119,22 @@ def test_iter_c_order():
assert_equal([x for x in i], aview.T.ravel(order='C'))
# Other order
if len(shape) > 2:
- i = nditer(aview.swapaxes(0,1), order='C')
+ i = nditer(aview.swapaxes(0, 1), order='C')
assert_equal([x for x in i],
- aview.swapaxes(0,1).ravel(order='C'))
+ aview.swapaxes(0, 1).ravel(order='C'))
def test_iter_f_order():
# Test forcing F order
# Test the ordering for 1-D to 5-D shapes
- for shape in [(5,), (3,4), (2,3,4), (2,3,4,3), (2,3,2,2,3)]:
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
a = arange(np.prod(shape))
# Test each combination of positive and negative strides
for dirs in range(2**len(shape)):
dirs_index = [slice(None)]*len(shape)
for bit in range(len(shape)):
if ((2**bit)&dirs):
- dirs_index[bit] = slice(None,None,-1)
+ dirs_index[bit] = slice(None, None, -1)
dirs_index = tuple(dirs_index)
aview = a.reshape(shape)[dirs_index]
@@ -146,22 +146,22 @@ def test_iter_f_order():
assert_equal([x for x in i], aview.T.ravel(order='F'))
# Other order
if len(shape) > 2:
- i = nditer(aview.swapaxes(0,1), order='F')
+ i = nditer(aview.swapaxes(0, 1), order='F')
assert_equal([x for x in i],
- aview.swapaxes(0,1).ravel(order='F'))
+ aview.swapaxes(0, 1).ravel(order='F'))
def test_iter_c_or_f_order():
# Test forcing any contiguous (C or F) order
# Test the ordering for 1-D to 5-D shapes
- for shape in [(5,), (3,4), (2,3,4), (2,3,4,3), (2,3,2,2,3)]:
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
a = arange(np.prod(shape))
# Test each combination of positive and negative strides
for dirs in range(2**len(shape)):
dirs_index = [slice(None)]*len(shape)
for bit in range(len(shape)):
if ((2**bit)&dirs):
- dirs_index[bit] = slice(None,None,-1)
+ dirs_index[bit] = slice(None, None, -1)
dirs_index = tuple(dirs_index)
aview = a.reshape(shape)[dirs_index]
@@ -173,250 +173,250 @@ def test_iter_c_or_f_order():
assert_equal([x for x in i], aview.T.ravel(order='A'))
# Other order
if len(shape) > 2:
- i = nditer(aview.swapaxes(0,1), order='A')
+ i = nditer(aview.swapaxes(0, 1), order='A')
assert_equal([x for x in i],
- aview.swapaxes(0,1).ravel(order='A'))
+ aview.swapaxes(0, 1).ravel(order='A'))
def test_iter_best_order_multi_index_1d():
# The multi-indices should be correct with any reordering
a = arange(4)
# 1D order
- i = nditer(a,['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(0,),(1,),(2,),(3,)])
+ i = nditer(a, ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0,), (1,), (2,), (3,)])
# 1D reversed order
- i = nditer(a[::-1],['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(3,),(2,),(1,),(0,)])
+ i = nditer(a[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(3,), (2,), (1,), (0,)])
def test_iter_best_order_multi_index_2d():
# The multi-indices should be correct with any reordering
a = arange(6)
# 2D C-order
- i = nditer(a.reshape(2,3),['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)])
+ i = nditer(a.reshape(2, 3), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)])
# 2D Fortran-order
- i = nditer(a.reshape(2,3).copy(order='F'),['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(0,0),(1,0),(0,1),(1,1),(0,2),(1,2)])
+ i = nditer(a.reshape(2, 3).copy(order='F'), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)])
# 2D reversed C-order
- i = nditer(a.reshape(2,3)[::-1],['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(1,0),(1,1),(1,2),(0,0),(0,1),(0,2)])
- i = nditer(a.reshape(2,3)[:,::-1],['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(0,2),(0,1),(0,0),(1,2),(1,1),(1,0)])
- i = nditer(a.reshape(2,3)[::-1,::-1],['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(1,2),(1,1),(1,0),(0,2),(0,1),(0,0)])
+ i = nditer(a.reshape(2, 3)[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 0), (1, 1), (1, 2), (0, 0), (0, 1), (0, 2)])
+ i = nditer(a.reshape(2, 3)[:, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 2), (0, 1), (0, 0), (1, 2), (1, 1), (1, 0)])
+ i = nditer(a.reshape(2, 3)[::-1, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 2), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0)])
# 2D reversed Fortran-order
- i = nditer(a.reshape(2,3).copy(order='F')[::-1],['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(1,0),(0,0),(1,1),(0,1),(1,2),(0,2)])
- i = nditer(a.reshape(2,3).copy(order='F')[:,::-1],
- ['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(0,2),(1,2),(0,1),(1,1),(0,0),(1,0)])
- i = nditer(a.reshape(2,3).copy(order='F')[::-1,::-1],
- ['multi_index'],[['readonly']])
- assert_equal(iter_multi_index(i), [(1,2),(0,2),(1,1),(0,1),(1,0),(0,0)])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 0), (0, 0), (1, 1), (0, 1), (1, 2), (0, 2)])
+ i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 2), (1, 2), (0, 1), (1, 1), (0, 0), (1, 0)])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 2), (0, 2), (1, 1), (0, 1), (1, 0), (0, 0)])
def test_iter_best_order_multi_index_3d():
# The multi-indices should be correct with any reordering
a = arange(12)
# 3D C-order
- i = nditer(a.reshape(2,3,2),['multi_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2), ['multi_index'], [['readonly']])
assert_equal(iter_multi_index(i),
- [(0,0,0),(0,0,1),(0,1,0),(0,1,1),(0,2,0),(0,2,1),
- (1,0,0),(1,0,1),(1,1,0),(1,1,1),(1,2,0),(1,2,1)])
+ [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1),
+ (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1)])
# 3D Fortran-order
- i = nditer(a.reshape(2,3,2).copy(order='F'),['multi_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['multi_index'], [['readonly']])
assert_equal(iter_multi_index(i),
- [(0,0,0),(1,0,0),(0,1,0),(1,1,0),(0,2,0),(1,2,0),
- (0,0,1),(1,0,1),(0,1,1),(1,1,1),(0,2,1),(1,2,1)])
+ [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0),
+ (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1)])
# 3D reversed C-order
- i = nditer(a.reshape(2,3,2)[::-1],['multi_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2)[::-1], ['multi_index'], [['readonly']])
assert_equal(iter_multi_index(i),
- [(1,0,0),(1,0,1),(1,1,0),(1,1,1),(1,2,0),(1,2,1),
- (0,0,0),(0,0,1),(0,1,0),(0,1,1),(0,2,0),(0,2,1)])
- i = nditer(a.reshape(2,3,2)[:,::-1],['multi_index'],[['readonly']])
+ [(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1),
+ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1)])
+ i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['multi_index'], [['readonly']])
assert_equal(iter_multi_index(i),
- [(0,2,0),(0,2,1),(0,1,0),(0,1,1),(0,0,0),(0,0,1),
- (1,2,0),(1,2,1),(1,1,0),(1,1,1),(1,0,0),(1,0,1)])
- i = nditer(a.reshape(2,3,2)[:,:,::-1],['multi_index'],[['readonly']])
+ [(0, 2, 0), (0, 2, 1), (0, 1, 0), (0, 1, 1), (0, 0, 0), (0, 0, 1),
+ (1, 2, 0), (1, 2, 1), (1, 1, 0), (1, 1, 1), (1, 0, 0), (1, 0, 1)])
+ i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['multi_index'], [['readonly']])
assert_equal(iter_multi_index(i),
- [(0,0,1),(0,0,0),(0,1,1),(0,1,0),(0,2,1),(0,2,0),
- (1,0,1),(1,0,0),(1,1,1),(1,1,0),(1,2,1),(1,2,0)])
+ [(0, 0, 1), (0, 0, 0), (0, 1, 1), (0, 1, 0), (0, 2, 1), (0, 2, 0),
+ (1, 0, 1), (1, 0, 0), (1, 1, 1), (1, 1, 0), (1, 2, 1), (1, 2, 0)])
# 3D reversed Fortran-order
- i = nditer(a.reshape(2,3,2).copy(order='F')[::-1],
- ['multi_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1],
+ ['multi_index'], [['readonly']])
assert_equal(iter_multi_index(i),
- [(1,0,0),(0,0,0),(1,1,0),(0,1,0),(1,2,0),(0,2,0),
- (1,0,1),(0,0,1),(1,1,1),(0,1,1),(1,2,1),(0,2,1)])
- i = nditer(a.reshape(2,3,2).copy(order='F')[:,::-1],
- ['multi_index'],[['readonly']])
+ [(1, 0, 0), (0, 0, 0), (1, 1, 0), (0, 1, 0), (1, 2, 0), (0, 2, 0),
+ (1, 0, 1), (0, 0, 1), (1, 1, 1), (0, 1, 1), (1, 2, 1), (0, 2, 1)])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1],
+ ['multi_index'], [['readonly']])
assert_equal(iter_multi_index(i),
- [(0,2,0),(1,2,0),(0,1,0),(1,1,0),(0,0,0),(1,0,0),
- (0,2,1),(1,2,1),(0,1,1),(1,1,1),(0,0,1),(1,0,1)])
- i = nditer(a.reshape(2,3,2).copy(order='F')[:,:,::-1],
- ['multi_index'],[['readonly']])
+ [(0, 2, 0), (1, 2, 0), (0, 1, 0), (1, 1, 0), (0, 0, 0), (1, 0, 0),
+ (0, 2, 1), (1, 2, 1), (0, 1, 1), (1, 1, 1), (0, 0, 1), (1, 0, 1)])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1],
+ ['multi_index'], [['readonly']])
assert_equal(iter_multi_index(i),
- [(0,0,1),(1,0,1),(0,1,1),(1,1,1),(0,2,1),(1,2,1),
- (0,0,0),(1,0,0),(0,1,0),(1,1,0),(0,2,0),(1,2,0)])
+ [(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1),
+ (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0)])
def test_iter_best_order_c_index_1d():
# The C index should be correct with any reordering
a = arange(4)
# 1D order
- i = nditer(a,['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [0,1,2,3])
+ i = nditer(a, ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3])
# 1D reversed order
- i = nditer(a[::-1],['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [3,2,1,0])
+ i = nditer(a[::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 2, 1, 0])
def test_iter_best_order_c_index_2d():
# The C index should be correct with any reordering
a = arange(6)
# 2D C-order
- i = nditer(a.reshape(2,3),['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [0,1,2,3,4,5])
+ i = nditer(a.reshape(2, 3), ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5])
# 2D Fortran-order
- i = nditer(a.reshape(2,3).copy(order='F'),
- ['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [0,3,1,4,2,5])
+ i = nditer(a.reshape(2, 3).copy(order='F'),
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 3, 1, 4, 2, 5])
# 2D reversed C-order
- i = nditer(a.reshape(2,3)[::-1],['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [3,4,5,0,1,2])
- i = nditer(a.reshape(2,3)[:,::-1],['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [2,1,0,5,4,3])
- i = nditer(a.reshape(2,3)[::-1,::-1],['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [5,4,3,2,1,0])
+ i = nditer(a.reshape(2, 3)[::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 4, 5, 0, 1, 2])
+ i = nditer(a.reshape(2, 3)[:, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [2, 1, 0, 5, 4, 3])
+ i = nditer(a.reshape(2, 3)[::-1, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0])
# 2D reversed Fortran-order
- i = nditer(a.reshape(2,3).copy(order='F')[::-1],
- ['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [3,0,4,1,5,2])
- i = nditer(a.reshape(2,3).copy(order='F')[:,::-1],
- ['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [2,5,1,4,0,3])
- i = nditer(a.reshape(2,3).copy(order='F')[::-1,::-1],
- ['c_index'],[['readonly']])
- assert_equal(iter_indices(i), [5,2,4,1,3,0])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 0, 4, 1, 5, 2])
+ i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [2, 5, 1, 4, 0, 3])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 2, 4, 1, 3, 0])
def test_iter_best_order_c_index_3d():
# The C index should be correct with any reordering
a = arange(12)
# 3D C-order
- i = nditer(a.reshape(2,3,2),['c_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2), ['c_index'], [['readonly']])
assert_equal(iter_indices(i),
- [0,1,2,3,4,5,6,7,8,9,10,11])
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
# 3D Fortran-order
- i = nditer(a.reshape(2,3,2).copy(order='F'),
- ['c_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F'),
+ ['c_index'], [['readonly']])
assert_equal(iter_indices(i),
- [0,6,2,8,4,10,1,7,3,9,5,11])
+ [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11])
# 3D reversed C-order
- i = nditer(a.reshape(2,3,2)[::-1],['c_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2)[::-1], ['c_index'], [['readonly']])
assert_equal(iter_indices(i),
- [6,7,8,9,10,11,0,1,2,3,4,5])
- i = nditer(a.reshape(2,3,2)[:,::-1],['c_index'],[['readonly']])
+ [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5])
+ i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['c_index'], [['readonly']])
assert_equal(iter_indices(i),
- [4,5,2,3,0,1,10,11,8,9,6,7])
- i = nditer(a.reshape(2,3,2)[:,:,::-1],['c_index'],[['readonly']])
+ [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7])
+ i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['c_index'], [['readonly']])
assert_equal(iter_indices(i),
- [1,0,3,2,5,4,7,6,9,8,11,10])
+ [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10])
# 3D reversed Fortran-order
- i = nditer(a.reshape(2,3,2).copy(order='F')[::-1],
- ['c_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1],
+ ['c_index'], [['readonly']])
assert_equal(iter_indices(i),
- [6,0,8,2,10,4,7,1,9,3,11,5])
- i = nditer(a.reshape(2,3,2).copy(order='F')[:,::-1],
- ['c_index'],[['readonly']])
+ [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1],
+ ['c_index'], [['readonly']])
assert_equal(iter_indices(i),
- [4,10,2,8,0,6,5,11,3,9,1,7])
- i = nditer(a.reshape(2,3,2).copy(order='F')[:,:,::-1],
- ['c_index'],[['readonly']])
+ [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1],
+ ['c_index'], [['readonly']])
assert_equal(iter_indices(i),
- [1,7,3,9,5,11,0,6,2,8,4,10])
+ [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10])
def test_iter_best_order_f_index_1d():
# The Fortran index should be correct with any reordering
a = arange(4)
# 1D order
- i = nditer(a,['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [0,1,2,3])
+ i = nditer(a, ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3])
# 1D reversed order
- i = nditer(a[::-1],['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [3,2,1,0])
+ i = nditer(a[::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 2, 1, 0])
def test_iter_best_order_f_index_2d():
# The Fortran index should be correct with any reordering
a = arange(6)
# 2D C-order
- i = nditer(a.reshape(2,3),['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [0,2,4,1,3,5])
+ i = nditer(a.reshape(2, 3), ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 2, 4, 1, 3, 5])
# 2D Fortran-order
- i = nditer(a.reshape(2,3).copy(order='F'),
- ['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [0,1,2,3,4,5])
+ i = nditer(a.reshape(2, 3).copy(order='F'),
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5])
# 2D reversed C-order
- i = nditer(a.reshape(2,3)[::-1],['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [1,3,5,0,2,4])
- i = nditer(a.reshape(2,3)[:,::-1],['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [4,2,0,5,3,1])
- i = nditer(a.reshape(2,3)[::-1,::-1],['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [5,3,1,4,2,0])
+ i = nditer(a.reshape(2, 3)[::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [1, 3, 5, 0, 2, 4])
+ i = nditer(a.reshape(2, 3)[:, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [4, 2, 0, 5, 3, 1])
+ i = nditer(a.reshape(2, 3)[::-1, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 3, 1, 4, 2, 0])
# 2D reversed Fortran-order
- i = nditer(a.reshape(2,3).copy(order='F')[::-1],
- ['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [1,0,3,2,5,4])
- i = nditer(a.reshape(2,3).copy(order='F')[:,::-1],
- ['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [4,5,2,3,0,1])
- i = nditer(a.reshape(2,3).copy(order='F')[::-1,::-1],
- ['f_index'],[['readonly']])
- assert_equal(iter_indices(i), [5,4,3,2,1,0])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4])
+ i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0])
def test_iter_best_order_f_index_3d():
# The Fortran index should be correct with any reordering
a = arange(12)
# 3D C-order
- i = nditer(a.reshape(2,3,2),['f_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2), ['f_index'], [['readonly']])
assert_equal(iter_indices(i),
- [0,6,2,8,4,10,1,7,3,9,5,11])
+ [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11])
# 3D Fortran-order
- i = nditer(a.reshape(2,3,2).copy(order='F'),
- ['f_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F'),
+ ['f_index'], [['readonly']])
assert_equal(iter_indices(i),
- [0,1,2,3,4,5,6,7,8,9,10,11])
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
# 3D reversed C-order
- i = nditer(a.reshape(2,3,2)[::-1],['f_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2)[::-1], ['f_index'], [['readonly']])
assert_equal(iter_indices(i),
- [1,7,3,9,5,11,0,6,2,8,4,10])
- i = nditer(a.reshape(2,3,2)[:,::-1],['f_index'],[['readonly']])
+ [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10])
+ i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['f_index'], [['readonly']])
assert_equal(iter_indices(i),
- [4,10,2,8,0,6,5,11,3,9,1,7])
- i = nditer(a.reshape(2,3,2)[:,:,::-1],['f_index'],[['readonly']])
+ [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7])
+ i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['f_index'], [['readonly']])
assert_equal(iter_indices(i),
- [6,0,8,2,10,4,7,1,9,3,11,5])
+ [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5])
# 3D reversed Fortran-order
- i = nditer(a.reshape(2,3,2).copy(order='F')[::-1],
- ['f_index'],[['readonly']])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1],
+ ['f_index'], [['readonly']])
assert_equal(iter_indices(i),
- [1,0,3,2,5,4,7,6,9,8,11,10])
- i = nditer(a.reshape(2,3,2).copy(order='F')[:,::-1],
- ['f_index'],[['readonly']])
+ [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1],
+ ['f_index'], [['readonly']])
assert_equal(iter_indices(i),
- [4,5,2,3,0,1,10,11,8,9,6,7])
- i = nditer(a.reshape(2,3,2).copy(order='F')[:,:,::-1],
- ['f_index'],[['readonly']])
+ [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1],
+ ['f_index'], [['readonly']])
assert_equal(iter_indices(i),
- [6,7,8,9,10,11,0,1,2,3,4,5])
+ [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5])
def test_iter_no_inner_full_coalesce():
# Check no_inner iterators which coalesce into a single inner loop
- for shape in [(5,), (3,4), (2,3,4), (2,3,4,3), (2,3,2,2,3)]:
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
size = np.prod(shape)
a = arange(size)
# Test each combination of forward and backwards indexing
@@ -424,7 +424,7 @@ def test_iter_no_inner_full_coalesce():
dirs_index = [slice(None)]*len(shape)
for bit in range(len(shape)):
if ((2**bit)&dirs):
- dirs_index[bit] = slice(None,None,-1)
+ dirs_index[bit] = slice(None, None, -1)
dirs_index = tuple(dirs_index)
aview = a.reshape(shape)[dirs_index]
@@ -438,7 +438,7 @@ def test_iter_no_inner_full_coalesce():
assert_equal(i[0].shape, (size,))
# Other order
if len(shape) > 2:
- i = nditer(aview.swapaxes(0,1),
+ i = nditer(aview.swapaxes(0, 1),
['external_loop'], [['readonly']])
assert_equal(i.ndim, 1)
assert_equal(i[0].shape, (size,))
@@ -448,21 +448,21 @@ def test_iter_no_inner_dim_coalescing():
# Skipping the last element in a dimension prevents coalescing
# with the next-bigger dimension
- a = arange(24).reshape(2,3,4)[:,:,:-1]
+ a = arange(24).reshape(2, 3, 4)[:,:, :-1]
i = nditer(a, ['external_loop'], [['readonly']])
assert_equal(i.ndim, 2)
assert_equal(i[0].shape, (3,))
- a = arange(24).reshape(2,3,4)[:,:-1,:]
+ a = arange(24).reshape(2, 3, 4)[:, :-1,:]
i = nditer(a, ['external_loop'], [['readonly']])
assert_equal(i.ndim, 2)
assert_equal(i[0].shape, (8,))
- a = arange(24).reshape(2,3,4)[:-1,:,:]
+ a = arange(24).reshape(2, 3, 4)[:-1,:,:]
i = nditer(a, ['external_loop'], [['readonly']])
assert_equal(i.ndim, 1)
assert_equal(i[0].shape, (12,))
# Even with lots of 1-sized dimensions, should still coalesce
- a = arange(24).reshape(1,1,2,1,1,3,1,1,4,1,1)
+ a = arange(24).reshape(1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1)
i = nditer(a, ['external_loop'], [['readonly']])
assert_equal(i.ndim, 1)
assert_equal(i[0].shape, (24,))
@@ -471,25 +471,25 @@ def test_iter_dim_coalescing():
# Check that the correct number of dimensions are coalesced
# Tracking a multi-index disables coalescing
- a = arange(24).reshape(2,3,4)
+ a = arange(24).reshape(2, 3, 4)
i = nditer(a, ['multi_index'], [['readonly']])
assert_equal(i.ndim, 3)
# A tracked index can allow coalescing if it's compatible with the array
- a3d = arange(24).reshape(2,3,4)
+ a3d = arange(24).reshape(2, 3, 4)
i = nditer(a3d, ['c_index'], [['readonly']])
assert_equal(i.ndim, 1)
- i = nditer(a3d.swapaxes(0,1), ['c_index'], [['readonly']])
+ i = nditer(a3d.swapaxes(0, 1), ['c_index'], [['readonly']])
assert_equal(i.ndim, 3)
i = nditer(a3d.T, ['c_index'], [['readonly']])
assert_equal(i.ndim, 3)
i = nditer(a3d.T, ['f_index'], [['readonly']])
assert_equal(i.ndim, 1)
- i = nditer(a3d.T.swapaxes(0,1), ['f_index'], [['readonly']])
+ i = nditer(a3d.T.swapaxes(0, 1), ['f_index'], [['readonly']])
assert_equal(i.ndim, 3)
# When C or F order is forced, coalescing may still occur
- a3d = arange(24).reshape(2,3,4)
+ a3d = arange(24).reshape(2, 3, 4)
i = nditer(a3d, order='C')
assert_equal(i.ndim, 1)
i = nditer(a3d.T, order='C')
@@ -512,95 +512,95 @@ def test_iter_broadcasting():
assert_equal(i.shape, (6,))
# 2D with scalar
- i = nditer([arange(6).reshape(2,3), np.int32(2)],
+ i = nditer([arange(6).reshape(2, 3), np.int32(2)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 6)
- assert_equal(i.shape, (2,3))
+ assert_equal(i.shape, (2, 3))
# 2D with 1D
- i = nditer([arange(6).reshape(2,3), arange(3)],
+ i = nditer([arange(6).reshape(2, 3), arange(3)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 6)
- assert_equal(i.shape, (2,3))
- i = nditer([arange(2).reshape(2,1), arange(3)],
+ assert_equal(i.shape, (2, 3))
+ i = nditer([arange(2).reshape(2, 1), arange(3)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 6)
- assert_equal(i.shape, (2,3))
+ assert_equal(i.shape, (2, 3))
# 2D with 2D
- i = nditer([arange(2).reshape(2,1), arange(3).reshape(1,3)],
+ i = nditer([arange(2).reshape(2, 1), arange(3).reshape(1, 3)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 6)
- assert_equal(i.shape, (2,3))
+ assert_equal(i.shape, (2, 3))
# 3D with scalar
- i = nditer([np.int32(2), arange(24).reshape(4,2,3)],
+ i = nditer([np.int32(2), arange(24).reshape(4, 2, 3)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 24)
- assert_equal(i.shape, (4,2,3))
+ assert_equal(i.shape, (4, 2, 3))
# 3D with 1D
- i = nditer([arange(3), arange(24).reshape(4,2,3)],
+ i = nditer([arange(3), arange(24).reshape(4, 2, 3)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 24)
- assert_equal(i.shape, (4,2,3))
- i = nditer([arange(3), arange(8).reshape(4,2,1)],
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(3), arange(8).reshape(4, 2, 1)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 24)
- assert_equal(i.shape, (4,2,3))
+ assert_equal(i.shape, (4, 2, 3))
# 3D with 2D
- i = nditer([arange(6).reshape(2,3), arange(24).reshape(4,2,3)],
+ i = nditer([arange(6).reshape(2, 3), arange(24).reshape(4, 2, 3)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 24)
- assert_equal(i.shape, (4,2,3))
- i = nditer([arange(2).reshape(2,1), arange(24).reshape(4,2,3)],
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(2).reshape(2, 1), arange(24).reshape(4, 2, 3)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 24)
- assert_equal(i.shape, (4,2,3))
- i = nditer([arange(3).reshape(1,3), arange(8).reshape(4,2,1)],
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(3).reshape(1, 3), arange(8).reshape(4, 2, 1)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 24)
- assert_equal(i.shape, (4,2,3))
+ assert_equal(i.shape, (4, 2, 3))
# 3D with 3D
- i = nditer([arange(2).reshape(1,2,1), arange(3).reshape(1,1,3),
- arange(4).reshape(4,1,1)],
+ i = nditer([arange(2).reshape(1, 2, 1), arange(3).reshape(1, 1, 3),
+ arange(4).reshape(4, 1, 1)],
['multi_index'], [['readonly']]*3)
assert_equal(i.itersize, 24)
- assert_equal(i.shape, (4,2,3))
- i = nditer([arange(6).reshape(1,2,3), arange(4).reshape(4,1,1)],
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(6).reshape(1, 2, 3), arange(4).reshape(4, 1, 1)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 24)
- assert_equal(i.shape, (4,2,3))
- i = nditer([arange(24).reshape(4,2,3), arange(12).reshape(4,1,3)],
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(24).reshape(4, 2, 3), arange(12).reshape(4, 1, 3)],
['multi_index'], [['readonly']]*2)
assert_equal(i.itersize, 24)
- assert_equal(i.shape, (4,2,3))
+ assert_equal(i.shape, (4, 2, 3))
def test_iter_itershape():
# Check that allocated outputs work with a specified shape
- a = np.arange(6, dtype='i2').reshape(2,3)
- i = nditer([a, None], [], [['readonly'], ['writeonly','allocate']],
- op_axes=[[0,1,None], None],
- itershape=(-1,-1,4))
- assert_equal(i.operands[1].shape, (2,3,4))
- assert_equal(i.operands[1].strides, (24,8,2))
-
- i = nditer([a.T, None], [], [['readonly'], ['writeonly','allocate']],
- op_axes=[[0,1,None], None],
- itershape=(-1,-1,4))
- assert_equal(i.operands[1].shape, (3,2,4))
- assert_equal(i.operands[1].strides, (8,24,2))
-
- i = nditer([a.T, None], [], [['readonly'], ['writeonly','allocate']],
+ a = np.arange(6, dtype='i2').reshape(2, 3)
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, -1, 4))
+ assert_equal(i.operands[1].shape, (2, 3, 4))
+ assert_equal(i.operands[1].strides, (24, 8, 2))
+
+ i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, -1, 4))
+ assert_equal(i.operands[1].shape, (3, 2, 4))
+ assert_equal(i.operands[1].strides, (8, 24, 2))
+
+ i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']],
order='F',
- op_axes=[[0,1,None], None],
- itershape=(-1,-1,4))
- assert_equal(i.operands[1].shape, (3,2,4))
- assert_equal(i.operands[1].strides, (2,6,12))
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, -1, 4))
+ assert_equal(i.operands[1].shape, (3, 2, 4))
+ assert_equal(i.operands[1].strides, (2, 6, 12))
# If we specify 1 in the itershape, it shouldn't allow broadcasting
# of that dimension to a bigger value
assert_raises(ValueError, nditer, [a, None], [],
- [['readonly'], ['writeonly','allocate']],
- op_axes=[[0,1,None], None],
- itershape=(-1,1,4))
+ [['readonly'], ['writeonly', 'allocate']],
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, 1, 4))
# Test bug that for no op_axes but itershape, they are NULLed correctly
i = np.nditer([np.ones(2), None, None], itershape=(2,))
@@ -612,30 +612,30 @@ def test_iter_broadcasting_errors():
[], [['readonly']]*2)
# 2D with 1D
assert_raises(ValueError, nditer,
- [arange(6).reshape(2,3), arange(2)],
+ [arange(6).reshape(2, 3), arange(2)],
[], [['readonly']]*2)
# 2D with 2D
assert_raises(ValueError, nditer,
- [arange(6).reshape(2,3), arange(9).reshape(3,3)],
+ [arange(6).reshape(2, 3), arange(9).reshape(3, 3)],
[], [['readonly']]*2)
assert_raises(ValueError, nditer,
- [arange(6).reshape(2,3), arange(4).reshape(2,2)],
+ [arange(6).reshape(2, 3), arange(4).reshape(2, 2)],
[], [['readonly']]*2)
# 3D with 3D
assert_raises(ValueError, nditer,
- [arange(36).reshape(3,3,4), arange(24).reshape(2,3,4)],
+ [arange(36).reshape(3, 3, 4), arange(24).reshape(2, 3, 4)],
[], [['readonly']]*2)
assert_raises(ValueError, nditer,
- [arange(8).reshape(2,4,1), arange(24).reshape(2,3,4)],
+ [arange(8).reshape(2, 4, 1), arange(24).reshape(2, 3, 4)],
[], [['readonly']]*2)
# Verify that the error message mentions the right shapes
try:
- i = nditer([arange(2).reshape(1,2,1),
- arange(3).reshape(1,3),
- arange(6).reshape(2,3)],
+ i = nditer([arange(2).reshape(1, 2, 1),
+ arange(3).reshape(1, 3),
+ arange(6).reshape(2, 3)],
[],
- [['readonly'], ['readonly'], ['writeonly','no_broadcast']])
+ [['readonly'], ['readonly'], ['writeonly', 'no_broadcast']])
assert_(False, 'Should have raised a broadcast error')
except ValueError as e:
msg = str(e)
@@ -647,10 +647,10 @@ def test_iter_broadcasting_errors():
'Message "%s" doesn\'t contain broadcast shape (1,2,3)' % msg)
try:
- i = nditer([arange(6).reshape(2,3), arange(2)], [],
- [['readonly'],['readonly']],
- op_axes=[[0,1], [0,np.newaxis]],
- itershape=(4,3))
+ i = nditer([arange(6).reshape(2, 3), arange(2)], [],
+ [['readonly'], ['readonly']],
+ op_axes=[[0, 1], [0, np.newaxis]],
+ itershape=(4, 3))
assert_(False, 'Should have raised a broadcast error')
except ValueError as e:
msg = str(e)
@@ -665,9 +665,9 @@ def test_iter_broadcasting_errors():
'Message "%s" doesn\'t contain itershape parameter (4,3)' % msg)
try:
- i = nditer([np.zeros((2,1,1)), np.zeros((2,))],
+ i = nditer([np.zeros((2, 1, 1)), np.zeros((2,))],
[],
- [['writeonly','no_broadcast'], ['readonly']])
+ [['writeonly', 'no_broadcast'], ['readonly']])
assert_(False, 'Should have raised a broadcast error')
except ValueError as e:
msg = str(e)
@@ -690,7 +690,7 @@ def test_iter_flags_errors():
# Bad global flag
assert_raises(ValueError, nditer, [a], ['bad flag'], [['readonly']])
# Bad op flag
- assert_raises(ValueError, nditer, [a], [], [['readonly','bad flag']])
+ assert_raises(ValueError, nditer, [a], [], [['readonly', 'bad flag']])
# Bad order parameter
assert_raises(ValueError, nditer, [a], [], [['readonly']], order='G')
# Bad casting parameter
@@ -699,21 +699,21 @@ def test_iter_flags_errors():
assert_raises(ValueError, nditer, [a]*3, [], [['readonly']]*2)
# Cannot track both a C and an F index
assert_raises(ValueError, nditer, a,
- ['c_index','f_index'], [['readonly']])
+ ['c_index', 'f_index'], [['readonly']])
# Inner iteration and multi-indices/indices are incompatible
assert_raises(ValueError, nditer, a,
- ['external_loop','multi_index'], [['readonly']])
+ ['external_loop', 'multi_index'], [['readonly']])
assert_raises(ValueError, nditer, a,
- ['external_loop','c_index'], [['readonly']])
+ ['external_loop', 'c_index'], [['readonly']])
assert_raises(ValueError, nditer, a,
- ['external_loop','f_index'], [['readonly']])
+ ['external_loop', 'f_index'], [['readonly']])
# Must specify exactly one of readwrite/readonly/writeonly per operand
assert_raises(ValueError, nditer, a, [], [[]])
- assert_raises(ValueError, nditer, a, [], [['readonly','writeonly']])
- assert_raises(ValueError, nditer, a, [], [['readonly','readwrite']])
- assert_raises(ValueError, nditer, a, [], [['writeonly','readwrite']])
+ assert_raises(ValueError, nditer, a, [], [['readonly', 'writeonly']])
+ assert_raises(ValueError, nditer, a, [], [['readonly', 'readwrite']])
+ assert_raises(ValueError, nditer, a, [], [['writeonly', 'readwrite']])
assert_raises(ValueError, nditer, a,
- [], [['readonly','writeonly','readwrite']])
+ [], [['readonly', 'writeonly', 'readwrite']])
# Python scalars are always readonly
assert_raises(TypeError, nditer, 1.5, [], [['writeonly']])
assert_raises(TypeError, nditer, 1.5, [], [['readwrite']])
@@ -738,7 +738,7 @@ def test_iter_flags_errors():
def assign_iterindex(i):
i.iterindex = 0;
def assign_iterrange(i):
- i.iterrange = (0,1);
+ i.iterrange = (0, 1);
i = nditer(arange(6), ['external_loop'])
assert_raises(ValueError, assign_multi_index, i)
assert_raises(ValueError, assign_index, i)
@@ -753,13 +753,13 @@ def test_iter_flags_errors():
def test_iter_slice():
a, b, c = np.arange(3), np.arange(3), np.arange(3.)
- i = nditer([a,b,c], [], ['readwrite'])
- i[0:2] = (3,3)
- assert_equal(a, [3,1,2])
- assert_equal(b, [3,1,2])
- assert_equal(c, [0,1,2])
+ i = nditer([a, b, c], [], ['readwrite'])
+ i[0:2] = (3, 3)
+ assert_equal(a, [3, 1, 2])
+ assert_equal(b, [3, 1, 2])
+ assert_equal(c, [0, 1, 2])
i[1] = 12
- assert_equal(i[0:2], [3,12])
+ assert_equal(i[0:2], [3, 12])
def test_iter_nbo_align_contig():
# Check that byte order, alignment, and contig changes work
@@ -768,7 +768,7 @@ def test_iter_nbo_align_contig():
a = np.arange(6, dtype='f4')
au = a.byteswap().newbyteorder()
assert_(a.dtype.byteorder != au.dtype.byteorder)
- i = nditer(au, [], [['readwrite','updateifcopy']],
+ i = nditer(au, [], [['readwrite', 'updateifcopy']],
casting='equiv',
op_dtypes=[np.dtype('f4')])
assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder)
@@ -782,7 +782,7 @@ def test_iter_nbo_align_contig():
a = np.arange(6, dtype='f4')
au = a.byteswap().newbyteorder()
assert_(a.dtype.byteorder != au.dtype.byteorder)
- i = nditer(au, [], [['readwrite','updateifcopy','nbo']], casting='equiv')
+ i = nditer(au, [], [['readwrite', 'updateifcopy', 'nbo']], casting='equiv')
assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder)
assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder)
assert_equal(i.operands[0], a)
@@ -800,7 +800,7 @@ def test_iter_nbo_align_contig():
assert_(not i.operands[0].flags.aligned)
assert_equal(i.operands[0], a);
# With 'aligned', should make a copy
- i = nditer(a, [], [['readwrite','updateifcopy','aligned']])
+ i = nditer(a, [], [['readwrite', 'updateifcopy', 'aligned']])
assert_(i.operands[0].flags.aligned)
assert_equal(i.operands[0], a);
i.operands[0][:] = 3
@@ -814,8 +814,8 @@ def test_iter_nbo_align_contig():
assert_(i.operands[0].flags.contiguous)
assert_equal(i.operands[0], a[:6]);
# If it isn't contiguous, should buffer
- i = nditer(a[::2], ['buffered','external_loop'],
- [['readonly','contig']],
+ i = nditer(a[::2], ['buffered', 'external_loop'],
+ [['readonly', 'contig']],
buffersize=10)
assert_(i[0].flags.contiguous)
assert_equal(i[0], a[::2])
@@ -824,106 +824,106 @@ def test_iter_array_cast():
# Check that arrays are cast as requested
# No cast 'f4' -> 'f4'
- a = np.arange(6, dtype='f4').reshape(2,3)
+ a = np.arange(6, dtype='f4').reshape(2, 3)
i = nditer(a, [], [['readwrite']], op_dtypes=[np.dtype('f4')])
assert_equal(i.operands[0], a)
assert_equal(i.operands[0].dtype, np.dtype('f4'))
# Byte-order cast '<f4' -> '>f4'
- a = np.arange(6, dtype='<f4').reshape(2,3)
- i = nditer(a, [], [['readwrite','updateifcopy']],
+ a = np.arange(6, dtype='<f4').reshape(2, 3)
+ i = nditer(a, [], [['readwrite', 'updateifcopy']],
casting='equiv',
op_dtypes=[np.dtype('>f4')])
assert_equal(i.operands[0], a)
assert_equal(i.operands[0].dtype, np.dtype('>f4'))
# Safe case 'f4' -> 'f8'
- a = np.arange(24, dtype='f4').reshape(2,3,4).swapaxes(1,2)
- i = nditer(a, [], [['readonly','copy']],
+ a = np.arange(24, dtype='f4').reshape(2, 3, 4).swapaxes(1, 2)
+ i = nditer(a, [], [['readonly', 'copy']],
casting='safe',
op_dtypes=[np.dtype('f8')])
assert_equal(i.operands[0], a)
assert_equal(i.operands[0].dtype, np.dtype('f8'))
# The memory layout of the temporary should match a (a is (48,4,16))
# except negative strides get flipped to positive strides.
- assert_equal(i.operands[0].strides, (96,8,32))
- a = a[::-1,:,::-1]
- i = nditer(a, [], [['readonly','copy']],
+ assert_equal(i.operands[0].strides, (96, 8, 32))
+ a = a[::-1,:, ::-1]
+ i = nditer(a, [], [['readonly', 'copy']],
casting='safe',
op_dtypes=[np.dtype('f8')])
assert_equal(i.operands[0], a)
assert_equal(i.operands[0].dtype, np.dtype('f8'))
- assert_equal(i.operands[0].strides, (96,8,32))
+ assert_equal(i.operands[0].strides, (96, 8, 32))
# Same-kind cast 'f8' -> 'f4' -> 'f8'
- a = np.arange(24, dtype='f8').reshape(2,3,4).T
+ a = np.arange(24, dtype='f8').reshape(2, 3, 4).T
i = nditer(a, [],
- [['readwrite','updateifcopy']],
+ [['readwrite', 'updateifcopy']],
casting='same_kind',
op_dtypes=[np.dtype('f4')])
assert_equal(i.operands[0], a)
assert_equal(i.operands[0].dtype, np.dtype('f4'))
assert_equal(i.operands[0].strides, (4, 16, 48))
# Check that UPDATEIFCOPY is activated
- i.operands[0][2,1,1] = -12.5
- assert_(a[2,1,1] != -12.5)
+ i.operands[0][2, 1, 1] = -12.5
+ assert_(a[2, 1, 1] != -12.5)
i = None
- assert_equal(a[2,1,1], -12.5)
+ assert_equal(a[2, 1, 1], -12.5)
a = np.arange(6, dtype='i4')[::-2]
i = nditer(a, [],
- [['writeonly','updateifcopy']],
+ [['writeonly', 'updateifcopy']],
casting='unsafe',
op_dtypes=[np.dtype('f4')])
assert_equal(i.operands[0].dtype, np.dtype('f4'))
# Even though the stride was negative in 'a', it
# becomes positive in the temporary
assert_equal(i.operands[0].strides, (4,))
- i.operands[0][:] = [1,2,3]
+ i.operands[0][:] = [1, 2, 3]
i = None
- assert_equal(a, [1,2,3])
+ assert_equal(a, [1, 2, 3])
def test_iter_array_cast_errors():
# Check that invalid casts are caught
# Need to enable copying for casts to occur
- assert_raises(TypeError, nditer, arange(2,dtype='f4'), [],
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
[['readonly']], op_dtypes=[np.dtype('f8')])
# Also need to allow casting for casts to occur
- assert_raises(TypeError, nditer, arange(2,dtype='f4'), [],
- [['readonly','copy']], casting='no',
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly', 'copy']], casting='no',
op_dtypes=[np.dtype('f8')])
- assert_raises(TypeError, nditer, arange(2,dtype='f4'), [],
- [['readonly','copy']], casting='equiv',
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly', 'copy']], casting='equiv',
op_dtypes=[np.dtype('f8')])
- assert_raises(TypeError, nditer, arange(2,dtype='f8'), [],
- [['writeonly','updateifcopy']],
+ assert_raises(TypeError, nditer, arange(2, dtype='f8'), [],
+ [['writeonly', 'updateifcopy']],
casting='no',
op_dtypes=[np.dtype('f4')])
- assert_raises(TypeError, nditer, arange(2,dtype='f8'), [],
- [['writeonly','updateifcopy']],
+ assert_raises(TypeError, nditer, arange(2, dtype='f8'), [],
+ [['writeonly', 'updateifcopy']],
casting='equiv',
op_dtypes=[np.dtype('f4')])
# '<f4' -> '>f4' should not work with casting='no'
- assert_raises(TypeError, nditer, arange(2,dtype='<f4'), [],
- [['readonly','copy']], casting='no',
+ assert_raises(TypeError, nditer, arange(2, dtype='<f4'), [],
+ [['readonly', 'copy']], casting='no',
op_dtypes=[np.dtype('>f4')])
# 'f4' -> 'f8' is a safe cast, but 'f8' -> 'f4' isn't
- assert_raises(TypeError, nditer, arange(2,dtype='f4'), [],
- [['readwrite','updateifcopy']],
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readwrite', 'updateifcopy']],
casting='safe',
op_dtypes=[np.dtype('f8')])
- assert_raises(TypeError, nditer, arange(2,dtype='f8'), [],
- [['readwrite','updateifcopy']],
+ assert_raises(TypeError, nditer, arange(2, dtype='f8'), [],
+ [['readwrite', 'updateifcopy']],
casting='safe',
op_dtypes=[np.dtype('f4')])
# 'f4' -> 'i4' is neither a safe nor a same-kind cast
- assert_raises(TypeError, nditer, arange(2,dtype='f4'), [],
- [['readonly','copy']],
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly', 'copy']],
casting='same_kind',
op_dtypes=[np.dtype('i4')])
- assert_raises(TypeError, nditer, arange(2,dtype='i4'), [],
- [['writeonly','updateifcopy']],
+ assert_raises(TypeError, nditer, arange(2, dtype='i4'), [],
+ [['writeonly', 'updateifcopy']],
casting='same_kind',
op_dtypes=[np.dtype('f4')])
@@ -938,7 +938,7 @@ def test_iter_scalar_cast():
assert_equal(i.value, 2.5)
# Safe cast 'f4' -> 'f8'
i = nditer(np.float32(2.5), [],
- [['readonly','copy']],
+ [['readonly', 'copy']],
casting='safe',
op_dtypes=[np.dtype('f8')])
assert_equal(i.dtypes[0], np.dtype('f8'))
@@ -946,7 +946,7 @@ def test_iter_scalar_cast():
assert_equal(i.value, 2.5)
# Same-kind cast 'f8' -> 'f4'
i = nditer(np.float64(2.5), [],
- [['readonly','copy']],
+ [['readonly', 'copy']],
casting='same_kind',
op_dtypes=[np.dtype('f4')])
assert_equal(i.dtypes[0], np.dtype('f4'))
@@ -954,7 +954,7 @@ def test_iter_scalar_cast():
assert_equal(i.value, 2.5)
# Unsafe cast 'f8' -> 'i4'
i = nditer(np.float64(3.0), [],
- [['readonly','copy']],
+ [['readonly', 'copy']],
casting='unsafe',
op_dtypes=[np.dtype('i4')])
assert_equal(i.dtypes[0], np.dtype('i4'))
@@ -988,7 +988,7 @@ def test_iter_object_arrays_basic():
# Check that object arrays work
obj = {'a':3,'b':'d'}
- a = np.array([[1,2,3], None, obj, None], dtype='O')
+ a = np.array([[1, 2, 3], None, obj, None], dtype='O')
rc = sys.getrefcount(obj)
# Need to allow references for object arrays
@@ -1001,15 +1001,15 @@ def test_iter_object_arrays_basic():
vals, i, x = [None]*3
assert_equal(sys.getrefcount(obj), rc)
- i = nditer(a.reshape(2,2).T, ['refs_ok','buffered'],
+ i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'],
['readonly'], order='C')
assert_(i.iterationneedsapi)
vals = [x[()] for x in i]
- assert_equal(np.array(vals, dtype='O'), a.reshape(2,2).ravel(order='F'))
+ assert_equal(np.array(vals, dtype='O'), a.reshape(2, 2).ravel(order='F'))
vals, i, x = [None]*3
assert_equal(sys.getrefcount(obj), rc)
- i = nditer(a.reshape(2,2).T, ['refs_ok','buffered'],
+ i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'],
['readwrite'], order='C')
for x in i:
x[...] = None
@@ -1020,34 +1020,34 @@ def test_iter_object_arrays_basic():
def test_iter_object_arrays_conversions():
# Conversions to/from objects
a = np.arange(6, dtype='O')
- i = nditer(a, ['refs_ok','buffered'], ['readwrite'],
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
casting='unsafe', op_dtypes='i4')
for x in i:
x[...] += 1
assert_equal(a, np.arange(6)+1)
a = np.arange(6, dtype='i4')
- i = nditer(a, ['refs_ok','buffered'], ['readwrite'],
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
casting='unsafe', op_dtypes='O')
for x in i:
x[...] += 1
assert_equal(a, np.arange(6)+1)
# Non-contiguous object array
- a = np.zeros((6,), dtype=[('p','i1'),('a','O')])
+ a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'O')])
a = a['a']
a[:] = np.arange(6)
- i = nditer(a, ['refs_ok','buffered'], ['readwrite'],
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
casting='unsafe', op_dtypes='i4')
for x in i:
x[...] += 1
assert_equal(a, np.arange(6)+1)
#Non-contiguous value array
- a = np.zeros((6,), dtype=[('p','i1'),('a','i4')])
+ a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'i4')])
a = a['a']
a[:] = np.arange(6) + 98172488
- i = nditer(a, ['refs_ok','buffered'], ['readwrite'],
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
casting='unsafe', op_dtypes='O')
ob = i[0][()]
rc = sys.getrefcount(ob)
@@ -1059,61 +1059,61 @@ def test_iter_object_arrays_conversions():
def test_iter_common_dtype():
# Check that the iterator finds a common data type correctly
- i = nditer([array([3],dtype='f4'),array([0],dtype='f8')],
+ i = nditer([array([3], dtype='f4'), array([0], dtype='f8')],
['common_dtype'],
- [['readonly','copy']]*2,
+ [['readonly', 'copy']]*2,
casting='safe')
assert_equal(i.dtypes[0], np.dtype('f8'));
assert_equal(i.dtypes[1], np.dtype('f8'));
- i = nditer([array([3],dtype='i4'),array([0],dtype='f4')],
+ i = nditer([array([3], dtype='i4'), array([0], dtype='f4')],
['common_dtype'],
- [['readonly','copy']]*2,
+ [['readonly', 'copy']]*2,
casting='safe')
assert_equal(i.dtypes[0], np.dtype('f8'));
assert_equal(i.dtypes[1], np.dtype('f8'));
- i = nditer([array([3],dtype='f4'),array(0,dtype='f8')],
+ i = nditer([array([3], dtype='f4'), array(0, dtype='f8')],
['common_dtype'],
- [['readonly','copy']]*2,
+ [['readonly', 'copy']]*2,
casting='same_kind')
assert_equal(i.dtypes[0], np.dtype('f4'));
assert_equal(i.dtypes[1], np.dtype('f4'));
- i = nditer([array([3],dtype='u4'),array(0,dtype='i4')],
+ i = nditer([array([3], dtype='u4'), array(0, dtype='i4')],
['common_dtype'],
- [['readonly','copy']]*2,
+ [['readonly', 'copy']]*2,
casting='safe')
assert_equal(i.dtypes[0], np.dtype('u4'));
assert_equal(i.dtypes[1], np.dtype('u4'));
- i = nditer([array([3],dtype='u4'),array(-12,dtype='i4')],
+ i = nditer([array([3], dtype='u4'), array(-12, dtype='i4')],
['common_dtype'],
- [['readonly','copy']]*2,
+ [['readonly', 'copy']]*2,
casting='safe')
assert_equal(i.dtypes[0], np.dtype('i8'));
assert_equal(i.dtypes[1], np.dtype('i8'));
- i = nditer([array([3],dtype='u4'),array(-12,dtype='i4'),
- array([2j],dtype='c8'),array([9],dtype='f8')],
+ i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'),
+ array([2j], dtype='c8'), array([9], dtype='f8')],
['common_dtype'],
- [['readonly','copy']]*4,
+ [['readonly', 'copy']]*4,
casting='safe')
assert_equal(i.dtypes[0], np.dtype('c16'));
assert_equal(i.dtypes[1], np.dtype('c16'));
assert_equal(i.dtypes[2], np.dtype('c16'));
assert_equal(i.dtypes[3], np.dtype('c16'));
- assert_equal(i.value, (3,-12,2j,9))
+ assert_equal(i.value, (3, -12, 2j, 9))
# When allocating outputs, other outputs aren't factored in
- i = nditer([array([3],dtype='i4'),None,array([2j],dtype='c16')], [],
- [['readonly','copy'],
- ['writeonly','allocate'],
+ i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')], [],
+ [['readonly', 'copy'],
+ ['writeonly', 'allocate'],
['writeonly']],
casting='safe')
assert_equal(i.dtypes[0], np.dtype('i4'));
assert_equal(i.dtypes[1], np.dtype('i4'));
assert_equal(i.dtypes[2], np.dtype('c16'));
# But, if common data types are requested, they are
- i = nditer([array([3],dtype='i4'),None,array([2j],dtype='c16')],
+ i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')],
['common_dtype'],
- [['readonly','copy'],
- ['writeonly','allocate'],
+ [['readonly', 'copy'],
+ ['writeonly', 'allocate'],
['writeonly']],
casting='safe')
assert_equal(i.dtypes[0], np.dtype('c16'));
@@ -1124,69 +1124,69 @@ def test_iter_op_axes():
# Check that custom axes work
# Reverse the axes
- a = arange(6).reshape(2,3)
- i = nditer([a,a.T], [], [['readonly']]*2, op_axes=[[0,1],[1,0]])
- assert_(all([x==y for (x,y) in i]))
- a = arange(24).reshape(2,3,4)
- i = nditer([a.T,a], [], [['readonly']]*2, op_axes=[[2,1,0],None])
- assert_(all([x==y for (x,y) in i]))
+ a = arange(6).reshape(2, 3)
+ i = nditer([a, a.T], [], [['readonly']]*2, op_axes=[[0, 1], [1, 0]])
+ assert_(all([x==y for (x, y) in i]))
+ a = arange(24).reshape(2, 3, 4)
+ i = nditer([a.T, a], [], [['readonly']]*2, op_axes=[[2, 1, 0], None])
+ assert_(all([x==y for (x, y) in i]))
# Broadcast 1D to any dimension
- a = arange(1,31).reshape(2,3,5)
- b = arange(1,3)
- i = nditer([a,b], [], [['readonly']]*2, op_axes=[None,[0,-1,-1]])
- assert_equal([x*y for (x,y) in i], (a*b.reshape(2,1,1)).ravel())
- b = arange(1,4)
- i = nditer([a,b], [], [['readonly']]*2, op_axes=[None,[-1,0,-1]])
- assert_equal([x*y for (x,y) in i], (a*b.reshape(1,3,1)).ravel())
- b = arange(1,6)
- i = nditer([a,b], [], [['readonly']]*2,
- op_axes=[None,[np.newaxis,np.newaxis,0]])
- assert_equal([x*y for (x,y) in i], (a*b.reshape(1,1,5)).ravel())
+ a = arange(1, 31).reshape(2, 3, 5)
+ b = arange(1, 3)
+ i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [0, -1, -1]])
+ assert_equal([x*y for (x, y) in i], (a*b.reshape(2, 1, 1)).ravel())
+ b = arange(1, 4)
+ i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [-1, 0, -1]])
+ assert_equal([x*y for (x, y) in i], (a*b.reshape(1, 3, 1)).ravel())
+ b = arange(1, 6)
+ i = nditer([a, b], [], [['readonly']]*2,
+ op_axes=[None, [np.newaxis, np.newaxis, 0]])
+ assert_equal([x*y for (x, y) in i], (a*b.reshape(1, 1, 5)).ravel())
# Inner product-style broadcasting
- a = arange(24).reshape(2,3,4)
- b = arange(40).reshape(5,2,4)
- i = nditer([a,b], ['multi_index'], [['readonly']]*2,
- op_axes=[[0,1,-1,-1],[-1,-1,0,1]])
- assert_equal(i.shape, (2,3,5,2))
+ a = arange(24).reshape(2, 3, 4)
+ b = arange(40).reshape(5, 2, 4)
+ i = nditer([a, b], ['multi_index'], [['readonly']]*2,
+ op_axes=[[0, 1, -1, -1], [-1, -1, 0, 1]])
+ assert_equal(i.shape, (2, 3, 5, 2))
# Matrix product-style broadcasting
- a = arange(12).reshape(3,4)
- b = arange(20).reshape(4,5)
- i = nditer([a,b], ['multi_index'], [['readonly']]*2,
- op_axes=[[0,-1],[-1,1]])
- assert_equal(i.shape, (3,5))
+ a = arange(12).reshape(3, 4)
+ b = arange(20).reshape(4, 5)
+ i = nditer([a, b], ['multi_index'], [['readonly']]*2,
+ op_axes=[[0, -1], [-1, 1]])
+ assert_equal(i.shape, (3, 5))
def test_iter_op_axes_errors():
# Check that custom axes throws errors for bad inputs
# Wrong number of items in op_axes
- a = arange(6).reshape(2,3)
- assert_raises(ValueError, nditer, [a,a], [], [['readonly']]*2,
- op_axes=[[0],[1],[0]])
+ a = arange(6).reshape(2, 3)
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0], [1], [0]])
# Out of bounds items in op_axes
- assert_raises(ValueError, nditer, [a,a], [], [['readonly']]*2,
- op_axes=[[2,1],[0,1]])
- assert_raises(ValueError, nditer, [a,a], [], [['readonly']]*2,
- op_axes=[[0,1],[2,-1]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[2, 1], [0, 1]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 1], [2, -1]])
# Duplicate items in op_axes
- assert_raises(ValueError, nditer, [a,a], [], [['readonly']]*2,
- op_axes=[[0,0],[0,1]])
- assert_raises(ValueError, nditer, [a,a], [], [['readonly']]*2,
- op_axes=[[0,1],[1,1]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 0], [0, 1]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 1], [1, 1]])
# Different sized arrays in op_axes
- assert_raises(ValueError, nditer, [a,a], [], [['readonly']]*2,
- op_axes=[[0,1],[0,1,0]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 1], [0, 1, 0]])
# Non-broadcastable dimensions in the result
- assert_raises(ValueError, nditer, [a,a], [], [['readonly']]*2,
- op_axes=[[0,1],[1,0]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 1], [1, 0]])
def test_iter_copy():
# Check that copying the iterator works correctly
- a = arange(24).reshape(2,3,4)
+ a = arange(24).reshape(2, 3, 4)
# Simple iterator
i = nditer(a)
@@ -1198,7 +1198,7 @@ def test_iter_copy():
assert_equal([x[()] for x in i], [x[()] for x in j])
# Buffered iterator
- i = nditer(a, ['buffered','ranged'], order='F', buffersize=3)
+ i = nditer(a, ['buffered', 'ranged'], order='F', buffersize=3)
j = i.copy()
assert_equal([x[()] for x in i], [x[()] for x in j])
@@ -1206,11 +1206,11 @@ def test_iter_copy():
j = i.copy()
assert_equal([x[()] for x in i], [x[()] for x in j])
- i.iterrange = (3,9)
+ i.iterrange = (3, 9)
j = i.copy()
assert_equal([x[()] for x in i], [x[()] for x in j])
- i.iterrange = (2,18)
+ i.iterrange = (2, 18)
next(i)
next(i)
j = i.copy()
@@ -1223,7 +1223,7 @@ def test_iter_copy():
i = None
assert_equal([x[()] for x in j], a.ravel(order='F'))
- a = arange(24, dtype='<i4').reshape(2,3,4)
+ a = arange(24, dtype='<i4').reshape(2, 3, 4)
i = nditer(a, ['buffered'], order='F', casting='unsafe',
op_dtypes='>f8', buffersize=5)
j = i.copy()
@@ -1235,8 +1235,8 @@ def test_iter_allocate_output_simple():
# Simple case
a = arange(6)
- i = nditer([a,None], [], [['readonly'],['writeonly','allocate']],
- op_dtypes=[None,np.dtype('f4')])
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
assert_equal(i.operands[1].shape, a.shape)
assert_equal(i.operands[1].dtype, np.dtype('f4'))
@@ -1244,8 +1244,8 @@ def test_iter_allocate_output_buffered_readwrite():
# Allocated output with buffering + delay_bufalloc
a = arange(6)
- i = nditer([a,None], ['buffered','delay_bufalloc'],
- [['readonly'],['allocate','readwrite']])
+ i = nditer([a, None], ['buffered', 'delay_bufalloc'],
+ [['readonly'], ['allocate', 'readwrite']])
i.operands[1][:] = 1
i.reset()
for x in i:
@@ -1256,78 +1256,78 @@ def test_iter_allocate_output_itorder():
# The allocated output should match the iteration order
# C-order input, best iteration order
- a = arange(6, dtype='i4').reshape(2,3)
- i = nditer([a,None], [], [['readonly'],['writeonly','allocate']],
- op_dtypes=[None,np.dtype('f4')])
+ a = arange(6, dtype='i4').reshape(2, 3)
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
assert_equal(i.operands[1].shape, a.shape)
assert_equal(i.operands[1].strides, a.strides)
assert_equal(i.operands[1].dtype, np.dtype('f4'))
# F-order input, best iteration order
- a = arange(24, dtype='i4').reshape(2,3,4).T
- i = nditer([a,None], [], [['readonly'],['writeonly','allocate']],
- op_dtypes=[None,np.dtype('f4')])
+ a = arange(24, dtype='i4').reshape(2, 3, 4).T
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
assert_equal(i.operands[1].shape, a.shape)
assert_equal(i.operands[1].strides, a.strides)
assert_equal(i.operands[1].dtype, np.dtype('f4'))
# Non-contiguous input, C iteration order
- a = arange(24, dtype='i4').reshape(2,3,4).swapaxes(0,1)
- i = nditer([a,None], [],
- [['readonly'],['writeonly','allocate']],
+ a = arange(24, dtype='i4').reshape(2, 3, 4).swapaxes(0, 1)
+ i = nditer([a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
order='C',
- op_dtypes=[None,np.dtype('f4')])
+ op_dtypes=[None, np.dtype('f4')])
assert_equal(i.operands[1].shape, a.shape)
- assert_equal(i.operands[1].strides, (32,16,4))
+ assert_equal(i.operands[1].strides, (32, 16, 4))
assert_equal(i.operands[1].dtype, np.dtype('f4'))
def test_iter_allocate_output_opaxes():
# Specifing op_axes should work
- a = arange(24, dtype='i4').reshape(2,3,4)
- i = nditer([None,a], [], [['writeonly','allocate'],['readonly']],
- op_dtypes=[np.dtype('u4'),None],
- op_axes=[[1,2,0],None]);
- assert_equal(i.operands[0].shape, (4,2,3))
- assert_equal(i.operands[0].strides, (4,48,16))
+ a = arange(24, dtype='i4').reshape(2, 3, 4)
+ i = nditer([None, a], [], [['writeonly', 'allocate'], ['readonly']],
+ op_dtypes=[np.dtype('u4'), None],
+ op_axes=[[1, 2, 0], None]);
+ assert_equal(i.operands[0].shape, (4, 2, 3))
+ assert_equal(i.operands[0].strides, (4, 48, 16))
assert_equal(i.operands[0].dtype, np.dtype('u4'))
def test_iter_allocate_output_types_promotion():
# Check type promotion of automatic outputs
- i = nditer([array([3],dtype='f4'),array([0],dtype='f8'),None], [],
- [['readonly']]*2+[['writeonly','allocate']])
+ i = nditer([array([3], dtype='f4'), array([0], dtype='f8'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('f8'));
- i = nditer([array([3],dtype='i4'),array([0],dtype='f4'),None], [],
- [['readonly']]*2+[['writeonly','allocate']])
+ i = nditer([array([3], dtype='i4'), array([0], dtype='f4'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('f8'));
- i = nditer([array([3],dtype='f4'),array(0,dtype='f8'),None], [],
- [['readonly']]*2+[['writeonly','allocate']])
+ i = nditer([array([3], dtype='f4'), array(0, dtype='f8'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('f4'));
- i = nditer([array([3],dtype='u4'),array(0,dtype='i4'),None], [],
- [['readonly']]*2+[['writeonly','allocate']])
+ i = nditer([array([3], dtype='u4'), array(0, dtype='i4'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('u4'));
- i = nditer([array([3],dtype='u4'),array(-12,dtype='i4'),None], [],
- [['readonly']]*2+[['writeonly','allocate']])
+ i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
assert_equal(i.dtypes[2], np.dtype('i8'));
def test_iter_allocate_output_types_byte_order():
# Verify the rules for byte order changes
# When there's just one input, the output type exactly matches
- a = array([3],dtype='u4').newbyteorder()
- i = nditer([a,None], [],
- [['readonly'],['writeonly','allocate']])
+ a = array([3], dtype='u4').newbyteorder()
+ i = nditer([a, None], [],
+ [['readonly'], ['writeonly', 'allocate']])
assert_equal(i.dtypes[0], i.dtypes[1]);
# With two or more inputs, the output type is in native byte order
- i = nditer([a,a,None], [],
- [['readonly'],['readonly'],['writeonly','allocate']])
+ i = nditer([a, a, None], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate']])
assert_(i.dtypes[0] != i.dtypes[2]);
assert_equal(i.dtypes[0].newbyteorder('='), i.dtypes[2])
def test_iter_allocate_output_types_scalar():
# If the inputs are all scalars, the output should be a scalar
- i = nditer([None,1,2.3,np.float32(12),np.complex128(3)],[],
- [['writeonly','allocate']] + [['readonly']]*4)
+ i = nditer([None, 1, 2.3, np.float32(12), np.complex128(3)], [],
+ [['writeonly', 'allocate']] + [['readonly']]*4)
assert_equal(i.operands[0].dtype, np.dtype('complex128'))
assert_equal(i.operands[0].ndim, 0)
@@ -1335,81 +1335,81 @@ def test_iter_allocate_output_subtype():
# Make sure that the subtype with priority wins
# matrix vs ndarray
- a = np.matrix([[1,2], [3,4]])
- b = np.arange(4).reshape(2,2).T
- i = nditer([a,b,None], [],
- [['readonly'],['readonly'],['writeonly','allocate']])
+ a = np.matrix([[1, 2], [3, 4]])
+ b = np.arange(4).reshape(2, 2).T
+ i = nditer([a, b, None], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate']])
assert_equal(type(a), type(i.operands[2]))
assert_(type(b) != type(i.operands[2]))
- assert_equal(i.operands[2].shape, (2,2))
+ assert_equal(i.operands[2].shape, (2, 2))
# matrix always wants things to be 2D
- b = np.arange(4).reshape(1,2,2)
- assert_raises(RuntimeError, nditer, [a,b,None], [],
- [['readonly'],['readonly'],['writeonly','allocate']])
+ b = np.arange(4).reshape(1, 2, 2)
+ assert_raises(RuntimeError, nditer, [a, b, None], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate']])
# but if subtypes are disabled, the result can still work
- i = nditer([a,b,None], [],
- [['readonly'],['readonly'],['writeonly','allocate','no_subtype']])
+ i = nditer([a, b, None], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate', 'no_subtype']])
assert_equal(type(b), type(i.operands[2]))
assert_(type(a) != type(i.operands[2]))
- assert_equal(i.operands[2].shape, (1,2,2))
+ assert_equal(i.operands[2].shape, (1, 2, 2))
def test_iter_allocate_output_errors():
# Check that the iterator will throw errors for bad output allocations
# Need an input if no output data type is specified
a = arange(6)
- assert_raises(TypeError, nditer, [a,None], [],
- [['writeonly'],['writeonly','allocate']])
+ assert_raises(TypeError, nditer, [a, None], [],
+ [['writeonly'], ['writeonly', 'allocate']])
# Allocated output should be flagged for writing
- assert_raises(ValueError, nditer, [a,None], [],
- [['readonly'],['allocate','readonly']])
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['allocate', 'readonly']])
# Allocated output can't have buffering without delayed bufalloc
- assert_raises(ValueError, nditer, [a,None], ['buffered'],
- ['allocate','readwrite'])
+ assert_raises(ValueError, nditer, [a, None], ['buffered'],
+ ['allocate', 'readwrite'])
# Must specify at least one input
- assert_raises(ValueError, nditer, [None,None], [],
- [['writeonly','allocate'],
- ['writeonly','allocate']],
- op_dtypes=[np.dtype('f4'),np.dtype('f4')])
+ assert_raises(ValueError, nditer, [None, None], [],
+ [['writeonly', 'allocate'],
+ ['writeonly', 'allocate']],
+ op_dtypes=[np.dtype('f4'), np.dtype('f4')])
# If using op_axes, must specify all the axes
- a = arange(24, dtype='i4').reshape(2,3,4)
- assert_raises(ValueError, nditer, [a,None], [],
- [['readonly'],['writeonly','allocate']],
- op_dtypes=[None,np.dtype('f4')],
- op_axes=[None,[0,np.newaxis,1]])
+ a = arange(24, dtype='i4').reshape(2, 3, 4)
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, np.newaxis, 1]])
# If using op_axes, the axes must be within bounds
- assert_raises(ValueError, nditer, [a,None], [],
- [['readonly'],['writeonly','allocate']],
- op_dtypes=[None,np.dtype('f4')],
- op_axes=[None,[0,3,1]])
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, 3, 1]])
# If using op_axes, there can't be duplicates
- assert_raises(ValueError, nditer, [a,None], [],
- [['readonly'],['writeonly','allocate']],
- op_dtypes=[None,np.dtype('f4')],
- op_axes=[None,[0,2,1,0]])
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, 2, 1, 0]])
def test_iter_remove_axis():
- a = arange(24).reshape(2,3,4)
+ a = arange(24).reshape(2, 3, 4)
- i = nditer(a,['multi_index'])
+ i = nditer(a, ['multi_index'])
i.remove_axis(1)
- assert_equal([x for x in i], a[:,0,:].ravel())
+ assert_equal([x for x in i], a[:, 0,:].ravel())
a = a[::-1,:,:]
- i = nditer(a,['multi_index'])
+ i = nditer(a, ['multi_index'])
i.remove_axis(0)
assert_equal([x for x in i], a[0,:,:].ravel())
def test_iter_remove_multi_index_inner_loop():
# Check that removing multi-index support works
- a = arange(24).reshape(2,3,4)
+ a = arange(24).reshape(2, 3, 4)
- i = nditer(a,['multi_index'])
+ i = nditer(a, ['multi_index'])
assert_equal(i.ndim, 3)
- assert_equal(i.shape, (2,3,4))
- assert_equal(i.itviews[0].shape, (2,3,4))
+ assert_equal(i.shape, (2, 3, 4))
+ assert_equal(i.itviews[0].shape, (2, 3, 4))
# Removing the multi-index tracking causes all dimensions to coalesce
before = [x for x in i]
@@ -1434,57 +1434,57 @@ def test_iter_iterindex():
# Make sure iterindex works
buffersize = 5
- a = arange(24).reshape(4,3,2)
+ a = arange(24).reshape(4, 3, 2)
for flags in ([], ['buffered']):
i = nditer(a, flags, buffersize=buffersize)
assert_equal(iter_iterindices(i), list(range(24)))
i.iterindex = 2
- assert_equal(iter_iterindices(i), list(range(2,24)))
+ assert_equal(iter_iterindices(i), list(range(2, 24)))
i = nditer(a, flags, order='F', buffersize=buffersize)
assert_equal(iter_iterindices(i), list(range(24)))
i.iterindex = 5
- assert_equal(iter_iterindices(i), list(range(5,24)))
+ assert_equal(iter_iterindices(i), list(range(5, 24)))
i = nditer(a[::-1], flags, order='F', buffersize=buffersize)
assert_equal(iter_iterindices(i), list(range(24)))
i.iterindex = 9
- assert_equal(iter_iterindices(i), list(range(9,24)))
+ assert_equal(iter_iterindices(i), list(range(9, 24)))
- i = nditer(a[::-1,::-1], flags, order='C', buffersize=buffersize)
+ i = nditer(a[::-1, ::-1], flags, order='C', buffersize=buffersize)
assert_equal(iter_iterindices(i), list(range(24)))
i.iterindex = 13
- assert_equal(iter_iterindices(i), list(range(13,24)))
+ assert_equal(iter_iterindices(i), list(range(13, 24)))
- i = nditer(a[::1,::-1], flags, buffersize=buffersize)
+ i = nditer(a[::1, ::-1], flags, buffersize=buffersize)
assert_equal(iter_iterindices(i), list(range(24)))
i.iterindex = 23
- assert_equal(iter_iterindices(i), list(range(23,24)))
+ assert_equal(iter_iterindices(i), list(range(23, 24)))
i.reset()
i.iterindex = 2
- assert_equal(iter_iterindices(i), list(range(2,24)))
+ assert_equal(iter_iterindices(i), list(range(2, 24)))
def test_iter_iterrange():
# Make sure getting and resetting the iterrange works
buffersize = 5
- a = arange(24, dtype='i4').reshape(4,3,2)
+ a = arange(24, dtype='i4').reshape(4, 3, 2)
a_fort = a.ravel(order='F')
i = nditer(a, ['ranged'], ['readonly'], order='F',
buffersize=buffersize)
- assert_equal(i.iterrange, (0,24))
+ assert_equal(i.iterrange, (0, 24))
assert_equal([x[()] for x in i], a_fort)
- for r in [(0,24), (1,2), (3,24), (5,5), (0,20), (23,24)]:
+ for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]:
i.iterrange = r
assert_equal(i.iterrange, r)
assert_equal([x[()] for x in i], a_fort[r[0]:r[1]])
- i = nditer(a, ['ranged','buffered'], ['readonly'], order='F',
+ i = nditer(a, ['ranged', 'buffered'], ['readonly'], order='F',
op_dtypes='f8', buffersize=buffersize)
- assert_equal(i.iterrange, (0,24))
+ assert_equal(i.iterrange, (0, 24))
assert_equal([x[()] for x in i], a_fort)
- for r in [(0,24), (1,2), (3,24), (5,5), (0,20), (23,24)]:
+ for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]:
i.iterrange = r
assert_equal(i.iterrange, r)
assert_equal([x[()] for x in i], a_fort[r[0]:r[1]])
@@ -1495,12 +1495,12 @@ def test_iter_iterrange():
val = np.concatenate((val, x))
return val
- i = nditer(a, ['ranged','buffered','external_loop'],
+ i = nditer(a, ['ranged', 'buffered', 'external_loop'],
['readonly'], order='F',
op_dtypes='f8', buffersize=buffersize)
- assert_equal(i.iterrange, (0,24))
+ assert_equal(i.iterrange, (0, 24))
assert_equal(get_array(i), a_fort)
- for r in [(0,24), (1,2), (3,24), (5,5), (0,20), (23,24)]:
+ for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]:
i.iterrange = r
assert_equal(i.iterrange, r)
assert_equal(get_array(i), a_fort[r[0]:r[1]])
@@ -1510,21 +1510,21 @@ def test_iter_buffering():
arrays = []
# F-order swapped array
arrays.append(np.arange(24,
- dtype='c16').reshape(2,3,4).T.newbyteorder().byteswap())
+ dtype='c16').reshape(2, 3, 4).T.newbyteorder().byteswap())
# Contiguous 1-dimensional array
arrays.append(np.arange(10, dtype='f4'))
# Unaligned array
a = np.zeros((4*16+1,), dtype='i1')[1:]
a.dtype = 'i4'
- a[:] = np.arange(16,dtype='i4')
+ a[:] = np.arange(16, dtype='i4')
arrays.append(a)
# 4-D F-order array
- arrays.append(np.arange(120,dtype='i4').reshape(5,3,2,4).T)
+ arrays.append(np.arange(120, dtype='i4').reshape(5, 3, 2, 4).T)
for a in arrays:
- for buffersize in (1,2,3,5,8,11,16,1024):
+ for buffersize in (1, 2, 3, 5, 8, 11, 16, 1024):
vals = []
- i = nditer(a, ['buffered','external_loop'],
- [['readonly','nbo','aligned']],
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readonly', 'nbo', 'aligned']],
order='C',
casting='equiv',
buffersize=buffersize)
@@ -1538,9 +1538,9 @@ def test_iter_write_buffering():
# Test that buffering of writes is working
# F-order swapped array
- a = np.arange(24).reshape(2,3,4).T.newbyteorder().byteswap()
+ a = np.arange(24).reshape(2, 3, 4).T.newbyteorder().byteswap()
i = nditer(a, ['buffered'],
- [['readwrite','nbo','aligned']],
+ [['readwrite', 'nbo', 'aligned']],
casting='equiv',
order='C',
buffersize=16)
@@ -1556,7 +1556,7 @@ def test_iter_buffering_delayed_alloc():
a = np.arange(6)
b = np.arange(1, dtype='f4')
- i = nditer([a,b], ['buffered','delay_bufalloc','multi_index','reduce_ok'],
+ i = nditer([a, b], ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok'],
['readwrite'],
casting='unsafe',
op_dtypes='f4')
@@ -1573,15 +1573,15 @@ def test_iter_buffering_delayed_alloc():
assert_equal(i.multi_index, (0,))
assert_equal(i[0], 0)
i[1] = 1
- assert_equal(i[0:2], [0,1])
- assert_equal([[x[0][()],x[1][()]] for x in i], list(zip(range(6), [1]*6)))
+ assert_equal(i[0:2], [0, 1])
+ assert_equal([[x[0][()], x[1][()]] for x in i], list(zip(range(6), [1]*6)))
def test_iter_buffered_cast_simple():
# Test that buffering can handle a simple cast
a = np.arange(10, dtype='f4')
- i = nditer(a, ['buffered','external_loop'],
- [['readwrite','nbo','aligned']],
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
casting='same_kind',
op_dtypes=[np.dtype('f8')],
buffersize=3)
@@ -1594,8 +1594,8 @@ def test_iter_buffered_cast_byteswapped():
# Test that buffering can handle a cast which requires swap->cast->swap
a = np.arange(10, dtype='f4').newbyteorder().byteswap()
- i = nditer(a, ['buffered','external_loop'],
- [['readwrite','nbo','aligned']],
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
casting='same_kind',
op_dtypes=[np.dtype('f8').newbyteorder()],
buffersize=3)
@@ -1608,8 +1608,8 @@ def test_iter_buffered_cast_byteswapped():
warnings.simplefilter("ignore", np.ComplexWarning)
a = np.arange(10, dtype='f8').newbyteorder().byteswap()
- i = nditer(a, ['buffered','external_loop'],
- [['readwrite','nbo','aligned']],
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
casting='unsafe',
op_dtypes=[np.dtype('c8').newbyteorder()],
buffersize=3)
@@ -1625,8 +1625,8 @@ def test_iter_buffered_cast_byteswapped_complex():
a = np.arange(10, dtype='c8').newbyteorder().byteswap()
a += 2j
- i = nditer(a, ['buffered','external_loop'],
- [['readwrite','nbo','aligned']],
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
casting='same_kind',
op_dtypes=[np.dtype('c16')],
buffersize=3)
@@ -1636,8 +1636,8 @@ def test_iter_buffered_cast_byteswapped_complex():
a = np.arange(10, dtype='c8')
a += 2j
- i = nditer(a, ['buffered','external_loop'],
- [['readwrite','nbo','aligned']],
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
casting='same_kind',
op_dtypes=[np.dtype('c16').newbyteorder()],
buffersize=3)
@@ -1647,8 +1647,8 @@ def test_iter_buffered_cast_byteswapped_complex():
a = np.arange(10, dtype=np.clongdouble).newbyteorder().byteswap()
a += 2j
- i = nditer(a, ['buffered','external_loop'],
- [['readwrite','nbo','aligned']],
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
casting='same_kind',
op_dtypes=[np.dtype('c16')],
buffersize=3)
@@ -1657,8 +1657,8 @@ def test_iter_buffered_cast_byteswapped_complex():
assert_equal(a, 2*np.arange(10, dtype=np.clongdouble) + 4j)
a = np.arange(10, dtype=np.longdouble).newbyteorder().byteswap()
- i = nditer(a, ['buffered','external_loop'],
- [['readwrite','nbo','aligned']],
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
casting='same_kind',
op_dtypes=[np.dtype('f4')],
buffersize=7)
@@ -1670,9 +1670,9 @@ def test_iter_buffered_cast_structured_type():
# Tests buffering of structured types
# simple -> struct type (duplicates the value)
- sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2,3)), ('d', 'O')]
+ sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')]
a = np.arange(3, dtype='f4') + 0.5
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt)
vals = [np.array(x) for x in i]
@@ -1687,13 +1687,13 @@ def test_iter_buffered_cast_structured_type():
assert_equal(vals[0].dtype, np.dtype(sdt))
# object -> struct type
- sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2,3)), ('d', 'O')]
+ sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')]
a = np.zeros((3,), dtype='O')
- a[0] = (0.5,0.5,[[0.5,0.5,0.5],[0.5,0.5,0.5]],0.5)
- a[1] = (1.5,1.5,[[1.5,1.5,1.5],[1.5,1.5,1.5]],1.5)
- a[2] = (2.5,2.5,[[2.5,2.5,2.5],[2.5,2.5,2.5]],2.5)
+ a[0] = (0.5, 0.5, [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 0.5)
+ a[1] = (1.5, 1.5, [[1.5, 1.5, 1.5], [1.5, 1.5, 1.5]], 1.5)
+ a[2] = (2.5, 2.5, [[2.5, 2.5, 2.5], [2.5, 2.5, 2.5]], 2.5)
rc = sys.getrefcount(a[0])
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt)
vals = [x.copy() for x in i]
@@ -1711,8 +1711,8 @@ def test_iter_buffered_cast_structured_type():
# struct type -> simple (takes the first value)
sdt = [('a', 'f4'), ('b', 'i8'), ('d', 'O')]
- a = np.array([(5.5,7,'test'),(8,10,11)], dtype=sdt)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a = np.array([(5.5, 7, 'test'), (8, 10, 11)], dtype=sdt)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes='i4')
assert_equal([x[()] for x in i], [5, 8])
@@ -1720,20 +1720,20 @@ def test_iter_buffered_cast_structured_type():
# struct type -> struct type (field-wise copy)
sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')]
sdt2 = [('d', 'u2'), ('a', 'O'), ('b', 'f8')]
- a = np.array([(1,2,3),(4,5,6)], dtype=sdt1)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
assert_equal([np.array(x) for x in i],
- [np.array((3,1,2), dtype=sdt2),
- np.array((6,4,5), dtype=sdt2)])
+ [np.array((3, 1, 2), dtype=sdt2),
+ np.array((6, 4, 5), dtype=sdt2)])
# struct type -> struct type (field gets discarded)
sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')]
sdt2 = [('b', 'O'), ('a', 'f8')]
- a = np.array([(1,2,3),(4,5,6)], dtype=sdt1)
- i = nditer(a, ['buffered','refs_ok'], ['readwrite'],
+ a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1741,15 +1741,15 @@ def test_iter_buffered_cast_structured_type():
for x in i:
vals.append(np.array(x))
x['a'] = x['b']+3
- assert_equal(vals, [np.array((2,1), dtype=sdt2),
- np.array((5,4), dtype=sdt2)])
- assert_equal(a, np.array([(5,2,None),(8,5,None)], dtype=sdt1))
+ assert_equal(vals, [np.array((2, 1), dtype=sdt2),
+ np.array((5, 4), dtype=sdt2)])
+ assert_equal(a, np.array([(5, 2, None), (8, 5, None)], dtype=sdt1))
# struct type -> struct type (structured field gets discarded)
- sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', [('a', 'i2'),('b','i4')])]
+ sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', [('a', 'i2'), ('b', 'i4')])]
sdt2 = [('b', 'O'), ('a', 'f8')]
- a = np.array([(1,2,(0,9)),(4,5,(20,21))], dtype=sdt1)
- i = nditer(a, ['buffered','refs_ok'], ['readwrite'],
+ a = np.array([(1, 2, (0, 9)), (4, 5, (20, 21))], dtype=sdt1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1757,15 +1757,15 @@ def test_iter_buffered_cast_structured_type():
for x in i:
vals.append(np.array(x))
x['a'] = x['b']+3
- assert_equal(vals, [np.array((2,1), dtype=sdt2),
- np.array((5,4), dtype=sdt2)])
- assert_equal(a, np.array([(5,2,(0,0)),(8,5,(0,0))], dtype=sdt1))
+ assert_equal(vals, [np.array((2, 1), dtype=sdt2),
+ np.array((5, 4), dtype=sdt2)])
+ assert_equal(a, np.array([(5, 2, (0, 0)), (8, 5, (0, 0))], dtype=sdt1))
# struct type -> struct type (structured field w/ ref gets discarded)
- sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', [('a', 'i2'),('b','O')])]
+ sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', [('a', 'i2'), ('b', 'O')])]
sdt2 = [('b', 'O'), ('a', 'f8')]
- a = np.array([(1,2,(0,9)),(4,5,(20,21))], dtype=sdt1)
- i = nditer(a, ['buffered','refs_ok'], ['readwrite'],
+ a = np.array([(1, 2, (0, 9)), (4, 5, (20, 21))], dtype=sdt1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1773,36 +1773,36 @@ def test_iter_buffered_cast_structured_type():
for x in i:
vals.append(np.array(x))
x['a'] = x['b']+3
- assert_equal(vals, [np.array((2,1), dtype=sdt2),
- np.array((5,4), dtype=sdt2)])
- assert_equal(a, np.array([(5,2,(0,None)),(8,5,(0,None))], dtype=sdt1))
+ assert_equal(vals, [np.array((2, 1), dtype=sdt2),
+ np.array((5, 4), dtype=sdt2)])
+ assert_equal(a, np.array([(5, 2, (0, None)), (8, 5, (0, None))], dtype=sdt1))
# struct type -> struct type back (structured field w/ ref gets discarded)
sdt1 = [('b', 'O'), ('a', 'f8')]
- sdt2 = [('a', 'f4'), ('b', 'i8'), ('d', [('a', 'i2'),('b','O')])]
- a = np.array([(1,2),(4,5)], dtype=sdt1)
- i = nditer(a, ['buffered','refs_ok'], ['readwrite'],
+ sdt2 = [('a', 'f4'), ('b', 'i8'), ('d', [('a', 'i2'), ('b', 'O')])]
+ a = np.array([(1, 2), (4, 5)], dtype=sdt1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
vals = []
for x in i:
vals.append(np.array(x))
- assert_equal(x['d'], np.array((0, None), dtype=[('a','i2'),('b','O')]))
+ assert_equal(x['d'], np.array((0, None), dtype=[('a', 'i2'), ('b', 'O')]))
x['a'] = x['b']+3
- assert_equal(vals, [np.array((2,1,(0,None)), dtype=sdt2),
- np.array((5,4,(0,None)), dtype=sdt2)])
- assert_equal(a, np.array([(1,4),(4,7)], dtype=sdt1))
+ assert_equal(vals, [np.array((2, 1, (0, None)), dtype=sdt2),
+ np.array((5, 4, (0, None)), dtype=sdt2)])
+ assert_equal(a, np.array([(1, 4), (4, 7)], dtype=sdt1))
def test_iter_buffered_cast_subarray():
# Tests buffering of subarrays
# one element -> many (copies it to all)
sdt1 = [('a', 'f4')]
- sdt2 = [('a', 'f8', (3,2,2))]
+ sdt2 = [('a', 'f8', (3, 2, 2))]
a = np.zeros((6,), dtype=sdt1)
a['a'] = np.arange(6)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1810,11 +1810,11 @@ def test_iter_buffered_cast_subarray():
assert_(np.all(x['a'] == count))
# one element -> many -> back (copies it to all)
- sdt1 = [('a', 'O', (1,1))]
- sdt2 = [('a', 'O', (3,2,2))]
+ sdt1 = [('a', 'O', (1, 1))]
+ sdt2 = [('a', 'O', (3, 2, 2))]
a = np.zeros((6,), dtype=sdt1)
- a['a'][:,0,0] = np.arange(6)
- i = nditer(a, ['buffered','refs_ok'], ['readwrite'],
+ a['a'][:, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1823,14 +1823,14 @@ def test_iter_buffered_cast_subarray():
assert_(np.all(x['a'] == count))
x['a'][0] += 2
count += 1
- assert_equal(a['a'], np.arange(6).reshape(6,1,1)+2)
+ assert_equal(a['a'], np.arange(6).reshape(6, 1, 1)+2)
# many -> one element -> back (copies just element 0)
- sdt1 = [('a', 'O', (3,2,2))]
+ sdt1 = [('a', 'O', (3, 2, 2))]
sdt2 = [('a', 'O', (1,))]
a = np.zeros((6,), dtype=sdt1)
- a['a'][:,0,0,0] = np.arange(6)
- i = nditer(a, ['buffered','refs_ok'], ['readwrite'],
+ a['a'][:, 0, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1839,14 +1839,14 @@ def test_iter_buffered_cast_subarray():
assert_equal(x['a'], count)
x['a'] += 2
count += 1
- assert_equal(a['a'], np.arange(6).reshape(6,1,1,1)*np.ones((1,3,2,2))+2)
+ assert_equal(a['a'], np.arange(6).reshape(6, 1, 1, 1)*np.ones((1, 3, 2, 2))+2)
# many -> one element -> back (copies just element 0)
- sdt1 = [('a', 'f8', (3,2,2))]
+ sdt1 = [('a', 'f8', (3, 2, 2))]
sdt2 = [('a', 'O', (1,))]
a = np.zeros((6,), dtype=sdt1)
- a['a'][:,0,0,0] = np.arange(6)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a['a'][:, 0, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1856,11 +1856,11 @@ def test_iter_buffered_cast_subarray():
count += 1
# many -> one element (copies just element 0)
- sdt1 = [('a', 'O', (3,2,2))]
+ sdt1 = [('a', 'O', (3, 2, 2))]
sdt2 = [('a', 'f4', (1,))]
a = np.zeros((6,), dtype=sdt1)
- a['a'][:,0,0,0] = np.arange(6)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a['a'][:, 0, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1870,11 +1870,11 @@ def test_iter_buffered_cast_subarray():
count += 1
# many -> matching shape (straightforward copy)
- sdt1 = [('a', 'O', (3,2,2))]
- sdt2 = [('a', 'f4', (3,2,2))]
+ sdt1 = [('a', 'O', (3, 2, 2))]
+ sdt2 = [('a', 'f4', (3, 2, 2))]
a = np.zeros((6,), dtype=sdt1)
- a['a'] = np.arange(6*3*2*2).reshape(6,3,2,2)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a['a'] = np.arange(6*3*2*2).reshape(6, 3, 2, 2)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1887,8 +1887,8 @@ def test_iter_buffered_cast_subarray():
sdt1 = [('a', 'f8', (6,))]
sdt2 = [('a', 'f4', (2,))]
a = np.zeros((6,), dtype=sdt1)
- a['a'] = np.arange(6*6).reshape(6,6)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a['a'] = np.arange(6*6).reshape(6, 6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1901,23 +1901,23 @@ def test_iter_buffered_cast_subarray():
sdt1 = [('a', 'f8', (2,))]
sdt2 = [('a', 'f4', (6,))]
a = np.zeros((6,), dtype=sdt1)
- a['a'] = np.arange(6*2).reshape(6,2)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a['a'] = np.arange(6*2).reshape(6, 2)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
count = 0
for x in i:
assert_equal(x['a'][:2], a[count]['a'])
- assert_equal(x['a'][2:], [0,0,0,0])
+ assert_equal(x['a'][2:], [0, 0, 0, 0])
count += 1
# vector -> matrix (broadcasts)
sdt1 = [('a', 'f8', (2,))]
- sdt2 = [('a', 'f4', (2,2))]
+ sdt2 = [('a', 'f4', (2, 2))]
a = np.zeros((6,), dtype=sdt1)
- a['a'] = np.arange(6*2).reshape(6,2)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a['a'] = np.arange(6*2).reshape(6, 2)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
@@ -1928,76 +1928,76 @@ def test_iter_buffered_cast_subarray():
count += 1
# vector -> matrix (broadcasts and zero-pads)
- sdt1 = [('a', 'f8', (2,1))]
- sdt2 = [('a', 'f4', (3,2))]
+ sdt1 = [('a', 'f8', (2, 1))]
+ sdt2 = [('a', 'f4', (3, 2))]
a = np.zeros((6,), dtype=sdt1)
- a['a'] = np.arange(6*2).reshape(6,2,1)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a['a'] = np.arange(6*2).reshape(6, 2, 1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
count = 0
for x in i:
- assert_equal(x['a'][:2,0], a[count]['a'][:,0])
- assert_equal(x['a'][:2,1], a[count]['a'][:,0])
- assert_equal(x['a'][2,:], [0,0])
+ assert_equal(x['a'][:2, 0], a[count]['a'][:, 0])
+ assert_equal(x['a'][:2, 1], a[count]['a'][:, 0])
+ assert_equal(x['a'][2,:], [0, 0])
count += 1
# matrix -> matrix (truncates and zero-pads)
- sdt1 = [('a', 'f8', (2,3))]
- sdt2 = [('a', 'f4', (3,2))]
+ sdt1 = [('a', 'f8', (2, 3))]
+ sdt2 = [('a', 'f4', (3, 2))]
a = np.zeros((6,), dtype=sdt1)
- a['a'] = np.arange(6*2*3).reshape(6,2,3)
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ a['a'] = np.arange(6*2*3).reshape(6, 2, 3)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe',
op_dtypes=sdt2)
assert_equal(i[0].dtype, np.dtype(sdt2))
count = 0
for x in i:
- assert_equal(x['a'][:2,0], a[count]['a'][:,0])
- assert_equal(x['a'][:2,1], a[count]['a'][:,1])
- assert_equal(x['a'][2,:], [0,0])
+ assert_equal(x['a'][:2, 0], a[count]['a'][:, 0])
+ assert_equal(x['a'][:2, 1], a[count]['a'][:, 1])
+ assert_equal(x['a'][2,:], [0, 0])
count += 1
def test_iter_buffering_badwriteback():
# Writing back from a buffer cannot combine elements
# a needs write buffering, but had a broadcast dimension
- a = np.arange(6).reshape(2,3,1)
- b = np.arange(12).reshape(2,3,2)
- assert_raises(ValueError,nditer,[a,b],
- ['buffered','external_loop'],
- [['readwrite'],['writeonly']],
+ a = np.arange(6).reshape(2, 3, 1)
+ b = np.arange(12).reshape(2, 3, 2)
+ assert_raises(ValueError, nditer, [a, b],
+ ['buffered', 'external_loop'],
+ [['readwrite'], ['writeonly']],
order='C')
# But if a is readonly, it's fine
- i = nditer([a,b],['buffered','external_loop'],
- [['readonly'],['writeonly']],
+ i = nditer([a, b], ['buffered', 'external_loop'],
+ [['readonly'], ['writeonly']],
order='C')
# If a has just one element, it's fine too (constant 0 stride, a reduction)
- a = np.arange(1).reshape(1,1,1)
- i = nditer([a,b],['buffered','external_loop','reduce_ok'],
- [['readwrite'],['writeonly']],
+ a = np.arange(1).reshape(1, 1, 1)
+ i = nditer([a, b], ['buffered', 'external_loop', 'reduce_ok'],
+ [['readwrite'], ['writeonly']],
order='C')
# check that it fails on other dimensions too
- a = np.arange(6).reshape(1,3,2)
- assert_raises(ValueError,nditer,[a,b],
- ['buffered','external_loop'],
- [['readwrite'],['writeonly']],
+ a = np.arange(6).reshape(1, 3, 2)
+ assert_raises(ValueError, nditer, [a, b],
+ ['buffered', 'external_loop'],
+ [['readwrite'], ['writeonly']],
order='C')
- a = np.arange(4).reshape(2,1,2)
- assert_raises(ValueError,nditer,[a,b],
- ['buffered','external_loop'],
- [['readwrite'],['writeonly']],
+ a = np.arange(4).reshape(2, 1, 2)
+ assert_raises(ValueError, nditer, [a, b],
+ ['buffered', 'external_loop'],
+ [['readwrite'], ['writeonly']],
order='C')
def test_iter_buffering_string():
# Safe casting disallows shrinking strings
a = np.array(['abc', 'a', 'abcd'], dtype=np.bytes_)
assert_equal(a.dtype, np.dtype('S4'));
- assert_raises(TypeError,nditer,a,['buffered'],['readonly'],
+ assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
op_dtypes='S2')
i = nditer(a, ['buffered'], ['readonly'], op_dtypes='S6')
assert_equal(i[0], asbytes('abc'))
@@ -2005,7 +2005,7 @@ def test_iter_buffering_string():
a = np.array(['abc', 'a', 'abcd'], dtype=np.unicode)
assert_equal(a.dtype, np.dtype('U4'));
- assert_raises(TypeError,nditer,a,['buffered'],['readonly'],
+ assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
op_dtypes='U2')
i = nditer(a, ['buffered'], ['readonly'], op_dtypes='U6')
assert_equal(i[0], sixu('abc'))
@@ -2014,7 +2014,7 @@ def test_iter_buffering_string():
def test_iter_buffering_growinner():
# Test that the inner loop grows when no buffering is needed
a = np.arange(30)
- i = nditer(a, ['buffered','growinner','external_loop'],
+ i = nditer(a, ['buffered', 'growinner', 'external_loop'],
buffersize=5)
# Should end up with just one inner loop here
assert_equal(i[0].size, a.size)
@@ -2025,8 +2025,8 @@ def test_iter_buffered_reduce_reuse():
# large enough array for all views, including negative strides.
a = np.arange(2*3**5)[3**5:3**5+1]
flags = ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok', 'refs_ok']
- op_flags = [('readonly',), ('readwrite','allocate')]
- op_axes_list = [[(0,1,2), (0,1,-1)], [(0,1,2), (0,-1,-1)]]
+ op_flags = [('readonly',), ('readwrite', 'allocate')]
+ op_axes_list = [[(0, 1, 2), (0, 1, -1)], [(0, 1, 2), (0, -1, -1)]]
# wrong dtype to force buffering
op_dtypes = [np.float, a.dtype]
@@ -2037,7 +2037,7 @@ def test_iter_buffered_reduce_reuse():
# last stride is reduced and because of that not
# important for this test, as it is the inner stride.
strides = (xs * a.itemsize, ys * a.itemsize, a.itemsize)
- arr = np.lib.stride_tricks.as_strided(a, (3,3,3), strides)
+ arr = np.lib.stride_tricks.as_strided(a, (3, 3, 3), strides)
for skip in [0, 1]:
yield arr, op_axes, skip
@@ -2072,174 +2072,174 @@ def test_iter_buffered_reduce_reuse():
def test_iter_no_broadcast():
# Test that the no_broadcast flag works
- a = np.arange(24).reshape(2,3,4)
- b = np.arange(6).reshape(2,3,1)
- c = np.arange(12).reshape(3,4)
+ a = np.arange(24).reshape(2, 3, 4)
+ b = np.arange(6).reshape(2, 3, 1)
+ c = np.arange(12).reshape(3, 4)
- i = nditer([a,b,c], [],
- [['readonly','no_broadcast'],['readonly'],['readonly']])
- assert_raises(ValueError, nditer, [a,b,c], [],
- [['readonly'],['readonly','no_broadcast'],['readonly']])
- assert_raises(ValueError, nditer, [a,b,c], [],
- [['readonly'],['readonly'],['readonly','no_broadcast']])
+ i = nditer([a, b, c], [],
+ [['readonly', 'no_broadcast'], ['readonly'], ['readonly']])
+ assert_raises(ValueError, nditer, [a, b, c], [],
+ [['readonly'], ['readonly', 'no_broadcast'], ['readonly']])
+ assert_raises(ValueError, nditer, [a, b, c], [],
+ [['readonly'], ['readonly'], ['readonly', 'no_broadcast']])
def test_iter_nested_iters_basic():
# Test nested iteration basic usage
- a = arange(12).reshape(2,3,2)
+ a = arange(12).reshape(2, 3, 2)
- i, j = np.nested_iters(a, [[0],[1,2]])
+ i, j = np.nested_iters(a, [[0], [1, 2]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,1,2,3,4,5],[6,7,8,9,10,11]])
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
- i, j = np.nested_iters(a, [[0,1],[2]])
+ i, j = np.nested_iters(a, [[0, 1], [2]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,1],[2,3],[4,5],[6,7],[8,9],[10,11]])
+ assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]])
- i, j = np.nested_iters(a, [[0,2],[1]])
+ i, j = np.nested_iters(a, [[0, 2], [1]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,2,4],[1,3,5],[6,8,10],[7,9,11]])
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
def test_iter_nested_iters_reorder():
# Test nested iteration basic usage
- a = arange(12).reshape(2,3,2)
+ a = arange(12).reshape(2, 3, 2)
# In 'K' order (default), it gets reordered
- i, j = np.nested_iters(a, [[0],[2,1]])
+ i, j = np.nested_iters(a, [[0], [2, 1]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,1,2,3,4,5],[6,7,8,9,10,11]])
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
- i, j = np.nested_iters(a, [[1,0],[2]])
+ i, j = np.nested_iters(a, [[1, 0], [2]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,1],[2,3],[4,5],[6,7],[8,9],[10,11]])
+ assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]])
- i, j = np.nested_iters(a, [[2,0],[1]])
+ i, j = np.nested_iters(a, [[2, 0], [1]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,2,4],[1,3,5],[6,8,10],[7,9,11]])
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
# In 'C' order, it doesn't
- i, j = np.nested_iters(a, [[0],[2,1]], order='C')
+ i, j = np.nested_iters(a, [[0], [2, 1]], order='C')
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,2,4,1,3,5],[6,8,10,7,9,11]])
+ assert_equal(vals, [[0, 2, 4, 1, 3, 5], [6, 8, 10, 7, 9, 11]])
- i, j = np.nested_iters(a, [[1,0],[2]], order='C')
+ i, j = np.nested_iters(a, [[1, 0], [2]], order='C')
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,1],[6,7],[2,3],[8,9],[4,5],[10,11]])
+ assert_equal(vals, [[0, 1], [6, 7], [2, 3], [8, 9], [4, 5], [10, 11]])
- i, j = np.nested_iters(a, [[2,0],[1]], order='C')
+ i, j = np.nested_iters(a, [[2, 0], [1]], order='C')
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,2,4],[6,8,10],[1,3,5],[7,9,11]])
+ assert_equal(vals, [[0, 2, 4], [6, 8, 10], [1, 3, 5], [7, 9, 11]])
def test_iter_nested_iters_flip_axes():
# Test nested iteration with negative axes
- a = arange(12).reshape(2,3,2)[::-1,::-1,::-1]
+ a = arange(12).reshape(2, 3, 2)[::-1, ::-1, ::-1]
# In 'K' order (default), the axes all get flipped
- i, j = np.nested_iters(a, [[0],[1,2]])
+ i, j = np.nested_iters(a, [[0], [1, 2]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,1,2,3,4,5],[6,7,8,9,10,11]])
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
- i, j = np.nested_iters(a, [[0,1],[2]])
+ i, j = np.nested_iters(a, [[0, 1], [2]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,1],[2,3],[4,5],[6,7],[8,9],[10,11]])
+ assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]])
- i, j = np.nested_iters(a, [[0,2],[1]])
+ i, j = np.nested_iters(a, [[0, 2], [1]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,2,4],[1,3,5],[6,8,10],[7,9,11]])
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
# In 'C' order, flipping axes is disabled
- i, j = np.nested_iters(a, [[0],[1,2]], order='C')
+ i, j = np.nested_iters(a, [[0], [1, 2]], order='C')
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[11,10,9,8,7,6],[5,4,3,2,1,0]])
+ assert_equal(vals, [[11, 10, 9, 8, 7, 6], [5, 4, 3, 2, 1, 0]])
- i, j = np.nested_iters(a, [[0,1],[2]], order='C')
+ i, j = np.nested_iters(a, [[0, 1], [2]], order='C')
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[11,10],[9,8],[7,6],[5,4],[3,2],[1,0]])
+ assert_equal(vals, [[11, 10], [9, 8], [7, 6], [5, 4], [3, 2], [1, 0]])
- i, j = np.nested_iters(a, [[0,2],[1]], order='C')
+ i, j = np.nested_iters(a, [[0, 2], [1]], order='C')
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[11,9,7],[10,8,6],[5,3,1],[4,2,0]])
+ assert_equal(vals, [[11, 9, 7], [10, 8, 6], [5, 3, 1], [4, 2, 0]])
def test_iter_nested_iters_broadcast():
# Test nested iteration with broadcasting
- a = arange(2).reshape(2,1)
- b = arange(3).reshape(1,3)
+ a = arange(2).reshape(2, 1)
+ b = arange(3).reshape(1, 3)
- i, j = np.nested_iters([a,b], [[0],[1]])
+ i, j = np.nested_iters([a, b], [[0], [1]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[[0,0],[0,1],[0,2]],[[1,0],[1,1],[1,2]]])
+ assert_equal(vals, [[[0, 0], [0, 1], [0, 2]], [[1, 0], [1, 1], [1, 2]]])
- i, j = np.nested_iters([a,b], [[1],[0]])
+ i, j = np.nested_iters([a, b], [[1], [0]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[[0,0],[1,0]],[[0,1],[1,1]],[[0,2],[1,2]]])
+ assert_equal(vals, [[[0, 0], [1, 0]], [[0, 1], [1, 1]], [[0, 2], [1, 2]]])
def test_iter_nested_iters_dtype_copy():
# Test nested iteration with a copy to change dtype
# copy
- a = arange(6, dtype='i4').reshape(2,3)
- i, j = np.nested_iters(a, [[0],[1]],
- op_flags=['readonly','copy'],
+ a = arange(6, dtype='i4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ op_flags=['readonly', 'copy'],
op_dtypes='f8')
assert_equal(j[0].dtype, np.dtype('f8'))
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,1,2],[3,4,5]])
+ assert_equal(vals, [[0, 1, 2], [3, 4, 5]])
vals = None
# updateifcopy
- a = arange(6, dtype='f4').reshape(2,3)
- i, j = np.nested_iters(a, [[0],[1]],
- op_flags=['readwrite','updateifcopy'],
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ op_flags=['readwrite', 'updateifcopy'],
casting='same_kind',
op_dtypes='f8')
assert_equal(j[0].dtype, np.dtype('f8'))
for x in i:
for y in j:
y[...] += 1
- assert_equal(a, [[0,1,2],[3,4,5]])
+ assert_equal(a, [[0, 1, 2], [3, 4, 5]])
i, j, x, y = (None,)*4 # force the updateifcopy
- assert_equal(a, [[1,2,3],[4,5,6]])
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
def test_iter_nested_iters_dtype_buffered():
# Test nested iteration with buffering to change dtype
- a = arange(6, dtype='f4').reshape(2,3)
- i, j = np.nested_iters(a, [[0],[1]],
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
flags=['buffered'],
op_flags=['readwrite'],
casting='same_kind',
@@ -2248,27 +2248,27 @@ def test_iter_nested_iters_dtype_buffered():
for x in i:
for y in j:
y[...] += 1
- assert_equal(a, [[1,2,3],[4,5,6]])
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
def test_iter_reduction_error():
a = np.arange(6)
- assert_raises(ValueError, nditer, [a,None], [],
- [['readonly'], ['readwrite','allocate']],
- op_axes=[[0],[-1]])
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0], [-1]])
- a = np.arange(6).reshape(2,3)
- assert_raises(ValueError, nditer, [a,None], ['external_loop'],
- [['readonly'], ['readwrite','allocate']],
- op_axes=[[0,1],[-1,-1]])
+ a = np.arange(6).reshape(2, 3)
+ assert_raises(ValueError, nditer, [a, None], ['external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0, 1], [-1, -1]])
def test_iter_reduction():
# Test doing reductions with the iterator
a = np.arange(6)
- i = nditer([a,None], ['reduce_ok'],
- [['readonly'], ['readwrite','allocate']],
- op_axes=[[0],[-1]])
+ i = nditer([a, None], ['reduce_ok'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0], [-1]])
# Need to initialize the output operand to the addition unit
i.operands[1][...] = 0
# Do the reduction
@@ -2278,10 +2278,10 @@ def test_iter_reduction():
assert_equal(i.operands[1].ndim, 0)
assert_equal(i.operands[1], np.sum(a))
- a = np.arange(6).reshape(2,3)
- i = nditer([a,None], ['reduce_ok','external_loop'],
- [['readonly'], ['readwrite','allocate']],
- op_axes=[[0,1],[-1,-1]])
+ a = np.arange(6).reshape(2, 3)
+ i = nditer([a, None], ['reduce_ok', 'external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0, 1], [-1, -1]])
# Need to initialize the output operand to the addition unit
i.operands[1][...] = 0
# Reduction shape/strides for the output
@@ -2296,14 +2296,14 @@ def test_iter_reduction():
# This is a tricky reduction case for the buffering double loop
# to handle
- a = np.ones((2,3,5))
- it1 = nditer([a,None], ['reduce_ok','external_loop'],
- [['readonly'], ['readwrite','allocate']],
- op_axes=[None,[0,-1,1]])
- it2 = nditer([a,None], ['reduce_ok','external_loop',
- 'buffered','delay_bufalloc'],
- [['readonly'], ['readwrite','allocate']],
- op_axes=[None,[0,-1,1]], buffersize=10)
+ a = np.ones((2, 3, 5))
+ it1 = nditer([a, None], ['reduce_ok', 'external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[None, [0, -1, 1]])
+ it2 = nditer([a, None], ['reduce_ok', 'external_loop',
+ 'buffered', 'delay_bufalloc'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[None, [0, -1, 1]], buffersize=10)
it1.operands[1].fill(0)
it2.operands[1].fill(0)
it2.reset()
@@ -2319,9 +2319,9 @@ def test_iter_buffering_reduction():
a = np.arange(6)
b = np.array(0., dtype='f8').byteswap().newbyteorder()
- i = nditer([a,b], ['reduce_ok', 'buffered'],
- [['readonly'], ['readwrite','nbo']],
- op_axes=[[0],[-1]])
+ i = nditer([a, b], ['reduce_ok', 'buffered'],
+ [['readonly'], ['readwrite', 'nbo']],
+ op_axes=[[0], [-1]])
assert_equal(i[1].dtype, np.dtype('f8'))
assert_(i[1].dtype != b.dtype)
# Do the reduction
@@ -2330,11 +2330,11 @@ def test_iter_buffering_reduction():
# Since no axes were specified, should have allocated a scalar
assert_equal(b, np.sum(a))
- a = np.arange(6).reshape(2,3)
- b = np.array([0,0], dtype='f8').byteswap().newbyteorder()
- i = nditer([a,b], ['reduce_ok','external_loop', 'buffered'],
- [['readonly'], ['readwrite','nbo']],
- op_axes=[[0,1],[0,-1]])
+ a = np.arange(6).reshape(2, 3)
+ b = np.array([0, 0], dtype='f8').byteswap().newbyteorder()
+ i = nditer([a, b], ['reduce_ok', 'external_loop', 'buffered'],
+ [['readonly'], ['readwrite', 'nbo']],
+ op_axes=[[0, 1], [0, -1]])
# Reduction shape/strides for the output
assert_equal(i[1].shape, (3,))
assert_equal(i[1].strides, (0,))
@@ -2345,135 +2345,135 @@ def test_iter_buffering_reduction():
# Iterator inner double loop was wrong on this one
p = np.arange(2) + 1
- it = np.nditer([p,None],
- ['delay_bufalloc','reduce_ok','buffered','external_loop'],
- [['readonly'],['readwrite','allocate']],
- op_axes=[[-1,0],[-1,-1]],
- itershape=(2,2))
+ it = np.nditer([p, None],
+ ['delay_bufalloc', 'reduce_ok', 'buffered', 'external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[-1, 0], [-1, -1]],
+ itershape=(2, 2))
it.operands[1].fill(0)
it.reset()
- assert_equal(it[0], [1,2,1,2])
+ assert_equal(it[0], [1, 2, 1, 2])
def test_iter_buffering_reduction_reuse_reduce_loops():
# There was a bug triggering reuse of the reduce loop inappropriately,
# which caused processing to happen in unnecessarily small chunks
# and overran the buffer.
- a = np.zeros((2,7))
- b = np.zeros((1,7))
- it = np.nditer([a,b], flags=['reduce_ok', 'external_loop', 'buffered'],
+ a = np.zeros((2, 7))
+ b = np.zeros((1, 7))
+ it = np.nditer([a, b], flags=['reduce_ok', 'external_loop', 'buffered'],
op_flags=[['readonly'], ['readwrite']],
buffersize = 5)
bufsizes = []
for x, y in it:
bufsizes.append(x.shape[0])
- assert_equal(bufsizes, [5,2,5,2])
+ assert_equal(bufsizes, [5, 2, 5, 2])
assert_equal(sum(bufsizes), a.size)
def test_iter_writemasked_badinput():
- a = np.zeros((2,3))
+ a = np.zeros((2, 3))
b = np.zeros((3,))
- m = np.array([[True,True,False],[False,True,False]])
- m2 = np.array([True,True,False])
- m3 = np.array([0,1,1], dtype='u1')
- mbad1 = np.array([0,1,1], dtype='i1')
- mbad2 = np.array([0,1,1], dtype='f4')
+ m = np.array([[True, True, False], [False, True, False]])
+ m2 = np.array([True, True, False])
+ m3 = np.array([0, 1, 1], dtype='u1')
+ mbad1 = np.array([0, 1, 1], dtype='i1')
+ mbad2 = np.array([0, 1, 1], dtype='f4')
# Need an 'arraymask' if any operand is 'writemasked'
- assert_raises(ValueError, nditer, [a,m], [],
- [['readwrite','writemasked'],['readonly']])
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readwrite', 'writemasked'], ['readonly']])
# A 'writemasked' operand must not be readonly
- assert_raises(ValueError, nditer, [a,m], [],
- [['readonly','writemasked'],['readonly','arraymask']])
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readonly', 'writemasked'], ['readonly', 'arraymask']])
# 'writemasked' and 'arraymask' may not be used together
- assert_raises(ValueError, nditer, [a,m], [],
- [['readonly'],['readwrite','arraymask','writemasked']])
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readonly'], ['readwrite', 'arraymask', 'writemasked']])
# 'arraymask' may only be specified once
- assert_raises(ValueError, nditer, [a,m, m2], [],
- [['readwrite','writemasked'],
- ['readonly','arraymask'],
- ['readonly','arraymask']])
+ assert_raises(ValueError, nditer, [a, m, m2], [],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask'],
+ ['readonly', 'arraymask']])
# An 'arraymask' with nothing 'writemasked' also doesn't make sense
- assert_raises(ValueError, nditer, [a,m], [],
- [['readwrite'],['readonly','arraymask']])
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readwrite'], ['readonly', 'arraymask']])
# A writemasked reduction requires a similarly smaller mask
- assert_raises(ValueError, nditer, [a,b,m], ['reduce_ok'],
+ assert_raises(ValueError, nditer, [a, b, m], ['reduce_ok'],
[['readonly'],
- ['readwrite','writemasked'],
- ['readonly','arraymask']])
+ ['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
# But this should work with a smaller/equal mask to the reduction operand
- np.nditer([a,b,m2], ['reduce_ok'],
+ np.nditer([a, b, m2], ['reduce_ok'],
[['readonly'],
- ['readwrite','writemasked'],
- ['readonly','arraymask']])
+ ['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
# The arraymask itself cannot be a reduction
- assert_raises(ValueError, nditer, [a,b,m2], ['reduce_ok'],
+ assert_raises(ValueError, nditer, [a, b, m2], ['reduce_ok'],
[['readonly'],
- ['readwrite','writemasked'],
- ['readwrite','arraymask']])
+ ['readwrite', 'writemasked'],
+ ['readwrite', 'arraymask']])
# A uint8 mask is ok too
- np.nditer([a,m3], ['buffered'],
- [['readwrite','writemasked'],
- ['readonly','arraymask']],
- op_dtypes=['f4',None],
+ np.nditer([a, m3], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['f4', None],
casting='same_kind')
# An int8 mask isn't ok
- assert_raises(TypeError, np.nditer, [a,mbad1], ['buffered'],
- [['readwrite','writemasked'],
- ['readonly','arraymask']],
- op_dtypes=['f4',None],
+ assert_raises(TypeError, np.nditer, [a, mbad1], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['f4', None],
casting='same_kind')
# A float32 mask isn't ok
- assert_raises(TypeError, np.nditer, [a,mbad2], ['buffered'],
- [['readwrite','writemasked'],
- ['readonly','arraymask']],
- op_dtypes=['f4',None],
+ assert_raises(TypeError, np.nditer, [a, mbad2], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['f4', None],
casting='same_kind')
def test_iter_writemasked():
a = np.zeros((3,), dtype='f8')
- msk = np.array([True,True,False])
+ msk = np.array([True, True, False])
# When buffering is unused, 'writemasked' effectively does nothing.
# It's up to the user of the iterator to obey the requested semantics.
- it = np.nditer([a,msk], [],
- [['readwrite','writemasked'],
- ['readonly','arraymask']])
+ it = np.nditer([a, msk], [],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
for x, m in it:
x[...] = 1
# Because we violated the semantics, all the values became 1
- assert_equal(a, [1,1,1])
+ assert_equal(a, [1, 1, 1])
# Even if buffering is enabled, we still may be accessing the array
# directly.
- it = np.nditer([a,msk], ['buffered'],
- [['readwrite','writemasked'],
- ['readonly','arraymask']])
+ it = np.nditer([a, msk], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
for x, m in it:
x[...] = 2.5
# Because we violated the semantics, all the values became 2.5
- assert_equal(a, [2.5,2.5,2.5])
+ assert_equal(a, [2.5, 2.5, 2.5])
# If buffering will definitely happening, for instance because of
# a cast, only the items selected by the mask will be copied back from
# the buffer.
- it = np.nditer([a,msk], ['buffered'],
- [['readwrite','writemasked'],
- ['readonly','arraymask']],
- op_dtypes=['i8',None],
+ it = np.nditer([a, msk], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['i8', None],
casting='unsafe')
for x, m in it:
x[...] = 3
# Even though we violated the semantics, only the selected values
# were copied back
- assert_equal(a, [3,3,2.5])
+ assert_equal(a, [3, 3, 2.5])
def test_iter_non_writable_attribute_deletion():
it = np.nditer(np.ones(2))
@@ -2514,15 +2514,15 @@ def test_iter_allocated_array_dtypes():
for a, b in it:
b[0] = a - 1
b[1] = a + 1
- assert_equal(it.operands[1], [[0,2], [2,4], [19,21]])
+ assert_equal(it.operands[1], [[0, 2], [2, 4], [19, 21]])
# Make sure this works for scalars too
- it = np.nditer((10, 2, None), op_dtypes=[None, None, ('i4', (2,2))])
+ it = np.nditer((10, 2, None), op_dtypes=[None, None, ('i4', (2, 2))])
for a, b, c in it:
- c[0,0] = a - b
- c[0,1] = a + b
- c[1,0] = a * b
- c[1,1] = a / b
+ c[0, 0] = a - b
+ c[0, 1] = a + b
+ c[1, 0] = a * b
+ c[1, 1] = a / b
assert_equal(it.operands[2], [[8, 12], [20, 5]])
@@ -2546,9 +2546,9 @@ def test_0d_iter():
# note that itershape=(), still behaves like None due to the conversions
# Test a more complex buffered casting case (same as another test above)
- sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2,3)), ('d', 'O')]
+ sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')]
a = np.array(0.5, dtype='f4')
- i = nditer(a, ['buffered','refs_ok'], ['readonly'],
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
casting='unsafe', op_dtypes=sdt)
vals = next(i)
assert_equal(vals['a'], 0.5)
@@ -2558,25 +2558,25 @@ def test_0d_iter():
def test_0d_nested_iter():
- a = np.arange(12).reshape(2,3,2)
- i, j = np.nested_iters(a, [[],[1,0,2]])
+ a = np.arange(12).reshape(2, 3, 2)
+ i, j = np.nested_iters(a, [[], [1, 0, 2]])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0,1,2,3,4,5,6,7,8,9,10,11]])
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])
- i, j = np.nested_iters(a, [[1,0,2],[]])
+ i, j = np.nested_iters(a, [[1, 0, 2], []])
vals = []
for x in i:
vals.append([y for y in j])
- assert_equal(vals, [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]])
+ assert_equal(vals, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]])
- i, j, k = np.nested_iters(a, [[2,0], [] ,[1]])
+ i, j, k = np.nested_iters(a, [[2, 0], [], [1]])
vals = []
for x in i:
for y in j:
vals.append([z for z in k])
- assert_equal(vals, [[0,2,4],[1,3,5],[6,8,10],[7,9,11]])
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
if __name__ == "__main__":
diff --git a/numpy/core/tests/test_numeric.py b/numpy/core/tests/test_numeric.py
index fdf1c1ac1..6202bd125 100644
--- a/numpy/core/tests/test_numeric.py
+++ b/numpy/core/tests/test_numeric.py
@@ -17,28 +17,28 @@ class Vec(object):
if sequence is None:
sequence=[]
self.array=array(sequence)
- def __add__(self,other):
+ def __add__(self, other):
out=Vec()
out.array=self.array+other.array
return out
- def __sub__(self,other):
+ def __sub__(self, other):
out=Vec()
out.array=self.array-other.array
return out
- def __mul__(self,other): # with scalar
+ def __mul__(self, other): # with scalar
out=Vec(self.array.copy())
out.array*=other
return out
- def __rmul__(self,other):
+ def __rmul__(self, other):
return self*other
class TestDot(TestCase):
def setUp(self):
- self.A = rand(10,8)
- self.b1 = rand(8,1)
+ self.A = rand(10, 8)
+ self.b1 = rand(8, 1)
self.b2 = rand(8)
- self.b3 = rand(1,8)
+ self.b3 = rand(1, 8)
self.b4 = rand(10)
self.N = 14
@@ -74,8 +74,8 @@ class TestDot(TestCase):
def test_vecmat3(self):
A, b4 = self.A, self.b4
- c1 = dot(A.transpose(),b4)
- c2 = dot_(A.transpose(),b4)
+ c1 = dot(A.transpose(), b4)
+ c2 = dot_(A.transpose(), b4)
assert_almost_equal(c1, c2, decimal=self.N)
def test_vecvecouter(self):
@@ -91,35 +91,35 @@ class TestDot(TestCase):
assert_almost_equal(c1, c2, decimal=self.N)
def test_columnvect1(self):
- b1 = ones((3,1))
+ b1 = ones((3, 1))
b2 = [5.3]
- c1 = dot(b1,b2)
- c2 = dot_(b1,b2)
+ c1 = dot(b1, b2)
+ c2 = dot_(b1, b2)
assert_almost_equal(c1, c2, decimal=self.N)
def test_columnvect2(self):
- b1 = ones((3,1)).transpose()
+ b1 = ones((3, 1)).transpose()
b2 = [6.2]
- c1 = dot(b2,b1)
- c2 = dot_(b2,b1)
+ c1 = dot(b2, b1)
+ c2 = dot_(b2, b1)
assert_almost_equal(c1, c2, decimal=self.N)
def test_vecscalar(self):
- b1 = rand(1,1)
- b2 = rand(1,8)
- c1 = dot(b1,b2)
- c2 = dot_(b1,b2)
+ b1 = rand(1, 1)
+ b2 = rand(1, 8)
+ c1 = dot(b1, b2)
+ c2 = dot_(b1, b2)
assert_almost_equal(c1, c2, decimal=self.N)
def test_vecscalar2(self):
- b1 = rand(8,1)
- b2 = rand(1,1)
- c1 = dot(b1,b2)
- c2 = dot_(b1,b2)
+ b1 = rand(8, 1)
+ b2 = rand(1, 1)
+ c1 = dot(b1, b2)
+ c2 = dot_(b1, b2)
assert_almost_equal(c1, c2, decimal=self.N)
def test_all(self):
- dims = [(),(1,),(1,1)]
+ dims = [(), (1,), (1, 1)]
for dim1 in dims:
for dim2 in dims:
arg1 = rand(*dim1)
@@ -130,53 +130,53 @@ class TestDot(TestCase):
assert_almost_equal(c1, c2, decimal=self.N)
def test_vecobject(self):
- U_non_cont = transpose([[1.,1.],[1.,2.]])
+ U_non_cont = transpose([[1., 1.], [1., 2.]])
U_cont = ascontiguousarray(U_non_cont)
- x = array([Vec([1.,0.]),Vec([0.,1.])])
- zeros = array([Vec([0.,0.]),Vec([0.,0.])])
- zeros_test = dot(U_cont,x) - dot(U_non_cont,x)
+ x = array([Vec([1., 0.]), Vec([0., 1.])])
+ zeros = array([Vec([0., 0.]), Vec([0., 0.])])
+ zeros_test = dot(U_cont, x) - dot(U_non_cont, x)
assert_equal(zeros[0].array, zeros_test[0].array)
assert_equal(zeros[1].array, zeros_test[1].array)
class TestResize(TestCase):
def test_copies(self):
- A = array([[1,2],[3,4]])
- Ar1 = array([[1,2,3,4],[1,2,3,4]])
- assert_equal(resize(A, (2,4)), Ar1)
+ A = array([[1, 2], [3, 4]])
+ Ar1 = array([[1, 2, 3, 4], [1, 2, 3, 4]])
+ assert_equal(resize(A, (2, 4)), Ar1)
- Ar2 = array([[1,2],[3,4],[1,2],[3,4]])
- assert_equal(resize(A, (4,2)), Ar2)
+ Ar2 = array([[1, 2], [3, 4], [1, 2], [3, 4]])
+ assert_equal(resize(A, (4, 2)), Ar2)
- Ar3 = array([[1,2,3],[4,1,2],[3,4,1],[2,3,4]])
- assert_equal(resize(A, (4,3)), Ar3)
+ Ar3 = array([[1, 2, 3], [4, 1, 2], [3, 4, 1], [2, 3, 4]])
+ assert_equal(resize(A, (4, 3)), Ar3)
def test_zeroresize(self):
- A = array([[1,2],[3,4]])
+ A = array([[1, 2], [3, 4]])
Ar = resize(A, (0,))
assert_equal(Ar, array([]))
class TestNonarrayArgs(TestCase):
# check that non-array arguments to functions wrap them in arrays
def test_squeeze(self):
- A = [[[1,1,1],[2,2,2],[3,3,3]]]
- assert_(squeeze(A).shape == (3,3))
+ A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]]
+ assert_(squeeze(A).shape == (3, 3))
def test_cumproduct(self):
- A = [[1,2,3],[4,5,6]]
- assert_(all(cumproduct(A) == array([1,2,6,24,120,720])))
+ A = [[1, 2, 3], [4, 5, 6]]
+ assert_(all(cumproduct(A) == array([1, 2, 6, 24, 120, 720])))
def test_size(self):
- A = [[1,2,3],[4,5,6]]
+ A = [[1, 2, 3], [4, 5, 6]]
assert_(size(A) == 6)
- assert_(size(A,0) == 2)
- assert_(size(A,1) == 3)
+ assert_(size(A, 0) == 2)
+ assert_(size(A, 1) == 3)
def test_mean(self):
- A = [[1,2,3],[4,5,6]]
+ A = [[1, 2, 3], [4, 5, 6]]
assert_(mean(A) == 3.5)
- assert_(all(mean(A,0) == array([2.5,3.5,4.5])))
- assert_(all(mean(A,1) == array([2.,5.])))
+ assert_(all(mean(A, 0) == array([2.5, 3.5, 4.5])))
+ assert_(all(mean(A, 1) == array([2., 5.])))
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
@@ -184,10 +184,10 @@ class TestNonarrayArgs(TestCase):
assert_(w[0].category is RuntimeWarning)
def test_std(self):
- A = [[1,2,3],[4,5,6]]
+ A = [[1, 2, 3], [4, 5, 6]]
assert_almost_equal(std(A), 1.707825127659933)
- assert_almost_equal(std(A,0), array([1.5, 1.5, 1.5]))
- assert_almost_equal(std(A,1), array([0.81649658, 0.81649658]))
+ assert_almost_equal(std(A, 0), array([1.5, 1.5, 1.5]))
+ assert_almost_equal(std(A, 1), array([0.81649658, 0.81649658]))
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
@@ -195,10 +195,10 @@ class TestNonarrayArgs(TestCase):
assert_(w[0].category is RuntimeWarning)
def test_var(self):
- A = [[1,2,3],[4,5,6]]
+ A = [[1, 2, 3], [4, 5, 6]]
assert_almost_equal(var(A), 2.9166666666666665)
- assert_almost_equal(var(A,0), array([2.25, 2.25, 2.25]))
- assert_almost_equal(var(A,1), array([0.66666667, 0.66666667]))
+ assert_almost_equal(var(A, 0), array([2.25, 2.25, 2.25]))
+ assert_almost_equal(var(A, 1), array([0.66666667, 0.66666667]))
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
@@ -461,31 +461,31 @@ class TestFloatExceptions(TestCase):
invalid = 'invalid'
self.assert_raises_fpe(underflow,
- lambda a,b:a/b, ft_tiny, ft_max)
+ lambda a, b:a/b, ft_tiny, ft_max)
self.assert_raises_fpe(underflow,
- lambda a,b:a*b, ft_tiny, ft_tiny)
+ lambda a, b:a*b, ft_tiny, ft_tiny)
self.assert_raises_fpe(overflow,
- lambda a,b:a*b, ft_max, ftype(2))
+ lambda a, b:a*b, ft_max, ftype(2))
self.assert_raises_fpe(overflow,
- lambda a,b:a/b, ft_max, ftype(0.5))
+ lambda a, b:a/b, ft_max, ftype(0.5))
self.assert_raises_fpe(overflow,
- lambda a,b:a+b, ft_max, ft_max*ft_eps)
+ lambda a, b:a+b, ft_max, ft_max*ft_eps)
self.assert_raises_fpe(overflow,
- lambda a,b:a-b, -ft_max, ft_max*ft_eps)
+ lambda a, b:a-b, -ft_max, ft_max*ft_eps)
self.assert_raises_fpe(overflow,
np.power, ftype(2), ftype(2**fi.nexp))
self.assert_raises_fpe(divbyzero,
- lambda a,b:a/b, ftype(1), ftype(0))
+ lambda a, b:a/b, ftype(1), ftype(0))
self.assert_raises_fpe(invalid,
- lambda a,b:a/b, ftype(np.inf), ftype(np.inf))
+ lambda a, b:a/b, ftype(np.inf), ftype(np.inf))
self.assert_raises_fpe(invalid,
- lambda a,b:a/b, ftype(0), ftype(0))
+ lambda a, b:a/b, ftype(0), ftype(0))
self.assert_raises_fpe(invalid,
- lambda a,b:a-b, ftype(np.inf), ftype(np.inf))
+ lambda a, b:a-b, ftype(np.inf), ftype(np.inf))
self.assert_raises_fpe(invalid,
- lambda a,b:a+b, ftype(np.inf), ftype(-np.inf))
+ lambda a, b:a+b, ftype(np.inf), ftype(-np.inf))
self.assert_raises_fpe(invalid,
- lambda a,b:a*b, ftype(0), ftype(np.inf))
+ lambda a, b:a*b, ftype(0), ftype(np.inf))
class TestTypes(TestCase):
def check_promotion_cases(self, promote_func):
@@ -497,56 +497,56 @@ class TestTypes(TestCase):
c64, c128, cld = complex64(0), complex128(0), clongdouble(0)
# coercion within the same kind
- assert_equal(promote_func(i8,i16), np.dtype(int16))
- assert_equal(promote_func(i32,i8), np.dtype(int32))
- assert_equal(promote_func(i16,i64), np.dtype(int64))
- assert_equal(promote_func(u8,u32), np.dtype(uint32))
- assert_equal(promote_func(f32,f64), np.dtype(float64))
- assert_equal(promote_func(fld,f32), np.dtype(longdouble))
- assert_equal(promote_func(f64,fld), np.dtype(longdouble))
- assert_equal(promote_func(c128,c64), np.dtype(complex128))
- assert_equal(promote_func(cld,c128), np.dtype(clongdouble))
- assert_equal(promote_func(c64,fld), np.dtype(clongdouble))
+ assert_equal(promote_func(i8, i16), np.dtype(int16))
+ assert_equal(promote_func(i32, i8), np.dtype(int32))
+ assert_equal(promote_func(i16, i64), np.dtype(int64))
+ assert_equal(promote_func(u8, u32), np.dtype(uint32))
+ assert_equal(promote_func(f32, f64), np.dtype(float64))
+ assert_equal(promote_func(fld, f32), np.dtype(longdouble))
+ assert_equal(promote_func(f64, fld), np.dtype(longdouble))
+ assert_equal(promote_func(c128, c64), np.dtype(complex128))
+ assert_equal(promote_func(cld, c128), np.dtype(clongdouble))
+ assert_equal(promote_func(c64, fld), np.dtype(clongdouble))
# coercion between kinds
- assert_equal(promote_func(b,i32), np.dtype(int32))
- assert_equal(promote_func(b,u8), np.dtype(uint8))
- assert_equal(promote_func(i8,u8), np.dtype(int16))
- assert_equal(promote_func(u8,i32), np.dtype(int32))
- assert_equal(promote_func(i64,u32), np.dtype(int64))
- assert_equal(promote_func(u64,i32), np.dtype(float64))
- assert_equal(promote_func(i32,f32), np.dtype(float64))
- assert_equal(promote_func(i64,f32), np.dtype(float64))
- assert_equal(promote_func(f32,i16), np.dtype(float32))
- assert_equal(promote_func(f32,u32), np.dtype(float64))
- assert_equal(promote_func(f32,c64), np.dtype(complex64))
- assert_equal(promote_func(c128,f32), np.dtype(complex128))
- assert_equal(promote_func(cld,f64), np.dtype(clongdouble))
+ assert_equal(promote_func(b, i32), np.dtype(int32))
+ assert_equal(promote_func(b, u8), np.dtype(uint8))
+ assert_equal(promote_func(i8, u8), np.dtype(int16))
+ assert_equal(promote_func(u8, i32), np.dtype(int32))
+ assert_equal(promote_func(i64, u32), np.dtype(int64))
+ assert_equal(promote_func(u64, i32), np.dtype(float64))
+ assert_equal(promote_func(i32, f32), np.dtype(float64))
+ assert_equal(promote_func(i64, f32), np.dtype(float64))
+ assert_equal(promote_func(f32, i16), np.dtype(float32))
+ assert_equal(promote_func(f32, u32), np.dtype(float64))
+ assert_equal(promote_func(f32, c64), np.dtype(complex64))
+ assert_equal(promote_func(c128, f32), np.dtype(complex128))
+ assert_equal(promote_func(cld, f64), np.dtype(clongdouble))
# coercion between scalars and 1-D arrays
- assert_equal(promote_func(array([b]),i8), np.dtype(int8))
- assert_equal(promote_func(array([b]),u8), np.dtype(uint8))
- assert_equal(promote_func(array([b]),i32), np.dtype(int32))
- assert_equal(promote_func(array([b]),u32), np.dtype(uint32))
- assert_equal(promote_func(array([i8]),i64), np.dtype(int8))
- assert_equal(promote_func(u64,array([i32])), np.dtype(int32))
- assert_equal(promote_func(i64,array([u32])), np.dtype(uint32))
- assert_equal(promote_func(int32(-1),array([u64])), np.dtype(float64))
- assert_equal(promote_func(f64,array([f32])), np.dtype(float32))
- assert_equal(promote_func(fld,array([f32])), np.dtype(float32))
- assert_equal(promote_func(array([f64]),fld), np.dtype(float64))
- assert_equal(promote_func(fld,array([c64])), np.dtype(complex64))
- assert_equal(promote_func(c64,array([f64])), np.dtype(complex128))
- assert_equal(promote_func(complex64(3j),array([f64])),
+ assert_equal(promote_func(array([b]), i8), np.dtype(int8))
+ assert_equal(promote_func(array([b]), u8), np.dtype(uint8))
+ assert_equal(promote_func(array([b]), i32), np.dtype(int32))
+ assert_equal(promote_func(array([b]), u32), np.dtype(uint32))
+ assert_equal(promote_func(array([i8]), i64), np.dtype(int8))
+ assert_equal(promote_func(u64, array([i32])), np.dtype(int32))
+ assert_equal(promote_func(i64, array([u32])), np.dtype(uint32))
+ assert_equal(promote_func(int32(-1), array([u64])), np.dtype(float64))
+ assert_equal(promote_func(f64, array([f32])), np.dtype(float32))
+ assert_equal(promote_func(fld, array([f32])), np.dtype(float32))
+ assert_equal(promote_func(array([f64]), fld), np.dtype(float64))
+ assert_equal(promote_func(fld, array([c64])), np.dtype(complex64))
+ assert_equal(promote_func(c64, array([f64])), np.dtype(complex128))
+ assert_equal(promote_func(complex64(3j), array([f64])),
np.dtype(complex128))
# coercion between scalars and 1-D arrays, where
# the scalar has greater kind than the array
- assert_equal(promote_func(array([b]),f64), np.dtype(float64))
- assert_equal(promote_func(array([b]),i64), np.dtype(int64))
- assert_equal(promote_func(array([b]),u64), np.dtype(uint64))
- assert_equal(promote_func(array([i8]),f64), np.dtype(float64))
- assert_equal(promote_func(array([u16]),f64), np.dtype(float64))
+ assert_equal(promote_func(array([b]), f64), np.dtype(float64))
+ assert_equal(promote_func(array([b]), i64), np.dtype(int64))
+ assert_equal(promote_func(array([b]), u64), np.dtype(uint64))
+ assert_equal(promote_func(array([i8]), f64), np.dtype(float64))
+ assert_equal(promote_func(array([u16]), f64), np.dtype(float64))
# uint and int are treated as the same "kind" for
# the purposes of array-scalar promotion.
@@ -556,7 +556,7 @@ class TestTypes(TestCase):
# the purposes of array-scalar promotion, so that you can do
# (0j + float32array) to get a complex64 array instead of
# a complex128 array.
- assert_equal(promote_func(array([f32]),c128), np.dtype(complex64))
+ assert_equal(promote_func(array([f32]), c128), np.dtype(complex64))
def test_coercion(self):
def res_type(a, b):
@@ -565,7 +565,7 @@ class TestTypes(TestCase):
# Use-case: float/complex scalar * bool/int8 array
# shouldn't narrow the float/complex type
- for a in [np.array([True,False]), np.array([-3,12], dtype=np.int8)]:
+ for a in [np.array([True, False]), np.array([-3, 12], dtype=np.int8)]:
b = 1.234 * a
assert_equal(b.dtype, np.dtype('f8'), "array type %s" % a.dtype)
b = np.longdouble(1.234) * a
@@ -692,8 +692,8 @@ class TestFromiter(TestCase):
expected = array(list(self.makegen()))
a = fromiter(self.makegen(), int)
a20 = fromiter(self.makegen(), int, 20)
- self.assertTrue(alltrue(a == expected,axis=0))
- self.assertTrue(alltrue(a20 == expected[:20],axis=0))
+ self.assertTrue(alltrue(a == expected, axis=0))
+ self.assertTrue(alltrue(a20 == expected[:20], axis=0))
def load_data(self, n, eindex):
# Utility method for the issue 2592 tests.
@@ -731,48 +731,48 @@ class TestNonzero(TestCase):
assert_equal(np.nonzero(array(1)), ([0],))
def test_nonzero_onedim(self):
- x = array([1,0,2,-1,0,0,8])
+ x = array([1, 0, 2, -1, 0, 0, 8])
assert_equal(np.count_nonzero(x), 4)
assert_equal(np.count_nonzero(x), 4)
assert_equal(np.nonzero(x), ([0, 2, 3, 6],))
- x = array([(1,2),(0,0),(1,1),(-1,3),(0,7)],
- dtype=[('a','i4'),('b','i2')])
+ x = array([(1, 2), (0, 0), (1, 1), (-1, 3), (0, 7)],
+ dtype=[('a', 'i4'), ('b', 'i2')])
assert_equal(np.count_nonzero(x['a']), 3)
assert_equal(np.count_nonzero(x['b']), 4)
- assert_equal(np.nonzero(x['a']), ([0,2,3],))
- assert_equal(np.nonzero(x['b']), ([0,2,3,4],))
+ assert_equal(np.nonzero(x['a']), ([0, 2, 3],))
+ assert_equal(np.nonzero(x['b']), ([0, 2, 3, 4],))
def test_nonzero_twodim(self):
- x = array([[0,1,0],[2,0,3]])
+ x = array([[0, 1, 0], [2, 0, 3]])
assert_equal(np.count_nonzero(x), 3)
- assert_equal(np.nonzero(x), ([0,1,1],[1,0,2]))
+ assert_equal(np.nonzero(x), ([0, 1, 1], [1, 0, 2]))
x = np.eye(3)
assert_equal(np.count_nonzero(x), 3)
- assert_equal(np.nonzero(x), ([0,1,2],[0,1,2]))
+ assert_equal(np.nonzero(x), ([0, 1, 2], [0, 1, 2]))
- x = array([[(0,1),(0,0),(1,11)],
- [(1,1),(1,0),(0,0)],
- [(0,0),(1,5),(0,1)]], dtype=[('a','f4'),('b','u1')])
+ x = array([[(0, 1), (0, 0), (1, 11)],
+ [(1, 1), (1, 0), (0, 0)],
+ [(0, 0), (1, 5), (0, 1)]], dtype=[('a', 'f4'), ('b', 'u1')])
assert_equal(np.count_nonzero(x['a']), 4)
assert_equal(np.count_nonzero(x['b']), 5)
- assert_equal(np.nonzero(x['a']), ([0,1,1,2],[2,0,1,1]))
- assert_equal(np.nonzero(x['b']), ([0,0,1,2,2],[0,2,0,1,2]))
+ assert_equal(np.nonzero(x['a']), ([0, 1, 1, 2], [2, 0, 1, 1]))
+ assert_equal(np.nonzero(x['b']), ([0, 0, 1, 2, 2], [0, 2, 0, 1, 2]))
assert_equal(np.count_nonzero(x['a'].T), 4)
assert_equal(np.count_nonzero(x['b'].T), 5)
- assert_equal(np.nonzero(x['a'].T), ([0,1,1,2],[1,1,2,0]))
- assert_equal(np.nonzero(x['b'].T), ([0,0,1,2,2],[0,1,2,0,2]))
+ assert_equal(np.nonzero(x['a'].T), ([0, 1, 1, 2], [1, 1, 2, 0]))
+ assert_equal(np.nonzero(x['b'].T), ([0, 0, 1, 2, 2], [0, 1, 2, 0, 2]))
class TestIndex(TestCase):
def test_boolean(self):
- a = rand(3,5,8)
- V = rand(5,8)
- g1 = randint(0,5,size=15)
- g2 = randint(0,8,size=15)
- V[g1,g2] = -V[g1,g2]
- assert_((array([a[0][V>0],a[1][V>0],a[2][V>0]]) == a[:,V>0]).all())
+ a = rand(3, 5, 8)
+ V = rand(5, 8)
+ g1 = randint(0, 5, size=15)
+ g2 = randint(0, 8, size=15)
+ V[g1, g2] = -V[g1, g2]
+ assert_((array([a[0][V>0], a[1][V>0], a[2][V>0]]) == a[:, V>0]).all())
def test_boolean_edgecase(self):
a = np.array([], dtype='int32')
@@ -784,10 +784,10 @@ class TestIndex(TestCase):
class TestBinaryRepr(TestCase):
def test_zero(self):
- assert_equal(binary_repr(0),'0')
+ assert_equal(binary_repr(0), '0')
def test_large(self):
- assert_equal(binary_repr(10736848),'101000111101010011010000')
+ assert_equal(binary_repr(10736848), '101000111101010011010000')
def test_negative(self):
assert_equal(binary_repr(-1), '-1')
@@ -810,52 +810,52 @@ class TestBaseRepr(TestCase):
class TestArrayComparisons(TestCase):
def test_array_equal(self):
- res = array_equal(array([1,2]), array([1,2]))
+ res = array_equal(array([1, 2]), array([1, 2]))
assert_(res)
assert_(type(res) is bool)
- res = array_equal(array([1,2]), array([1,2,3]))
+ res = array_equal(array([1, 2]), array([1, 2, 3]))
assert_(not res)
assert_(type(res) is bool)
- res = array_equal(array([1,2]), array([3,4]))
+ res = array_equal(array([1, 2]), array([3, 4]))
assert_(not res)
assert_(type(res) is bool)
- res = array_equal(array([1,2]), array([1,3]))
+ res = array_equal(array([1, 2]), array([1, 3]))
assert_(not res)
assert_(type(res) is bool)
res = array_equal(array(['a'], dtype='S1'), array(['a'], dtype='S1'))
assert_(res)
assert_(type(res) is bool)
- res = array_equal(array([('a',1)], dtype='S1,u4'), array([('a',1)], dtype='S1,u4'))
+ res = array_equal(array([('a', 1)], dtype='S1,u4'), array([('a', 1)], dtype='S1,u4'))
assert_(res)
assert_(type(res) is bool)
def test_array_equiv(self):
- res = array_equiv(array([1,2]), array([1,2]))
+ res = array_equiv(array([1, 2]), array([1, 2]))
assert_(res)
assert_(type(res) is bool)
- res = array_equiv(array([1,2]), array([1,2,3]))
+ res = array_equiv(array([1, 2]), array([1, 2, 3]))
assert_(not res)
assert_(type(res) is bool)
- res = array_equiv(array([1,2]), array([3,4]))
+ res = array_equiv(array([1, 2]), array([3, 4]))
assert_(not res)
assert_(type(res) is bool)
- res = array_equiv(array([1,2]), array([1,3]))
+ res = array_equiv(array([1, 2]), array([1, 3]))
assert_(not res)
assert_(type(res) is bool)
- res = array_equiv(array([1,1]), array([1]))
+ res = array_equiv(array([1, 1]), array([1]))
assert_(res)
assert_(type(res) is bool)
- res = array_equiv(array([1,1]), array([[1],[1]]))
+ res = array_equiv(array([1, 1]), array([[1], [1]]))
assert_(res)
assert_(type(res) is bool)
- res = array_equiv(array([1,2]), array([2]))
+ res = array_equiv(array([1, 2]), array([2]))
assert_(not res)
assert_(type(res) is bool)
- res = array_equiv(array([1,2]), array([[1],[2]]))
+ res = array_equiv(array([1, 2]), array([[1], [2]]))
assert_(not res)
assert_(type(res) is bool)
- res = array_equiv(array([1,2]), array([[1,2,3],[4,5,6],[7,8,9]]))
+ res = array_equiv(array([1, 2]), array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
assert_(not res)
assert_(type(res) is bool)
@@ -875,9 +875,9 @@ class TestClip(TestCase):
def fastclip(self, a, m, M, out=None):
if out is None:
- return a.clip(m,M)
+ return a.clip(m, M)
else:
- return a.clip(m,M,out)
+ return a.clip(m, M, out)
def clip(self, a, m, M, out=None):
# use slow-clip
@@ -1111,8 +1111,8 @@ class TestClip(TestCase):
a = self._generate_int32_data(self.nr, self.nc)
m = float32(-2)
M = float32(4)
- act = self.fastclip(a,m,M)
- ac = self.clip(a,m,M)
+ act = self.fastclip(a, m, M)
+ ac = self.clip(a, m, M)
assert_array_strict_equal(ac, act)
def test_type_cast_05(self):
@@ -1152,7 +1152,7 @@ class TestClip(TestCase):
M = 1.
a_s = self._neg_byteorder(a)
assert_(not a_s.dtype.isnative)
- ac = self.fastclip(a_s, m , M)
+ ac = self.fastclip(a_s, m, M)
act = a_s.clip(m, M)
assert_array_strict_equal(ac, act)
@@ -1163,7 +1163,7 @@ class TestClip(TestCase):
M = 1.
m_s = self._neg_byteorder(m)
assert_(not m_s.dtype.isnative)
- ac = self.fastclip(a, m_s , M)
+ ac = self.fastclip(a, m_s, M)
act = self.clip(a, m_s, M)
assert_array_strict_equal(ac, act)
@@ -1174,7 +1174,7 @@ class TestClip(TestCase):
m = float32(-0.5)
M = float32(1)
act = self.clip(a, m, M, out = b)
- ac = self.fastclip(a, m , M, out = b)
+ ac = self.fastclip(a, m, M, out = b)
assert_array_strict_equal(ac, act)
def test_type_cast_11(self):
@@ -1185,7 +1185,7 @@ class TestClip(TestCase):
bt = b.copy()
m = -0.5
M = 1.
- self.fastclip(a, m , M, out = b)
+ self.fastclip(a, m, M, out = b)
self.clip(a, m, M, out = bt)
assert_array_strict_equal(b, bt)
@@ -1196,7 +1196,7 @@ class TestClip(TestCase):
m = int32(0)
M = int32(1)
act = self.clip(a, m, M, out = b)
- ac = self.fastclip(a, m , M, out = b)
+ ac = self.fastclip(a, m, M, out = b)
assert_array_strict_equal(ac, act)
def test_clip_with_out_simple(self):
@@ -1296,21 +1296,21 @@ class TestAllclose(object):
def tearDown(self):
np.seterr(**self.olderr)
- def tst_allclose(self,x,y):
- assert_(allclose(x,y), "%s and %s not close" % (x,y))
+ def tst_allclose(self, x, y):
+ assert_(allclose(x, y), "%s and %s not close" % (x, y))
- def tst_not_allclose(self,x,y):
- assert_(not allclose(x,y), "%s and %s shouldn't be close" % (x,y))
+ def tst_not_allclose(self, x, y):
+ assert_(not allclose(x, y), "%s and %s shouldn't be close" % (x, y))
def test_ip_allclose(self):
#Parametric test factory.
- arr = array([100,1000])
- aran = arange(125).reshape((5,5,5))
+ arr = array([100, 1000])
+ aran = arange(125).reshape((5, 5, 5))
atol = self.atol
rtol = self.rtol
- data = [([1,0], [1,0]),
+ data = [([1, 0], [1, 0]),
([atol], [0]),
([1], [1+rtol+atol]),
(arr, arr + arr*rtol),
@@ -1319,36 +1319,36 @@ class TestAllclose(object):
(inf, inf),
(inf, [inf])]
- for (x,y) in data:
- yield (self.tst_allclose,x,y)
+ for (x, y) in data:
+ yield (self.tst_allclose, x, y)
def test_ip_not_allclose(self):
#Parametric test factory.
- aran = arange(125).reshape((5,5,5))
+ aran = arange(125).reshape((5, 5, 5))
atol = self.atol
rtol = self.rtol
- data = [([inf,0], [1,inf]),
- ([inf,0], [1,0]),
- ([inf,inf], [1,inf]),
- ([inf,inf], [1,0]),
+ data = [([inf, 0], [1, inf]),
+ ([inf, 0], [1, 0]),
+ ([inf, inf], [1, inf]),
+ ([inf, inf], [1, 0]),
([-inf, 0], [inf, 0]),
- ([nan,0], [nan,0]),
+ ([nan, 0], [nan, 0]),
([atol*2], [0]),
([1], [1+rtol+atol*2]),
(aran, aran + aran*atol + atol*2),
- (array([inf,1]), array([0,inf]))]
+ (array([inf, 1]), array([0, inf]))]
- for (x,y) in data:
- yield (self.tst_not_allclose,x,y)
+ for (x, y) in data:
+ yield (self.tst_not_allclose, x, y)
def test_no_parameter_modification(self):
- x = array([inf,1])
- y = array([0,inf])
- allclose(x,y)
- assert_array_equal(x,array([inf,1]))
- assert_array_equal(y,array([0,inf]))
+ x = array([inf, 1])
+ y = array([0, inf])
+ allclose(x, y)
+ assert_array_equal(x, array([inf, 1]))
+ assert_array_equal(y, array([0, inf]))
class TestIsclose(object):
@@ -1358,8 +1358,8 @@ class TestIsclose(object):
def setup(self):
atol = self.atol
rtol = self.rtol
- arr = array([100,1000])
- aran = arange(125).reshape((5,5,5))
+ arr = array([100, 1000])
+ aran = arange(125).reshape((5, 5, 5))
self.all_close_tests = [
([1, 0], [1, 0]),
@@ -1420,12 +1420,12 @@ class TestIsclose(object):
def test_ip_all_isclose(self):
self.setup()
- for (x,y) in self.all_close_tests:
+ for (x, y) in self.all_close_tests:
yield (self.tst_all_isclose, x, y)
def test_ip_none_isclose(self):
self.setup()
- for (x,y) in self.none_close_tests:
+ for (x, y) in self.none_close_tests:
yield (self.tst_none_isclose, x, y)
def test_ip_isclose_allclose(self):
@@ -1465,31 +1465,31 @@ class TestIsclose(object):
class TestStdVar(TestCase):
def setUp(self):
- self.A = array([1,-1,1,-1])
+ self.A = array([1, -1, 1, -1])
self.real_var = 1
def test_basic(self):
- assert_almost_equal(var(self.A),self.real_var)
- assert_almost_equal(std(self.A)**2,self.real_var)
+ assert_almost_equal(var(self.A), self.real_var)
+ assert_almost_equal(std(self.A)**2, self.real_var)
def test_ddof1(self):
- assert_almost_equal(var(self.A,ddof=1),
+ assert_almost_equal(var(self.A, ddof=1),
self.real_var*len(self.A)/float(len(self.A)-1))
- assert_almost_equal(std(self.A,ddof=1)**2,
+ assert_almost_equal(std(self.A, ddof=1)**2,
self.real_var*len(self.A)/float(len(self.A)-1))
def test_ddof2(self):
- assert_almost_equal(var(self.A,ddof=2),
+ assert_almost_equal(var(self.A, ddof=2),
self.real_var*len(self.A)/float(len(self.A)-2))
- assert_almost_equal(std(self.A,ddof=2)**2,
+ assert_almost_equal(std(self.A, ddof=2)**2,
self.real_var*len(self.A)/float(len(self.A)-2))
class TestStdVarComplex(TestCase):
def test_basic(self):
- A = array([1,1.j,-1,-1.j])
+ A = array([1, 1.j, -1, -1.j])
real_var = 1
- assert_almost_equal(var(A),real_var)
- assert_almost_equal(std(A)**2,real_var)
+ assert_almost_equal(var(A), real_var)
+ assert_almost_equal(std(A)**2, real_var)
class TestCreationFuncs(TestCase):
@@ -1573,20 +1573,20 @@ class TestLikeFuncs(TestCase):
(arange(6, dtype='f4'), None),
(arange(6), 'c16'),
# 2D C-layout arrays
- (arange(6).reshape(2,3), None),
- (arange(6).reshape(3,2), 'i1'),
+ (arange(6).reshape(2, 3), None),
+ (arange(6).reshape(3, 2), 'i1'),
# 2D F-layout arrays
- (arange(6).reshape((2,3), order='F'), None),
- (arange(6).reshape((3,2), order='F'), 'i1'),
+ (arange(6).reshape((2, 3), order='F'), None),
+ (arange(6).reshape((3, 2), order='F'), 'i1'),
# 3D C-layout arrays
- (arange(24).reshape(2,3,4), None),
- (arange(24).reshape(4,3,2), 'f4'),
+ (arange(24).reshape(2, 3, 4), None),
+ (arange(24).reshape(4, 3, 2), 'f4'),
# 3D F-layout arrays
- (arange(24).reshape((2,3,4), order='F'), None),
- (arange(24).reshape((4,3,2), order='F'), 'f4'),
+ (arange(24).reshape((2, 3, 4), order='F'), None),
+ (arange(24).reshape((4, 3, 2), order='F'), 'f4'),
# 3D non-C/F-layout arrays
- (arange(24).reshape(2,3,4).swapaxes(0,1), None),
- (arange(24).reshape(4,3,2).swapaxes(0,1), '?'),
+ (arange(24).reshape(2, 3, 4).swapaxes(0, 1), None),
+ (arange(24).reshape(4, 3, 2).swapaxes(0, 1), '?'),
]
def compare_array_value(self, dz, value, fill_value):
@@ -1654,7 +1654,7 @@ class TestLikeFuncs(TestCase):
self.compare_array_value(dz, value, fill_value)
# Test the 'subok' parameter
- a = np.matrix([[1,2],[3,4]])
+ a = np.matrix([[1, 2], [3, 4]])
b = like_function(a, **fill_kwarg)
assert_(type(b) is np.matrix)
@@ -1769,7 +1769,7 @@ class TestRoll(TestCase):
assert_equal(xr, np.array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]))
def test_roll2d(self):
- x2 = np.reshape(np.arange(10), (2,5))
+ x2 = np.reshape(np.arange(10), (2, 5))
x2r = np.roll(x2, 1)
assert_equal(x2r, np.array([[9, 0, 1, 2, 3], [4, 5, 6, 7, 8]]))
diff --git a/numpy/core/tests/test_numerictypes.py b/numpy/core/tests/test_numerictypes.py
index 173ebbf9c..3cafcf65e 100644
--- a/numpy/core/tests/test_numerictypes.py
+++ b/numpy/core/tests/test_numerictypes.py
@@ -20,8 +20,8 @@ Pdescr = [
# A plain list of tuples with values for testing:
PbufferT = [
# x y z
- ([3,2], [[6.,4.],[6.,4.]], 8),
- ([4,3], [[7.,5.],[7.,5.]], 9),
+ ([3, 2], [[6., 4.], [6., 4.]], 8),
+ ([4, 3], [[7., 5.], [7., 5.]], 9),
]
@@ -60,8 +60,8 @@ NbufferT = [
# x Info color info y z
# value y2 Info2 name z2 Name Value
# name value y3 z3
- ([3,2], (6j, 6., (asbytes('nn'), [6j,4j], [6.,4.], [1,2]), asbytes('NN'), True), asbytes('cc'), (asunicode('NN'), 6j), [[6.,4.],[6.,4.]], 8),
- ([4,3], (7j, 7., (asbytes('oo'), [7j,5j], [7.,5.], [2,1]), asbytes('OO'), False), asbytes('dd'), (asunicode('OO'), 7j), [[7.,5.],[7.,5.]], 9),
+ ([3, 2], (6j, 6., (asbytes('nn'), [6j, 4j], [6., 4.], [1, 2]), asbytes('NN'), True), asbytes('cc'), (asunicode('NN'), 6j), [[6., 4.], [6., 4.]], 8),
+ ([4, 3], (7j, 7., (asbytes('oo'), [7j, 5j], [7., 5.], [2, 1]), asbytes('OO'), False), asbytes('dd'), (asunicode('OO'), 7j), [[7., 5.], [7., 5.]], 9),
]
@@ -74,7 +74,7 @@ def normalize_descr(descr):
for item in descr:
dtype = item[1]
if isinstance(dtype, str):
- if dtype[0] not in ['|','<','>']:
+ if dtype[0] not in ['|', '<', '>']:
onebyte = dtype[1:] == "1"
if onebyte or dtype[0] in ['S', 'V', 'b']:
dtype = "|" + dtype
@@ -125,13 +125,13 @@ class create_zeros(object):
def test_zerosMD(self):
"""Check creation of multi-dimensional objects"""
- h = np.zeros((2,3), dtype=self._descr)
+ h = np.zeros((2, 3), dtype=self._descr)
self.assertTrue(normalize_descr(self._descr) == h.dtype.descr)
self.assertTrue(h.dtype['z'].name == 'uint8')
self.assertTrue(h.dtype['z'].char == 'B')
self.assertTrue(h.dtype['z'].type == np.uint8)
# A small check that data is ok
- assert_equal(h['z'], np.zeros((2,3), dtype='u1'))
+ assert_equal(h['z'], np.zeros((2, 3), dtype='u1'))
class test_create_zeros_plain(create_zeros, TestCase):
@@ -160,7 +160,7 @@ class create_values(object):
h = np.array([self._buffer], dtype=self._descr)
self.assertTrue(normalize_descr(self._descr) == h.dtype.descr)
if self.multiple_rows:
- self.assertTrue(h.shape == (1,2))
+ self.assertTrue(h.shape == (1, 2))
else:
self.assertTrue(h.shape == (1,))
@@ -169,9 +169,9 @@ class create_values(object):
h = np.array([[self._buffer]], dtype=self._descr)
self.assertTrue(normalize_descr(self._descr) == h.dtype.descr)
if self.multiple_rows:
- self.assertTrue(h.shape == (1,1,2))
+ self.assertTrue(h.shape == (1, 1, 2))
else:
- self.assertTrue(h.shape == (1,1))
+ self.assertTrue(h.shape == (1, 1))
class test_create_values_plain_single(create_values, TestCase):
@@ -338,37 +338,37 @@ class test_read_values_nested_multiple(read_values_nested, TestCase):
class TestEmptyField(TestCase):
def test_assign(self):
a = np.arange(10, dtype=np.float32)
- a.dtype = [("int", "<0i4"),("float", "<2f4")]
- assert_(a['int'].shape == (5,0))
- assert_(a['float'].shape == (5,2))
+ a.dtype = [("int", "<0i4"), ("float", "<2f4")]
+ assert_(a['int'].shape == (5, 0))
+ assert_(a['float'].shape == (5, 2))
class TestCommonType(TestCase):
def test_scalar_loses1(self):
- res = np.find_common_type(['f4','f4','i2'],['f8'])
+ res = np.find_common_type(['f4', 'f4', 'i2'], ['f8'])
assert_(res == 'f4')
def test_scalar_loses2(self):
- res = np.find_common_type(['f4','f4'],['i8'])
+ res = np.find_common_type(['f4', 'f4'], ['i8'])
assert_(res == 'f4')
def test_scalar_wins(self):
- res = np.find_common_type(['f4','f4','i2'],['c8'])
+ res = np.find_common_type(['f4', 'f4', 'i2'], ['c8'])
assert_(res == 'c8')
def test_scalar_wins2(self):
- res = np.find_common_type(['u4','i4','i4'],['f4'])
+ res = np.find_common_type(['u4', 'i4', 'i4'], ['f4'])
assert_(res == 'f8')
def test_scalar_wins3(self): # doesn't go up to 'f16' on purpose
- res = np.find_common_type(['u8','i8','i8'],['f8'])
+ res = np.find_common_type(['u8', 'i8', 'i8'], ['f8'])
assert_(res == 'f8')
class TestMultipleFields(TestCase):
def setUp(self):
- self.ary = np.array([(1,2,3,4),(5,6,7,8)], dtype='i4,f4,i2,c8')
+ self.ary = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype='i4,f4,i2,c8')
def _bad_call(self):
- return self.ary['f0','f1']
+ return self.ary['f0', 'f1']
def test_no_tuple(self):
self.assertRaises(ValueError, self._bad_call)
def test_return(self):
- res = self.ary[['f0','f2']].tolist()
- assert_(res == [(1,3), (5,7)])
+ res = self.ary[['f0', 'f2']].tolist()
+ assert_(res == [(1, 3), (5, 7)])
if __name__ == "__main__":
run_module_suite()
diff --git a/numpy/core/tests/test_print.py b/numpy/core/tests/test_print.py
index 342ca27c6..487b5de7d 100644
--- a/numpy/core/tests/test_print.py
+++ b/numpy/core/tests/test_print.py
@@ -16,7 +16,7 @@ _REF = {np.inf: 'inf', -np.inf: '-inf', np.nan: 'nan'}
def check_float_type(tp):
- for x in [0, 1,-1, 1e20] :
+ for x in [0, 1, -1, 1e20] :
assert_equal(str(tp(x)), str(float(x)),
err_msg='Failed str formatting for type %s' % tp)
@@ -56,7 +56,7 @@ def test_nan_inf_float():
yield check_nan_inf_float, t
def check_complex_type(tp):
- for x in [0, 1,-1, 1e20] :
+ for x in [0, 1, -1, 1e20] :
assert_equal(str(tp(x)), str(complex(x)),
err_msg='Failed str formatting for type %s' % tp)
assert_equal(str(tp(x*1j)), str(complex(x*1j)),
@@ -130,7 +130,7 @@ def _test_redirected_print(x, tp, ref=None):
err_msg='print failed for type%s' % tp)
def check_float_type_print(tp):
- for x in [0, 1,-1, 1e20]:
+ for x in [0, 1, -1, 1e20]:
_test_redirected_print(float(x), tp)
for x in [np.inf, -np.inf, np.nan]:
diff --git a/numpy/core/tests/test_regression.py b/numpy/core/tests/test_regression.py
index 86b0e48a2..7118af8c3 100644
--- a/numpy/core/tests/test_regression.py
+++ b/numpy/core/tests/test_regression.py
@@ -25,34 +25,34 @@ class TestRegression(TestCase):
def test_invalid_round(self,level=rlevel):
"""Ticket #3"""
v = 4.7599999999999998
- assert_array_equal(np.array([v]),np.array(v))
+ assert_array_equal(np.array([v]), np.array(v))
def test_mem_empty(self,level=rlevel):
"""Ticket #7"""
- np.empty((1,),dtype=[('x',np.int64)])
+ np.empty((1,), dtype=[('x', np.int64)])
def test_pickle_transposed(self,level=rlevel):
"""Ticket #16"""
- a = np.transpose(np.array([[2,9],[7,0],[3,8]]))
+ a = np.transpose(np.array([[2, 9], [7, 0], [3, 8]]))
f = BytesIO()
- pickle.dump(a,f)
+ pickle.dump(a, f)
f.seek(0)
b = pickle.load(f)
f.close()
- assert_array_equal(a,b)
+ assert_array_equal(a, b)
def test_typeNA(self,level=rlevel):
"""Ticket #31"""
- assert_equal(np.typeNA[np.int64],'Int64')
- assert_equal(np.typeNA[np.uint64],'UInt64')
+ assert_equal(np.typeNA[np.int64], 'Int64')
+ assert_equal(np.typeNA[np.uint64], 'UInt64')
def test_dtype_names(self,level=rlevel):
"""Ticket #35"""
- dt = np.dtype([(('name','label'),np.int32,3)])
+ dt = np.dtype([(('name', 'label'), np.int32, 3)])
def test_reduce(self,level=rlevel):
"""Ticket #40"""
- assert_almost_equal(np.add.reduce([1.,.5],dtype=None), 1.5)
+ assert_almost_equal(np.add.reduce([1., .5], dtype=None), 1.5)
def test_zeros_order(self,level=rlevel):
"""Ticket #43"""
@@ -79,7 +79,7 @@ class TestRegression(TestCase):
def test_negative_nd_indexing(self,level=rlevel):
"""Ticket #49"""
- c = np.arange(125).reshape((5,5,5))
+ c = np.arange(125).reshape((5, 5, 5))
origidx = np.array([-1, 0, 1])
idx = np.array(origidx)
c[idx]
@@ -88,7 +88,7 @@ class TestRegression(TestCase):
def test_char_dump(self,level=rlevel):
"""Ticket #50"""
f = BytesIO()
- ca = np.char.array(np.arange(1000,1010),itemsize=4)
+ ca = np.char.array(np.arange(1000, 1010), itemsize=4)
ca.dump(f)
f.seek(0)
ca = np.load(f)
@@ -96,11 +96,11 @@ class TestRegression(TestCase):
def test_noncontiguous_fill(self,level=rlevel):
"""Ticket #58."""
- a = np.zeros((5,3))
- b = a[:,:2,]
+ a = np.zeros((5, 3))
+ b = a[:, :2,]
def rs():
b.shape = (10,)
- self.assertRaises(AttributeError,rs)
+ self.assertRaises(AttributeError, rs)
def test_bool(self,level=rlevel):
"""Ticket #60"""
@@ -109,14 +109,14 @@ class TestRegression(TestCase):
def test_indexing1(self,level=rlevel):
"""Ticket #64"""
descr = [('x', [('y', [('z', 'c16', (2,)),]),]),]
- buffer = ((([6j,4j],),),)
+ buffer = ((([6j, 4j],),),)
h = np.array(buffer, dtype=descr)
h['x']['y']['z']
def test_indexing2(self,level=rlevel):
"""Ticket #65"""
descr = [('x', 'i4', (2,))]
- buffer = ([3,2],)
+ buffer = ([3, 2],)
h = np.array(buffer, dtype=descr)
h['x']
@@ -128,7 +128,7 @@ class TestRegression(TestCase):
def test_scalar_compare(self,level=rlevel):
"""Ticket #72"""
a = np.array(['test', 'auto'])
- assert_array_equal(a == 'auto', np.array([False,True]))
+ assert_array_equal(a == 'auto', np.array([False, True]))
self.assertTrue(a[1] == 'auto')
self.assertTrue(a[0] != 'auto')
b = np.linspace(0, 10, 11)
@@ -149,8 +149,8 @@ class TestRegression(TestCase):
def test_mem_dtype_align(self,level=rlevel):
"""Ticket #93"""
- self.assertRaises(TypeError,np.dtype,
- {'names':['a'],'formats':['foo']},align=1)
+ self.assertRaises(TypeError, np.dtype,
+ {'names':['a'],'formats':['foo']}, align=1)
@dec.knownfailureif((sys.version_info[0] >= 3) or
(sys.platform == "win32" and platform.architecture()[0] == "64bit"),
@@ -159,22 +159,22 @@ class TestRegression(TestCase):
def test_intp(self,level=rlevel):
"""Ticket #99"""
i_width = np.int_(0).nbytes*2 - 1
- np.intp('0x' + 'f'*i_width,16)
- self.assertRaises(OverflowError,np.intp,'0x' + 'f'*(i_width+1),16)
- self.assertRaises(ValueError,np.intp,'0x1',32)
- assert_equal(255,np.intp('0xFF',16))
- assert_equal(1024,np.intp(1024))
+ np.intp('0x' + 'f'*i_width, 16)
+ self.assertRaises(OverflowError, np.intp, '0x' + 'f'*(i_width+1), 16)
+ self.assertRaises(ValueError, np.intp, '0x1', 32)
+ assert_equal(255, np.intp('0xFF', 16))
+ assert_equal(1024, np.intp(1024))
def test_endian_bool_indexing(self,level=rlevel):
"""Ticket #105"""
- a = np.arange(10.,dtype='>f8')
- b = np.arange(10.,dtype='<f8')
+ a = np.arange(10., dtype='>f8')
+ b = np.arange(10., dtype='<f8')
xa = np.where((a>2) & (a<6))
xb = np.where((b>2) & (b<6))
ya = ((a>2) & (a<6))
yb = ((b>2) & (b<6))
- assert_array_almost_equal(xa,ya.nonzero())
- assert_array_almost_equal(xb,yb.nonzero())
+ assert_array_almost_equal(xa, ya.nonzero())
+ assert_array_almost_equal(xb, yb.nonzero())
assert_(np.all(a[ya] > 0.5))
assert_(np.all(b[yb] > 0.5))
@@ -196,7 +196,7 @@ class TestRegression(TestCase):
])
buf = np.recarray(1, dtype=dt)
buf[0]['head'] = 1
- buf[0]['data'][:] = [1,1]
+ buf[0]['data'][:] = [1, 1]
h = buf[0]['head']
d = buf[0]['data'][0]
@@ -206,8 +206,8 @@ class TestRegression(TestCase):
def test_mem_dot(self,level=rlevel):
"""Ticket #106"""
- x = np.random.randn(0,1)
- y = np.random.randn(10,1)
+ x = np.random.randn(0, 1)
+ y = np.random.randn(10, 1)
# Dummy array to detect bad memory access:
_z = np.ones(10)
_dummy = np.empty((0, 10))
@@ -221,10 +221,10 @@ class TestRegression(TestCase):
def test_arange_endian(self,level=rlevel):
"""Ticket #111"""
ref = np.arange(10)
- x = np.arange(10,dtype='<f8')
- assert_array_equal(ref,x)
- x = np.arange(10,dtype='>f8')
- assert_array_equal(ref,x)
+ x = np.arange(10, dtype='<f8')
+ assert_array_equal(ref, x)
+ x = np.arange(10, dtype='>f8')
+ assert_array_equal(ref, x)
# Longfloat support is not consistent enough across
# platforms for this test to be meaningful.
@@ -236,21 +236,21 @@ class TestRegression(TestCase):
def test_argmax(self,level=rlevel):
"""Ticket #119"""
- a = np.random.normal(0,1,(4,5,6,7,8))
+ a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
for i in range(a.ndim):
aargmax = a.argmax(i)
def test_mem_divmod(self,level=rlevel):
"""Ticket #126"""
for i in range(10):
- divmod(np.array([i])[0],10)
+ divmod(np.array([i])[0], 10)
def test_hstack_invalid_dims(self,level=rlevel):
"""Ticket #128"""
- x = np.arange(9).reshape((3,3))
- y = np.array([0,0,0])
- self.assertRaises(ValueError,np.hstack,(x,y))
+ x = np.arange(9).reshape((3, 3))
+ y = np.array([0, 0, 0])
+ self.assertRaises(ValueError, np.hstack, (x, y))
def test_squeeze_type(self,level=rlevel):
"""Ticket #133"""
@@ -261,7 +261,7 @@ class TestRegression(TestCase):
def test_add_identity(self,level=rlevel):
"""Ticket #143"""
- assert_equal(0,np.add.identity)
+ assert_equal(0, np.add.identity)
def test_numpy_float_python_long_addition(self):
# Check that numpy float and python longs can be added correctly.
@@ -270,41 +270,41 @@ class TestRegression(TestCase):
def test_binary_repr_0(self,level=rlevel):
"""Ticket #151"""
- assert_equal('0',np.binary_repr(0))
+ assert_equal('0', np.binary_repr(0))
def test_rec_iterate(self,level=rlevel):
"""Ticket #160"""
- descr = np.dtype([('i',int),('f',float),('s','|S3')])
- x = np.rec.array([(1,1.1,'1.0'),
- (2,2.2,'2.0')],dtype=descr)
+ descr = np.dtype([('i', int), ('f', float), ('s', '|S3')])
+ x = np.rec.array([(1, 1.1, '1.0'),
+ (2, 2.2, '2.0')], dtype=descr)
x[0].tolist()
[i for i in x[0]]
def test_unicode_string_comparison(self,level=rlevel):
"""Ticket #190"""
- a = np.array('hello',np.unicode_)
+ a = np.array('hello', np.unicode_)
b = np.array('world')
a == b
def test_tostring_FORTRANORDER_discontiguous(self,level=rlevel):
"""Fix in r2836"""
# Create discontiguous Fortran-ordered array
- x = np.array(np.random.rand(3,3),order='F')[:,:2]
- assert_array_almost_equal(x.ravel(),np.fromstring(x.tostring()))
+ x = np.array(np.random.rand(3, 3), order='F')[:, :2]
+ assert_array_almost_equal(x.ravel(), np.fromstring(x.tostring()))
def test_flat_assignment(self,level=rlevel):
"""Correct behaviour of ticket #194"""
- x = np.empty((3,1))
+ x = np.empty((3, 1))
x.flat = np.arange(3)
- assert_array_almost_equal(x,[[0],[1],[2]])
- x.flat = np.arange(3,dtype=float)
- assert_array_almost_equal(x,[[0],[1],[2]])
+ assert_array_almost_equal(x, [[0], [1], [2]])
+ x.flat = np.arange(3, dtype=float)
+ assert_array_almost_equal(x, [[0], [1], [2]])
def test_broadcast_flat_assignment(self,level=rlevel):
"""Ticket #194"""
- x = np.empty((3,1))
+ x = np.empty((3, 1))
def bfa(): x[:] = np.arange(3)
- def bfb(): x[:] = np.arange(3,dtype=float)
+ def bfb(): x[:] = np.arange(3, dtype=float)
self.assertRaises(ValueError, bfa)
self.assertRaises(ValueError, bfb)
@@ -323,29 +323,29 @@ class TestRegression(TestCase):
def test_unpickle_dtype_with_object(self,level=rlevel):
"""Implemented in r2840"""
- dt = np.dtype([('x',int),('y',np.object_),('z','O')])
+ dt = np.dtype([('x', int), ('y', np.object_), ('z', 'O')])
f = BytesIO()
- pickle.dump(dt,f)
+ pickle.dump(dt, f)
f.seek(0)
dt_ = pickle.load(f)
f.close()
- assert_equal(dt,dt_)
+ assert_equal(dt, dt_)
def test_mem_array_creation_invalid_specification(self,level=rlevel):
"""Ticket #196"""
- dt = np.dtype([('x',int),('y',np.object_)])
+ dt = np.dtype([('x', int), ('y', np.object_)])
# Wrong way
- self.assertRaises(ValueError, np.array, [1,'object'], dt)
+ self.assertRaises(ValueError, np.array, [1, 'object'], dt)
# Correct way
- np.array([(1,'object')],dt)
+ np.array([(1, 'object')], dt)
def test_recarray_single_element(self,level=rlevel):
"""Ticket #202"""
- a = np.array([1,2,3],dtype=np.int32)
+ a = np.array([1, 2, 3], dtype=np.int32)
b = a.copy()
- r = np.rec.array(a,shape=1,formats=['3i4'],names=['d'])
- assert_array_equal(a,b)
- assert_equal(a,r[0][0])
+ r = np.rec.array(a, shape=1, formats=['3i4'], names=['d'])
+ assert_array_equal(a, b)
+ assert_equal(a, r[0][0])
def test_zero_sized_array_indexing(self,level=rlevel):
"""Ticket #205"""
@@ -355,36 +355,36 @@ class TestRegression(TestCase):
def test_chararray_rstrip(self,level=rlevel):
"""Ticket #222"""
- x = np.chararray((1,),5)
+ x = np.chararray((1,), 5)
x[0] = asbytes('a ')
x = x.rstrip()
assert_equal(x[0], asbytes('a'))
def test_object_array_shape(self,level=rlevel):
"""Ticket #239"""
- assert_equal(np.array([[1,2],3,4],dtype=object).shape, (3,))
- assert_equal(np.array([[1,2],[3,4]],dtype=object).shape, (2,2))
- assert_equal(np.array([(1,2),(3,4)],dtype=object).shape, (2,2))
- assert_equal(np.array([],dtype=object).shape, (0,))
- assert_equal(np.array([[],[],[]],dtype=object).shape, (3,0))
- assert_equal(np.array([[3,4],[5,6],None],dtype=object).shape, (3,))
+ assert_equal(np.array([[1, 2], 3, 4], dtype=object).shape, (3,))
+ assert_equal(np.array([[1, 2], [3, 4]], dtype=object).shape, (2, 2))
+ assert_equal(np.array([(1, 2), (3, 4)], dtype=object).shape, (2, 2))
+ assert_equal(np.array([], dtype=object).shape, (0,))
+ assert_equal(np.array([[], [], []], dtype=object).shape, (3, 0))
+ assert_equal(np.array([[3, 4], [5, 6], None], dtype=object).shape, (3,))
def test_mem_around(self,level=rlevel):
"""Ticket #243"""
x = np.zeros((1,))
y = [0]
decimal = 6
- np.around(abs(x-y),decimal) <= 10.0**(-decimal)
+ np.around(abs(x-y), decimal) <= 10.0**(-decimal)
def test_character_array_strip(self,level=rlevel):
"""Ticket #246"""
- x = np.char.array(("x","x ","x "))
- for c in x: assert_equal(c,"x")
+ x = np.char.array(("x", "x ", "x "))
+ for c in x: assert_equal(c, "x")
def test_lexsort(self,level=rlevel):
"""Lexsort memory error"""
- v = np.array([1,2,3,4,5,6,7,8,9,10])
- assert_equal(np.lexsort(v),0)
+ v = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
+ assert_equal(np.lexsort(v), 0)
def test_pickle_dtype(self,level=rlevel):
"""Ticket #251"""
@@ -392,26 +392,26 @@ class TestRegression(TestCase):
def test_swap_real(self, level=rlevel):
"""Ticket #265"""
- assert_equal(np.arange(4,dtype='>c8').imag.max(),0.0)
- assert_equal(np.arange(4,dtype='<c8').imag.max(),0.0)
- assert_equal(np.arange(4,dtype='>c8').real.max(),3.0)
- assert_equal(np.arange(4,dtype='<c8').real.max(),3.0)
+ assert_equal(np.arange(4, dtype='>c8').imag.max(), 0.0)
+ assert_equal(np.arange(4, dtype='<c8').imag.max(), 0.0)
+ assert_equal(np.arange(4, dtype='>c8').real.max(), 3.0)
+ assert_equal(np.arange(4, dtype='<c8').real.max(), 3.0)
def test_object_array_from_list(self, level=rlevel):
"""Ticket #270"""
- a = np.array([1,'A',None])
+ a = np.array([1, 'A', None])
def test_multiple_assign(self, level=rlevel):
"""Ticket #273"""
- a = np.zeros((3,1),int)
- a[[1,2]] = 1
+ a = np.zeros((3, 1), int)
+ a[[1, 2]] = 1
def test_empty_array_type(self, level=rlevel):
assert_equal(np.array([]).dtype, np.zeros(0).dtype)
def test_void_copyswap(self, level=rlevel):
- dt = np.dtype([('one', '<i4'),('two', '<i4')])
- x = np.array((1,2), dtype=dt)
+ dt = np.dtype([('one', '<i4'), ('two', '<i4')])
+ x = np.array((1, 2), dtype=dt)
x = x.byteswap()
assert_(x['one'] > 1 and x['two'] > 2)
@@ -426,7 +426,7 @@ class TestRegression(TestCase):
funcs2 = ['compress', 'take', 'repeat']
for func in funcs1:
- arr = np.random.rand(8,7)
+ arr = np.random.rand(8, 7)
arr2 = arr.copy()
if isinstance(func, tuple):
func_meth = func[1]
@@ -441,8 +441,8 @@ class TestRegression(TestCase):
assert_(abs(res1-res2).max() < 1e-8, func)
for func in funcs2:
- arr1 = np.random.rand(8,7)
- arr2 = np.random.rand(8,7)
+ arr1 = np.random.rand(8, 7)
+ arr2 = np.random.rand(8, 7)
res1 = None
if func == 'compress':
arr1 = arr1.ravel()
@@ -456,51 +456,51 @@ class TestRegression(TestCase):
def test_mem_lexsort_strings(self, level=rlevel):
"""Ticket #298"""
- lst = ['abc','cde','fgh']
+ lst = ['abc', 'cde', 'fgh']
np.lexsort((lst,))
def test_fancy_index(self, level=rlevel):
"""Ticket #302"""
- x = np.array([1,2])[np.array([0])]
- assert_equal(x.shape,(1,))
+ x = np.array([1, 2])[np.array([0])]
+ assert_equal(x.shape, (1,))
def test_recarray_copy(self, level=rlevel):
"""Ticket #312"""
- dt = [('x',np.int16),('y',np.float64)]
- ra = np.array([(1,2.3)], dtype=dt)
+ dt = [('x', np.int16), ('y', np.float64)]
+ ra = np.array([(1, 2.3)], dtype=dt)
rb = np.rec.array(ra, dtype=dt)
rb['x'] = 2.
assert_(ra['x'] != rb['x'])
def test_rec_fromarray(self, level=rlevel):
"""Ticket #322"""
- x1 = np.array([[1,2],[3,4],[5,6]])
- x2 = np.array(['a','dd','xyz'])
- x3 = np.array([1.1,2,3])
- np.rec.fromarrays([x1,x2,x3], formats="(2,)i4,a3,f8")
+ x1 = np.array([[1, 2], [3, 4], [5, 6]])
+ x2 = np.array(['a', 'dd', 'xyz'])
+ x3 = np.array([1.1, 2, 3])
+ np.rec.fromarrays([x1, x2, x3], formats="(2,)i4,a3,f8")
def test_object_array_assign(self, level=rlevel):
- x = np.empty((2,2),object)
- x.flat[2] = (1,2,3)
- assert_equal(x.flat[2],(1,2,3))
+ x = np.empty((2, 2), object)
+ x.flat[2] = (1, 2, 3)
+ assert_equal(x.flat[2], (1, 2, 3))
def test_ndmin_float64(self, level=rlevel):
"""Ticket #324"""
- x = np.array([1,2,3],dtype=np.float64)
- assert_equal(np.array(x,dtype=np.float32,ndmin=2).ndim,2)
- assert_equal(np.array(x,dtype=np.float64,ndmin=2).ndim,2)
+ x = np.array([1, 2, 3], dtype=np.float64)
+ assert_equal(np.array(x, dtype=np.float32, ndmin=2).ndim, 2)
+ assert_equal(np.array(x, dtype=np.float64, ndmin=2).ndim, 2)
def test_ndmin_order(self, level=rlevel):
"""Issue #465 and related checks"""
- assert_(np.array([1,2], order='C', ndmin=3).flags.c_contiguous)
- assert_(np.array([1,2], order='F', ndmin=3).flags.f_contiguous)
- assert_(np.array(np.ones((2,2), order='F'), ndmin=3).flags.f_contiguous)
- assert_(np.array(np.ones((2,2), order='C'), ndmin=3).flags.c_contiguous)
+ assert_(np.array([1, 2], order='C', ndmin=3).flags.c_contiguous)
+ assert_(np.array([1, 2], order='F', ndmin=3).flags.f_contiguous)
+ assert_(np.array(np.ones((2, 2), order='F'), ndmin=3).flags.f_contiguous)
+ assert_(np.array(np.ones((2, 2), order='C'), ndmin=3).flags.c_contiguous)
def test_mem_axis_minimization(self, level=rlevel):
"""Ticket #327"""
data = np.arange(5)
- data = np.add.outer(data,data)
+ data = np.add.outer(data, data)
def test_mem_float_imag(self, level=rlevel):
"""Ticket #330"""
@@ -508,7 +508,7 @@ class TestRegression(TestCase):
def test_dtype_tuple(self, level=rlevel):
"""Ticket #334"""
- assert_(np.dtype('i4') == np.dtype(('i4',())))
+ assert_(np.dtype('i4') == np.dtype(('i4', ())))
def test_dtype_posttuple(self, level=rlevel):
"""Ticket #335"""
@@ -521,7 +521,7 @@ class TestRegression(TestCase):
def test_string_array_size(self, level=rlevel):
"""Ticket #342"""
self.assertRaises(ValueError,
- np.array,[['X'],['X','X','X']],'|S1')
+ np.array, [['X'], ['X', 'X', 'X']], '|S1')
def test_dtype_repr(self, level=rlevel):
"""Ticket #344"""
@@ -531,22 +531,22 @@ class TestRegression(TestCase):
def test_reshape_order(self, level=rlevel):
"""Make sure reshape order works."""
- a = np.arange(6).reshape(2,3,order='F')
- assert_equal(a,[[0,2,4],[1,3,5]])
- a = np.array([[1,2],[3,4],[5,6],[7,8]])
- b = a[:,1]
- assert_equal(b.reshape(2,2,order='F'), [[2,6],[4,8]])
+ a = np.arange(6).reshape(2, 3, order='F')
+ assert_equal(a, [[0, 2, 4], [1, 3, 5]])
+ a = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
+ b = a[:, 1]
+ assert_equal(b.reshape(2, 2, order='F'), [[2, 6], [4, 8]])
def test_reshape_zero_strides(self, level=rlevel):
"""Issue #380, test reshaping of zero strided arrays"""
a = np.ones(1)
a = np.lib.stride_tricks.as_strided(a, shape=(5,), strides=(0,))
- assert_(a.reshape(5,1).strides[0] == 0)
+ assert_(a.reshape(5, 1).strides[0] == 0)
def test_reshape_zero_size(self, level=rlevel):
"""Github Issue #2700, setting shape failed for 0-sized arrays"""
- a = np.ones((0,2))
- a.shape = (-1,2)
+ a = np.ones((0, 2))
+ a.shape = (-1, 2)
# Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides.
# With NPY_RELAXED_STRIDES_CHECKING the test becomes superfluous.
@@ -558,48 +558,48 @@ class TestRegression(TestCase):
strides_f = (8, 24, 48, 48)
assert_equal(a.reshape(3, 2, 1, 1).strides, strides_c)
assert_equal(a.reshape(3, 2, 1, 1, order='F').strides, strides_f)
- assert_equal(np.array(0, dtype=np.int32).reshape(1,1).strides, (4,4))
+ assert_equal(np.array(0, dtype=np.int32).reshape(1, 1).strides, (4, 4))
def test_repeat_discont(self, level=rlevel):
"""Ticket #352"""
- a = np.arange(12).reshape(4,3)[:,2]
- assert_equal(a.repeat(3), [2,2,2,5,5,5,8,8,8,11,11,11])
+ a = np.arange(12).reshape(4, 3)[:, 2]
+ assert_equal(a.repeat(3), [2, 2, 2, 5, 5, 5, 8, 8, 8, 11, 11, 11])
def test_array_index(self, level=rlevel):
"""Make sure optimization is not called in this case."""
- a = np.array([1,2,3])
- a2 = np.array([[1,2,3]])
+ a = np.array([1, 2, 3])
+ a2 = np.array([[1, 2, 3]])
assert_equal(a[np.where(a==3)], a2[np.where(a2==3)])
def test_object_argmax(self, level=rlevel):
- a = np.array([1,2,3],dtype=object)
+ a = np.array([1, 2, 3], dtype=object)
assert_(a.argmax() == 2)
def test_recarray_fields(self, level=rlevel):
"""Ticket #372"""
- dt0 = np.dtype([('f0','i4'),('f1','i4')])
- dt1 = np.dtype([('f0','i8'),('f1','i8')])
- for a in [np.array([(1,2),(3,4)],"i4,i4"),
- np.rec.array([(1,2),(3,4)],"i4,i4"),
- np.rec.array([(1,2),(3,4)]),
- np.rec.fromarrays([(1,2),(3,4)],"i4,i4"),
- np.rec.fromarrays([(1,2),(3,4)])]:
- assert_(a.dtype in [dt0,dt1])
+ dt0 = np.dtype([('f0', 'i4'), ('f1', 'i4')])
+ dt1 = np.dtype([('f0', 'i8'), ('f1', 'i8')])
+ for a in [np.array([(1, 2), (3, 4)], "i4,i4"),
+ np.rec.array([(1, 2), (3, 4)], "i4,i4"),
+ np.rec.array([(1, 2), (3, 4)]),
+ np.rec.fromarrays([(1, 2), (3, 4)], "i4,i4"),
+ np.rec.fromarrays([(1, 2), (3, 4)])]:
+ assert_(a.dtype in [dt0, dt1])
def test_random_shuffle(self, level=rlevel):
"""Ticket #374"""
- a = np.arange(5).reshape((5,1))
+ a = np.arange(5).reshape((5, 1))
b = a.copy()
np.random.shuffle(b)
- assert_equal(np.sort(b, axis=0),a)
+ assert_equal(np.sort(b, axis=0), a)
def test_refcount_vdot(self, level=rlevel):
"""Changeset #3443"""
_assert_valid_refcount(np.vdot)
def test_startswith(self, level=rlevel):
- ca = np.char.array(['Hi','There'])
- assert_equal(ca.startswith('H'),[True,False])
+ ca = np.char.array(['Hi', 'There'])
+ assert_equal(ca.startswith('H'), [True, False])
def test_noncommutative_reduce_accumulate(self, level=rlevel):
"""Ticket #413"""
@@ -614,14 +614,14 @@ class TestRegression(TestCase):
def test_convolve_empty(self, level=rlevel):
"""Convolve should raise an error for empty input array."""
- self.assertRaises(ValueError,np.convolve,[],[1])
- self.assertRaises(ValueError,np.convolve,[1],[])
+ self.assertRaises(ValueError, np.convolve, [], [1])
+ self.assertRaises(ValueError, np.convolve, [1], [])
def test_multidim_byteswap(self, level=rlevel):
"""Ticket #449"""
- r=np.array([(1,(0,1,2))], dtype="i2,3i2")
+ r=np.array([(1, (0, 1, 2))], dtype="i2,3i2")
assert_array_equal(r.byteswap(),
- np.array([(256,(0,256,512))],r.dtype))
+ np.array([(256, (0, 256, 512))], r.dtype))
def test_string_NULL(self, level=rlevel):
"""Changeset 3557"""
@@ -635,11 +635,11 @@ class TestRegression(TestCase):
def test_take_output(self, level=rlevel):
"""Ensure that 'take' honours output parameter."""
- x = np.arange(12).reshape((3,4))
- a = np.take(x,[0,2],axis=1)
+ x = np.arange(12).reshape((3, 4))
+ a = np.take(x, [0, 2], axis=1)
b = np.zeros_like(a)
- np.take(x,[0,2],axis=1,out=b)
- assert_array_equal(a,b)
+ np.take(x, [0, 2], axis=1, out=b)
+ assert_array_equal(a, b)
def test_take_object_fail(self):
# Issue gh-3001
@@ -654,7 +654,7 @@ class TestRegression(TestCase):
def test_array_str_64bit(self, level=rlevel):
"""Ticket #501"""
- s = np.array([1, np.nan],dtype=np.float64)
+ s = np.array([1, np.nan], dtype=np.float64)
with np.errstate(all='raise'):
sstr = np.array_str(s)
@@ -695,31 +695,31 @@ class TestRegression(TestCase):
def test_mem_deallocation_leak(self, level=rlevel):
"""Ticket #562"""
- a = np.zeros(5,dtype=float)
- b = np.array(a,dtype=float)
+ a = np.zeros(5, dtype=float)
+ b = np.array(a, dtype=float)
del a, b
def test_mem_on_invalid_dtype(self):
"Ticket #583"
- self.assertRaises(ValueError, np.fromiter, [['12',''],['13','']], str)
+ self.assertRaises(ValueError, np.fromiter, [['12', ''], ['13', '']], str)
def test_dot_negative_stride(self, level=rlevel):
"""Ticket #588"""
- x = np.array([[1,5,25,125.,625]])
- y = np.array([[20.],[160.],[640.],[1280.],[1024.]])
+ x = np.array([[1, 5, 25, 125., 625]])
+ y = np.array([[20.], [160.], [640.], [1280.], [1024.]])
z = y[::-1].copy()
y2 = y[::-1]
- assert_equal(np.dot(x,z),np.dot(x,y2))
+ assert_equal(np.dot(x, z), np.dot(x, y2))
def test_object_casting(self, level=rlevel):
# This used to trigger the object-type version of
# the bitwise_or operation, because float64 -> object
# casting succeeds
def rs():
- x = np.ones([484,286])
- y = np.zeros([484,286])
+ x = np.ones([484, 286])
+ y = np.zeros([484, 286])
x |= y
- self.assertRaises(TypeError,rs)
+ self.assertRaises(TypeError, rs)
def test_unicode_scalar(self, level=rlevel):
"""Ticket #600"""
@@ -730,42 +730,42 @@ class TestRegression(TestCase):
def test_arange_non_native_dtype(self, level=rlevel):
"""Ticket #616"""
- for T in ('>f4','<f4'):
+ for T in ('>f4', '<f4'):
dt = np.dtype(T)
- assert_equal(np.arange(0,dtype=dt).dtype,dt)
- assert_equal(np.arange(0.5,dtype=dt).dtype,dt)
- assert_equal(np.arange(5,dtype=dt).dtype,dt)
+ assert_equal(np.arange(0, dtype=dt).dtype, dt)
+ assert_equal(np.arange(0.5, dtype=dt).dtype, dt)
+ assert_equal(np.arange(5, dtype=dt).dtype, dt)
def test_bool_indexing_invalid_nr_elements(self, level=rlevel):
- s = np.ones(10,dtype=float)
- x = np.array((15,),dtype=float)
- def ia(x,s,v): x[(s>0)]=v
- self.assertRaises(ValueError,ia,x,s,np.zeros(9,dtype=float))
- self.assertRaises(ValueError,ia,x,s,np.zeros(11,dtype=float))
+ s = np.ones(10, dtype=float)
+ x = np.array((15,), dtype=float)
+ def ia(x, s, v): x[(s>0)]=v
+ self.assertRaises(ValueError, ia, x, s, np.zeros(9, dtype=float))
+ self.assertRaises(ValueError, ia, x, s, np.zeros(11, dtype=float))
def test_mem_scalar_indexing(self, level=rlevel):
"""Ticket #603"""
- x = np.array([0],dtype=float)
- index = np.array(0,dtype=np.int32)
+ x = np.array([0], dtype=float)
+ index = np.array(0, dtype=np.int32)
x[index]
def test_binary_repr_0_width(self, level=rlevel):
- assert_equal(np.binary_repr(0,width=3),'000')
+ assert_equal(np.binary_repr(0, width=3), '000')
def test_fromstring(self, level=rlevel):
assert_equal(np.fromstring("12:09:09", dtype=int, sep=":"),
- [12,9,9])
+ [12, 9, 9])
def test_searchsorted_variable_length(self, level=rlevel):
- x = np.array(['a','aa','b'])
- y = np.array(['d','e'])
- assert_equal(x.searchsorted(y), [3,3])
+ x = np.array(['a', 'aa', 'b'])
+ y = np.array(['d', 'e'])
+ assert_equal(x.searchsorted(y), [3, 3])
def test_string_argsort_with_zeros(self, level=rlevel):
"""Check argsort for strings containing zeros."""
x = np.fromstring("\x00\x02\x00\x01", dtype="|S2")
- assert_array_equal(x.argsort(kind='m'), np.array([1,0]))
- assert_array_equal(x.argsort(kind='q'), np.array([1,0]))
+ assert_array_equal(x.argsort(kind='m'), np.array([1, 0]))
+ assert_array_equal(x.argsort(kind='q'), np.array([1, 0]))
def test_string_sort_with_zeros(self, level=rlevel):
"""Check sort for strings containing zeros."""
@@ -775,29 +775,29 @@ class TestRegression(TestCase):
def test_copy_detection_zero_dim(self, level=rlevel):
"""Ticket #658"""
- np.indices((0,3,4)).T.reshape(-1,3)
+ np.indices((0, 3, 4)).T.reshape(-1, 3)
def test_flat_byteorder(self, level=rlevel):
"""Ticket #657"""
x = np.arange(10)
- assert_array_equal(x.astype('>i4'),x.astype('<i4').flat[:])
- assert_array_equal(x.astype('>i4').flat[:],x.astype('<i4'))
+ assert_array_equal(x.astype('>i4'), x.astype('<i4').flat[:])
+ assert_array_equal(x.astype('>i4').flat[:], x.astype('<i4'))
def test_uint64_from_negative(self, level=rlevel) :
assert_equal(np.uint64(-2), np.uint64(18446744073709551614))
def test_sign_bit(self, level=rlevel):
- x = np.array([0,-0.0,0])
- assert_equal(str(np.abs(x)),'[ 0. 0. 0.]')
+ x = np.array([0, -0.0, 0])
+ assert_equal(str(np.abs(x)), '[ 0. 0. 0.]')
def test_flat_index_byteswap(self, level=rlevel):
- for dt in (np.dtype('<i4'),np.dtype('>i4')):
- x = np.array([-1,0,1],dtype=dt)
+ for dt in (np.dtype('<i4'), np.dtype('>i4')):
+ x = np.array([-1, 0, 1], dtype=dt)
assert_equal(x.flat[0].dtype, x[0].dtype)
def test_copy_detection_corner_case(self, level=rlevel):
"""Ticket #658"""
- np.indices((0,3,4)).T.reshape(-1,3)
+ np.indices((0, 3, 4)).T.reshape(-1, 3)
# Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides.
# With NPY_RELAXED_STRIDES_CHECKING the test becomes superfluous,
@@ -806,7 +806,7 @@ class TestRegression(TestCase):
def test_copy_detection_corner_case2(self, level=rlevel):
"""Ticket #771: strides are not set correctly when reshaping 0-sized
arrays"""
- b = np.indices((0,3,4)).T.reshape(-1,3)
+ b = np.indices((0, 3, 4)).T.reshape(-1, 3)
assert_equal(b.strides, (3 * b.itemsize, b.itemsize))
def test_object_array_refcounting(self, level=rlevel):
@@ -857,7 +857,7 @@ class TestRegression(TestCase):
assert_(cnt(a) == cnt0_a + 6)
assert_(cnt(b) == cnt0_b + 6)
- arr[:,0] = None
+ arr[:, 0] = None
assert_(cnt(a) == cnt0_a + 1)
del arr, arr0
@@ -866,8 +866,8 @@ class TestRegression(TestCase):
arr = np.zeros((5, 2), dtype=np.object_)
- arr[:,0] = a
- arr[:,1] = b
+ arr[:, 0] = a
+ arr[:, 1] = b
assert_(cnt(a) == cnt0_a + 5)
assert_(cnt(b) == cnt0_b + 5)
@@ -875,7 +875,7 @@ class TestRegression(TestCase):
assert_(cnt(a) == cnt0_a + 10)
assert_(cnt(b) == cnt0_b + 10)
- arr2 = arr[:,0].copy()
+ arr2 = arr[:, 0].copy()
assert_(cnt(a) == cnt0_a + 10)
assert_(cnt(b) == cnt0_b + 5)
@@ -902,10 +902,10 @@ class TestRegression(TestCase):
arr3 = arr1.repeat(3, axis=0)
assert_(cnt(a) == cnt0_a + 5 + 3*5)
- arr3 = arr1.take([1,2,3], axis=0)
+ arr3 = arr1.take([1, 2, 3], axis=0)
assert_(cnt(a) == cnt0_a + 5 + 3)
- x = np.array([[0],[1],[0],[1],[1]], int)
+ x = np.array([[0], [1], [0], [1], [1]], int)
arr3 = x.choose(arr1, arr2)
assert_(cnt(a) == cnt0_a + 5 + 2)
assert_(cnt(b) == cnt0_b + 5 + 3)
@@ -935,7 +935,7 @@ class TestRegression(TestCase):
assert_(not arr[0].deleted)
def test_mem_fromiter_invalid_dtype_string(self, level=rlevel):
- x = [1,2,3]
+ x = [1, 2, 3]
self.assertRaises(ValueError,
np.fromiter, [xi for xi in x], dtype='S')
@@ -973,7 +973,7 @@ class TestRegression(TestCase):
def test_dot_alignment_sse2(self, level=rlevel):
"""Test for ticket #551, changeset r5140"""
- x = np.zeros((30,40))
+ x = np.zeros((30, 40))
y = pickle.loads(pickle.dumps(x))
# y is now typically not aligned on a 8-byte boundary
z = np.ones((1, y.shape[0]))
@@ -1024,17 +1024,17 @@ class TestRegression(TestCase):
return result
def __array_finalize__(self, obj):
self.info = getattr(obj, 'info', '')
- dat = TestArray([[1,2,3,4],[5,6,7,8]],'jubba')
+ dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba')
assert_(dat.info == 'jubba')
- dat.resize((4,2))
+ dat.resize((4, 2))
assert_(dat.info == 'jubba')
dat.sort()
assert_(dat.info == 'jubba')
dat.fill(2)
assert_(dat.info == 'jubba')
- dat.put([2,3,4],[6,3,4])
+ dat.put([2, 3, 4], [6, 3, 4])
assert_(dat.info == 'jubba')
- dat.setfield(4, np.int32,0)
+ dat.setfield(4, np.int32, 0)
assert_(dat.info == 'jubba')
dat.setflags()
assert_(dat.info == 'jubba')
@@ -1045,12 +1045,12 @@ class TestRegression(TestCase):
assert_(dat.argsort(1).info == 'jubba')
assert_(dat.astype(TestArray).info == 'jubba')
assert_(dat.byteswap().info == 'jubba')
- assert_(dat.clip(2,7).info == 'jubba')
- assert_(dat.compress([0,1,1]).info == 'jubba')
+ assert_(dat.clip(2, 7).info == 'jubba')
+ assert_(dat.compress([0, 1, 1]).info == 'jubba')
assert_(dat.conj().info == 'jubba')
assert_(dat.conjugate().info == 'jubba')
assert_(dat.copy().info == 'jubba')
- dat2 = TestArray([2, 3, 1, 0],'jubba')
+ dat2 = TestArray([2, 3, 1, 0], 'jubba')
choices = [[0, 1, 2, 3], [10, 11, 12, 13],
[20, 21, 22, 23], [30, 31, 32, 33]]
assert_(dat2.choose(choices).info == 'jubba')
@@ -1058,7 +1058,7 @@ class TestRegression(TestCase):
assert_(dat.cumsum(1).info == 'jubba')
assert_(dat.diagonal().info == 'jubba')
assert_(dat.flatten().info == 'jubba')
- assert_(dat.getfield(np.int32,0).info == 'jubba')
+ assert_(dat.getfield(np.int32, 0).info == 'jubba')
assert_(dat.imag.info == 'jubba')
assert_(dat.max(1).info == 'jubba')
assert_(dat.mean(1).info == 'jubba')
@@ -1071,13 +1071,13 @@ class TestRegression(TestCase):
assert_(dat.ravel().info == 'jubba')
assert_(dat.real.info == 'jubba')
assert_(dat.repeat(2).info == 'jubba')
- assert_(dat.reshape((2,4)).info == 'jubba')
+ assert_(dat.reshape((2, 4)).info == 'jubba')
assert_(dat.round().info == 'jubba')
assert_(dat.squeeze().info == 'jubba')
assert_(dat.std(1).info == 'jubba')
assert_(dat.sum(1).info == 'jubba')
- assert_(dat.swapaxes(0,1).info == 'jubba')
- assert_(dat.take([2,3,5]).info == 'jubba')
+ assert_(dat.swapaxes(0, 1).info == 'jubba')
+ assert_(dat.take([2, 3, 5]).info == 'jubba')
assert_(dat.transpose().info == 'jubba')
assert_(dat.T.info == 'jubba')
assert_(dat.var(1).info == 'jubba')
@@ -1101,15 +1101,15 @@ class TestRegression(TestCase):
def test_char_array_creation(self, level=rlevel):
a = np.array('123', dtype='c')
- b = np.array(asbytes_nested(['1','2','3']))
- assert_equal(a,b)
+ b = np.array(asbytes_nested(['1', '2', '3']))
+ assert_equal(a, b)
def test_unaligned_unicode_access(self, level=rlevel) :
"""Ticket #825"""
- for i in range(1,9) :
+ for i in range(1, 9) :
msg = 'unicode offset: %d chars'%i
- t = np.dtype([('a','S%d'%i),('b','U2')])
- x = np.array([(asbytes('a'),sixu('b'))], dtype=t)
+ t = np.dtype([('a', 'S%d'%i), ('b', 'U2')])
+ x = np.array([(asbytes('a'), sixu('b'))], dtype=t)
if sys.version_info[0] >= 3:
assert_equal(str(x), "[(b'a', 'b')]", err_msg=msg)
else:
@@ -1138,7 +1138,7 @@ class TestRegression(TestCase):
a = np.object_()
b = np.object_(3)
b2 = np.object_(3.0)
- c = np.object_([4,5])
+ c = np.object_([4, 5])
d = np.object_([None, {}, []])
assert_(a is None)
assert_(type(b) is int)
@@ -1149,8 +1149,8 @@ class TestRegression(TestCase):
def test_array_resize_method_system_error(self):
"""Ticket #840 - order should be an invalid keyword."""
- x = np.array([[0,1],[2,3]])
- self.assertRaises(TypeError, x.resize, (2,2), order='C')
+ x = np.array([[0, 1], [2, 3]])
+ self.assertRaises(TypeError, x.resize, (2, 2), order='C')
def test_for_zero_length_in_choose(self, level=rlevel):
"Ticket #882"
@@ -1189,7 +1189,7 @@ class TestRegression(TestCase):
#that void scalar contains original data.
test_string = np.array("test")
test_string_void_scalar = np.core.multiarray.scalar(
- np.dtype(("V",test_string.dtype.itemsize)), test_string.tostring())
+ np.dtype(("V", test_string.dtype.itemsize)), test_string.tostring())
assert_(test_string_void_scalar.view(test_string.dtype) == test_string)
@@ -1252,8 +1252,8 @@ class TestRegression(TestCase):
"""Ticket #1058"""
a = np.fromiter(list(range(10)), dtype='b')
b = np.fromiter(list(range(10)), dtype='B')
- assert_(np.alltrue(a == np.array([0,1,2,3,4,5,6,7,8,9])))
- assert_(np.alltrue(b == np.array([0,1,2,3,4,5,6,7,8,9])))
+ assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
+ assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
def test_array_from_sequence_scalar_array(self):
"""Ticket #1078: segfaults when creating an array with a sequence of 0d
@@ -1379,9 +1379,9 @@ class TestRegression(TestCase):
"""Ticket #1299"""
stra = 'aaaa'
strb = 'bbbb'
- x = np.array([[(0,stra),(1,strb)]], 'i8,O')
+ x = np.array([[(0, stra), (1, strb)]], 'i8,O')
x[x.nonzero()] = x.ravel()[:1]
- assert_(x[0,1] == x[0,0])
+ assert_(x[0, 1] == x[0, 0])
def test_structured_arrays_with_objects2(self):
"""Ticket #1299 second test"""
@@ -1389,7 +1389,7 @@ class TestRegression(TestCase):
strb = 'bbbb'
numb = sys.getrefcount(strb)
numa = sys.getrefcount(stra)
- x = np.array([[(0,stra),(1,strb)]], 'i8,O')
+ x = np.array([[(0, stra), (1, strb)]], 'i8,O')
x[x.nonzero()] = x.ravel()[:1]
assert_(sys.getrefcount(strb) == numb)
assert_(sys.getrefcount(stra) == numa + 2)
@@ -1416,7 +1416,7 @@ class TestRegression(TestCase):
except ImportError:
from md5 import new as md5
- x = np.array([1,2,3], dtype=np.dtype('<i4'))
+ x = np.array([1, 2, 3], dtype=np.dtype('<i4'))
assert_equal(md5(x).hexdigest(), '2a1dd1e1e59d0a384c26951e316cd7e6')
def test_numeric_handleError(self):
@@ -1436,8 +1436,8 @@ class TestRegression(TestCase):
def test_fromiter_comparison(self, level=rlevel):
a = np.fromiter(list(range(10)), dtype='b')
b = np.fromiter(list(range(10)), dtype='B')
- assert_(np.alltrue(a == np.array([0,1,2,3,4,5,6,7,8,9])))
- assert_(np.alltrue(b == np.array([0,1,2,3,4,5,6,7,8,9])))
+ assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
+ assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
def test_fromstring_crash(self):
# Ticket #1345: the following should not cause a crash
@@ -1471,7 +1471,7 @@ class TestRegression(TestCase):
def test_ticket_1434(self):
# Check that the out= argument in var and std has an effect
- data = np.array(((1,2,3),(4,5,6),(7,8,9)))
+ data = np.array(((1, 2, 3), (4, 5, 6), (7, 8, 9)))
out = np.zeros((3,))
ret = data.var(axis=1, out=out)
@@ -1489,7 +1489,7 @@ class TestRegression(TestCase):
def test_subclass_int_tuple_assignment(self):
# ticket #1563
class Subclass(np.ndarray):
- def __new__(cls,i):
+ def __new__(cls, i):
return np.ones((i,)).view(cls)
x = Subclass(5)
x[(0,)] = 2 # shouldn't raise an exception
@@ -1499,14 +1499,14 @@ class TestRegression(TestCase):
# ticket #1548
class Subclass(np.ndarray):
pass
- x = np.array([1,2,3]).view(Subclass)
+ x = np.array([1, 2, 3]).view(Subclass)
y = np.add(x, x, x)
assert_equal(id(x), id(y))
def test_take_refcount(self):
# ticket #939
a = np.arange(16, dtype=np.float)
- a.shape = (4,4)
+ a.shape = (4, 4)
lut = np.ones((5 + 3, 4), np.float)
rgba = np.empty(shape=a.shape + (4,), dtype=lut.dtype)
c1 = sys.getrefcount(rgba)
@@ -1591,7 +1591,7 @@ class TestRegression(TestCase):
def test_find_common_type_boolean(self):
# Ticket #1695
- assert_(np.find_common_type([],['?','?']) == '?')
+ assert_(np.find_common_type([], ['?', '?']) == '?')
def test_empty_mul(self):
a = np.array([1.])
@@ -1636,16 +1636,16 @@ class TestRegression(TestCase):
def test_squeeze_contiguous(self):
"""Similar to GitHub issue #387"""
- a = np.zeros((1,2)).squeeze()
- b = np.zeros((2,2,2), order='F')[:,:,::2].squeeze()
+ a = np.zeros((1, 2)).squeeze()
+ b = np.zeros((2, 2, 2), order='F')[:,:, ::2].squeeze()
assert_(a.flags.c_contiguous)
assert_(a.flags.f_contiguous)
assert_(b.flags.f_contiguous)
def test_reduce_contiguous(self):
"""GitHub issue #387"""
- a = np.add.reduce(np.zeros((2,1,2)), (0,1))
- b = np.add.reduce(np.zeros((2,1,2)), 1)
+ a = np.add.reduce(np.zeros((2, 1, 2)), (0, 1))
+ b = np.add.reduce(np.zeros((2, 1, 2)), 1)
assert_(a.flags.c_contiguous)
assert_(a.flags.f_contiguous)
assert_(b.flags.c_contiguous)
@@ -1668,12 +1668,12 @@ class TestRegression(TestCase):
def test_zerosize_accumulate(self):
"Ticket #1733"
x = np.array([[42, 0]], dtype=np.uint32)
- assert_equal(np.add.accumulate(x[:-1,0]), [])
+ assert_equal(np.add.accumulate(x[:-1, 0]), [])
def test_objectarray_setfield(self):
# Setfield directly manipulates the raw array data,
# so is invalid for object arrays.
- x = np.array([1,2,3], dtype=object)
+ x = np.array([1, 2, 3], dtype=object)
assert_raises(RuntimeError, x.setfield, 4, np.int32, 0)
def test_setting_rank0_string(self):
@@ -1697,7 +1697,7 @@ class TestRegression(TestCase):
s1 = asbytes('black')
s2 = asbytes('white')
s3 = asbytes('other')
- a = np.array([[s1],[s2],[s3]])
+ a = np.array([[s1], [s2], [s3]])
assert_equal(a.dtype, np.dtype('S5'))
b = a.astype(np.dtype('S0'))
assert_equal(b.dtype, np.dtype('S5'))
@@ -1706,7 +1706,7 @@ class TestRegression(TestCase):
"""Ticket #1756 """
s = asbytes('0123456789abcdef')
a = np.array([s]*5)
- for i in range(1,17):
+ for i in range(1, 17):
a1 = np.array(a, "|S%d"%i)
a2 = np.array([s[:i]]*5)
assert_equal(a1, a2)
@@ -1740,9 +1740,9 @@ class TestRegression(TestCase):
def test_ticket_1608(self):
"x.flat shouldn't modify data"
- x = np.array([[1,2],[3,4]]).T
+ x = np.array([[1, 2], [3, 4]]).T
y = np.array(x.flat)
- assert_equal(x, [[1,3],[2,4]])
+ assert_equal(x, [[1, 3], [2, 4]])
def test_pickle_string_overwrite(self):
import re
@@ -1767,10 +1767,10 @@ class TestRegression(TestCase):
assert_equal(bytestring[0:1], '\x01'.encode('ascii'))
def test_structured_type_to_object(self):
- a_rec = np.array([(0,1), (3,2)], dtype='i4,i8')
+ a_rec = np.array([(0, 1), (3, 2)], dtype='i4,i8')
a_obj = np.empty((2,), dtype=object)
- a_obj[0] = (0,1)
- a_obj[1] = (3,2)
+ a_obj[0] = (0, 1)
+ a_obj[1] = (3, 2)
# astype records -> object
assert_equal(a_rec.astype(object), a_obj)
# '=' records -> object
@@ -1794,9 +1794,9 @@ class TestRegression(TestCase):
b[...] = [[1], [2], [3], [4]]
assert_equal(a, b)
# The first dimension should get broadcast
- a = np.zeros((2,2), dtype=object)
- a[...] = [[1,2]]
- assert_equal(a, [[1,2], [1,2]])
+ a = np.zeros((2, 2), dtype=object)
+ a[...] = [[1, 2]]
+ assert_equal(a, [[1, 2], [1, 2]])
def test_memoryleak(self):
# Ticket #1917 - ensure that array data doesn't leak
diff --git a/numpy/core/tests/test_scalarmath.py b/numpy/core/tests/test_scalarmath.py
index 3e1aaef3b..ed038e82d 100644
--- a/numpy/core/tests/test_scalarmath.py
+++ b/numpy/core/tests/test_scalarmath.py
@@ -16,16 +16,16 @@ class TestTypes(TestCase):
def test_types(self, level=1):
for atype in types:
a = atype(1)
- assert_(a == 1, "error with %r: got %r" % (atype,a))
+ assert_(a == 1, "error with %r: got %r" % (atype, a))
def test_type_add(self, level=1):
# list of types
for k, atype in enumerate(types):
a_scalar = atype(3)
- a_array = np.array([3],dtype=atype)
+ a_array = np.array([3], dtype=atype)
for l, btype in enumerate(types):
b_scalar = btype(1)
- b_array = np.array([1],dtype=btype)
+ b_array = np.array([1], dtype=btype)
c_scalar = a_scalar + b_scalar
c_array = a_array + b_array
# It was comparing the type numbers, but the new ufunc
@@ -36,13 +36,13 @@ class TestTypes(TestCase):
# does not produce properly symmetric results...
assert_equal(c_scalar.dtype, c_array.dtype,
"error with types (%d/'%c' + %d/'%c')" %
- (k,np.dtype(atype).char,l,np.dtype(btype).char))
+ (k, np.dtype(atype).char, l, np.dtype(btype).char))
def test_type_create(self, level=1):
for k, atype in enumerate(types):
- a = np.array([1,2,3],atype)
- b = atype([1,2,3])
- assert_equal(a,b)
+ a = np.array([1, 2, 3], atype)
+ b = atype([1, 2, 3])
+ assert_equal(a, b)
class TestBaseMath(TestCase):
@@ -81,21 +81,21 @@ class TestPower(TestCase):
for t in [np.int8, np.int16, np.float16]:
a = t(3)
b = a ** 4
- assert_(b == 81, "error with %r: got %r" % (t,b))
+ assert_(b == 81, "error with %r: got %r" % (t, b))
def test_large_types(self):
for t in [np.int32, np.int64, np.float32, np.float64, np.longdouble]:
a = t(51)
b = a ** 4
- msg = "error with %r: got %r" % (t,b)
+ msg = "error with %r: got %r" % (t, b)
if np.issubdtype(t, np.integer):
assert_(b == 6765201, msg)
else:
assert_almost_equal(b, 6765201, err_msg=msg)
def test_mixed_types(self):
- typelist = [np.int8,np.int16,np.float16,
- np.float32,np.float64,np.int8,
- np.int16,np.int32,np.int64]
+ typelist = [np.int8, np.int16, np.float16,
+ np.float32, np.float64, np.int8,
+ np.int16, np.int32, np.int64]
for t1 in typelist:
for t2 in typelist:
a = t1(3)
@@ -132,7 +132,7 @@ class TestConversion(TestCase):
l = [1e6, 1e12, 1e18, -1e6, -1e12, -1e18]
li = [10**6, 10**12, 10**18, -10**6, -10**12, -10**18]
for T in [None, np.float64, np.int64]:
- a = np.array(l,dtype=T)
+ a = np.array(l, dtype=T)
assert_equal([int(_m) for _m in a], li)
a = np.array(l[:3], dtype=np.uint64)
@@ -155,9 +155,9 @@ class TestRepr(object):
last_exponent_bit_idx = finfo.nexp
storage_bytes = np.dtype(t).itemsize*8
# could add some more types to the list below
- for which in ['small denorm','small norm']:
+ for which in ['small denorm', 'small norm']:
# Values from http://en.wikipedia.org/wiki/IEEE_754
- constr = np.array([0x00]*storage_bytes,dtype=np.uint8)
+ constr = np.array([0x00]*storage_bytes, dtype=np.uint8)
if which == 'small denorm':
byte = last_fraction_bit_idx // 8
bytebit = 7-(last_fraction_bit_idx % 8)
diff --git a/numpy/core/tests/test_shape_base.py b/numpy/core/tests/test_shape_base.py
index 921cfaf1c..09bb2f308 100644
--- a/numpy/core/tests/test_shape_base.py
+++ b/numpy/core/tests/test_shape_base.py
@@ -13,14 +13,14 @@ class TestAtleast1d(TestCase):
a = array(1)
b = array(2)
res = [atleast_1d(a), atleast_1d(b)]
- desired = [array([1]),array([2])]
+ desired = [array([1]), array([2])]
assert_array_equal(res, desired)
def test_1D_array(self):
a = array([1, 2])
b = array([2, 3])
res = [atleast_1d(a), atleast_1d(b)]
- desired = [array([1, 2]),array([2, 3])]
+ desired = [array([1, 2]), array([2, 3])]
assert_array_equal(res, desired)
def test_2D_array(self):
@@ -46,7 +46,7 @@ class TestAtleast1d(TestCase):
assert_(atleast_1d(3j).shape == (1,))
assert_(atleast_1d(long(3)).shape == (1,))
assert_(atleast_1d(3.0).shape == (1,))
- assert_(atleast_1d([[2,3],[4,5]]).shape == (2,2))
+ assert_(atleast_1d([[2, 3], [4, 5]]).shape == (2, 2))
class TestAtleast2d(TestCase):
@@ -83,9 +83,9 @@ class TestAtleast2d(TestCase):
def test_r2array(self):
""" Test to make sure equivalent Travis O's r2array function
"""
- assert_(atleast_2d(3).shape == (1,1))
- assert_(atleast_2d([3j,1]).shape == (1,2))
- assert_(atleast_2d([[[3,1],[4,5]],[[3,5],[1,2]]]).shape == (2,2,2))
+ assert_(atleast_2d(3).shape == (1, 1))
+ assert_(atleast_2d([3j, 1]).shape == (1, 2))
+ assert_(atleast_2d([[[3, 1], [4, 5]], [[3, 5], [1, 2]]]).shape == (2, 2, 2))
class TestAtleast3d(TestCase):
@@ -107,7 +107,7 @@ class TestAtleast3d(TestCase):
a = array([[1, 2], [1, 2]])
b = array([[2, 3], [2, 3]])
res = [atleast_3d(a), atleast_3d(b)]
- desired = [a[:,:,newaxis], b[:,:,newaxis]]
+ desired = [a[:,:, newaxis], b[:,:, newaxis]]
assert_array_equal(res, desired)
def test_3D_array(self):
@@ -124,56 +124,56 @@ class TestHstack(TestCase):
def test_0D_array(self):
a = array(1)
b = array(2)
- res=hstack([a,b])
- desired = array([1,2])
- assert_array_equal(res,desired)
+ res=hstack([a, b])
+ desired = array([1, 2])
+ assert_array_equal(res, desired)
def test_1D_array(self):
a = array([1])
b = array([2])
- res=hstack([a,b])
- desired = array([1,2])
- assert_array_equal(res,desired)
+ res=hstack([a, b])
+ desired = array([1, 2])
+ assert_array_equal(res, desired)
def test_2D_array(self):
- a = array([[1],[2]])
- b = array([[1],[2]])
- res=hstack([a,b])
- desired = array([[1,1],[2,2]])
- assert_array_equal(res,desired)
+ a = array([[1], [2]])
+ b = array([[1], [2]])
+ res=hstack([a, b])
+ desired = array([[1, 1], [2, 2]])
+ assert_array_equal(res, desired)
class TestVstack(TestCase):
def test_0D_array(self):
a = array(1)
b = array(2)
- res=vstack([a,b])
- desired = array([[1],[2]])
- assert_array_equal(res,desired)
+ res=vstack([a, b])
+ desired = array([[1], [2]])
+ assert_array_equal(res, desired)
def test_1D_array(self):
a = array([1])
b = array([2])
- res=vstack([a,b])
- desired = array([[1],[2]])
- assert_array_equal(res,desired)
+ res=vstack([a, b])
+ desired = array([[1], [2]])
+ assert_array_equal(res, desired)
def test_2D_array(self):
- a = array([[1],[2]])
- b = array([[1],[2]])
- res=vstack([a,b])
- desired = array([[1],[2],[1],[2]])
- assert_array_equal(res,desired)
+ a = array([[1], [2]])
+ b = array([[1], [2]])
+ res=vstack([a, b])
+ desired = array([[1], [2], [1], [2]])
+ assert_array_equal(res, desired)
def test_2D_array2(self):
- a = array([1,2])
- b = array([1,2])
- res=vstack([a,b])
- desired = array([[1,2],[1,2]])
- assert_array_equal(res,desired)
+ a = array([1, 2])
+ b = array([1, 2])
+ res=vstack([a, b])
+ desired = array([[1, 2], [1, 2]])
+ assert_array_equal(res, desired)
def test_concatenate_axis_None():
- a = np.arange(4, dtype=np.float64).reshape((2,2))
+ a = np.arange(4, dtype=np.float64).reshape((2, 2))
b = list(range(3))
c = ['x']
r = np.concatenate((a, a), axis=None)
@@ -185,7 +185,7 @@ def test_concatenate_axis_None():
r = np.concatenate((a, b, c), axis=None)
d = array(['0', '1', '2', '3',
'0', '1', '2', 'x'])
- assert_array_equal(r,d)
+ assert_array_equal(r, d)
def test_concatenate():
diff --git a/numpy/core/tests/test_ufunc.py b/numpy/core/tests/test_ufunc.py
index 42a8e1609..7074a60a5 100644
--- a/numpy/core/tests/test_ufunc.py
+++ b/numpy/core/tests/test_ufunc.py
@@ -24,7 +24,7 @@ class TestUfunc(TestCase):
L = 6
x = np.arange(L)
idx = np.array(list(zip(np.arange(L - 2), np.arange(L - 2) + 2))).ravel()
- assert_array_equal(np.add.reduceat(x,idx)[::2], [1,3,5,7])
+ assert_array_equal(np.add.reduceat(x, idx)[::2], [1, 3, 5, 7])
def test_generic_loops(self) :
"""Test generic loops.
@@ -80,7 +80,7 @@ class TestUfunc(TestCase):
"""
fone = np.exp
- ftwo = lambda x,y : x**y
+ ftwo = lambda x, y : x**y
fone_val = 1
ftwo_val = 1
# check unary PyUFunc_f_f.
@@ -111,27 +111,27 @@ class TestUfunc(TestCase):
# check binary PyUFunc_ff_f.
msg = "PyUFunc_ff_f"
x = np.ones(10, dtype=np.single)[0::2]
- assert_almost_equal(ftwo(x,x), ftwo_val, err_msg=msg)
+ assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
# check binary PyUFunc_dd_d.
msg = "PyUFunc_dd_d"
x = np.ones(10, dtype=np.double)[0::2]
- assert_almost_equal(ftwo(x,x), ftwo_val, err_msg=msg)
+ assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
# check binary PyUFunc_gg_g.
msg = "PyUFunc_gg_g"
x = np.ones(10, dtype=np.longdouble)[0::2]
- assert_almost_equal(ftwo(x,x), ftwo_val, err_msg=msg)
+ assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
# check binary PyUFunc_FF_F.
msg = "PyUFunc_FF_F"
x = np.ones(10, dtype=np.csingle)[0::2]
- assert_almost_equal(ftwo(x,x), ftwo_val, err_msg=msg)
+ assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
# check binary PyUFunc_DD_D.
msg = "PyUFunc_DD_D"
x = np.ones(10, dtype=np.cdouble)[0::2]
- assert_almost_equal(ftwo(x,x), ftwo_val, err_msg=msg)
+ assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
# check binary PyUFunc_GG_G.
msg = "PyUFunc_GG_G"
x = np.ones(10, dtype=np.clongdouble)[0::2]
- assert_almost_equal(ftwo(x,x), ftwo_val, err_msg=msg)
+ assert_almost_equal(ftwo(x, x), ftwo_val, err_msg=msg)
# class to use in testing object method loops
class foo(object):
@@ -154,13 +154,13 @@ class TestUfunc(TestCase):
# check binary PyUFunc_OO_O
msg = "PyUFunc_OO_O"
x = np.ones(10, dtype=np.object)[0::2]
- assert_(np.all(np.add(x,x) == 2), msg)
+ assert_(np.all(np.add(x, x) == 2), msg)
# check binary PyUFunc_OO_O_method
msg = "PyUFunc_OO_O_method"
x = np.zeros(10, dtype=np.object)[0::2]
for i in range(len(x)) :
x[i] = foo()
- assert_(np.all(np.logical_xor(x,x)), msg)
+ assert_(np.all(np.logical_xor(x, x)), msg)
# check PyUFunc_On_Om
# fixme -- I don't know how to do this yet
@@ -252,117 +252,117 @@ class TestUfunc(TestCase):
def test_signature(self):
# the arguments to test_signature are: nin, nout, core_signature
# pass
- assert_equal(umt.test_signature(2,1,"(i),(i)->()"), 1)
+ assert_equal(umt.test_signature(2, 1, "(i),(i)->()"), 1)
# pass. empty core signature; treat as plain ufunc (with trivial core)
- assert_equal(umt.test_signature(2,1,"(),()->()"), 0)
+ assert_equal(umt.test_signature(2, 1, "(),()->()"), 0)
# in the following calls, a ValueError should be raised because
# of error in core signature
# error: extra parenthesis
msg = "core_sig: extra parenthesis"
try:
- ret = umt.test_signature(2,1,"((i)),(i)->()")
+ ret = umt.test_signature(2, 1, "((i)),(i)->()")
assert_equal(ret, None, err_msg=msg)
except ValueError: None
# error: parenthesis matching
msg = "core_sig: parenthesis matching"
try:
- ret = umt.test_signature(2,1,"(i),)i(->()")
+ ret = umt.test_signature(2, 1, "(i),)i(->()")
assert_equal(ret, None, err_msg=msg)
except ValueError: None
# error: incomplete signature. letters outside of parenthesis are ignored
msg = "core_sig: incomplete signature"
try:
- ret = umt.test_signature(2,1,"(i),->()")
+ ret = umt.test_signature(2, 1, "(i),->()")
assert_equal(ret, None, err_msg=msg)
except ValueError: None
# error: incomplete signature. 2 output arguments are specified
msg = "core_sig: incomplete signature"
try:
- ret = umt.test_signature(2,2,"(i),(i)->()")
+ ret = umt.test_signature(2, 2, "(i),(i)->()")
assert_equal(ret, None, err_msg=msg)
except ValueError: None
# more complicated names for variables
- assert_equal(umt.test_signature(2,1,"(i1,i2),(J_1)->(_kAB)"),1)
+ assert_equal(umt.test_signature(2, 1, "(i1,i2),(J_1)->(_kAB)"), 1)
def test_get_signature(self):
assert_equal(umt.inner1d.signature, "(i),(i)->()")
def test_forced_sig(self):
- a = 0.5*np.arange(3,dtype='f8')
- assert_equal(np.add(a,0.5), [0.5, 1, 1.5])
- assert_equal(np.add(a,0.5,sig='i',casting='unsafe'), [0, 0, 1])
- assert_equal(np.add(a,0.5,sig='ii->i',casting='unsafe'), [0, 0, 1])
- assert_equal(np.add(a,0.5,sig=('i4',),casting='unsafe'), [0, 0, 1])
- assert_equal(np.add(a,0.5,sig=('i4','i4','i4'),
+ a = 0.5*np.arange(3, dtype='f8')
+ assert_equal(np.add(a, 0.5), [0.5, 1, 1.5])
+ assert_equal(np.add(a, 0.5, sig='i', casting='unsafe'), [0, 0, 1])
+ assert_equal(np.add(a, 0.5, sig='ii->i', casting='unsafe'), [0, 0, 1])
+ assert_equal(np.add(a, 0.5, sig=('i4',), casting='unsafe'), [0, 0, 1])
+ assert_equal(np.add(a, 0.5, sig=('i4', 'i4', 'i4'),
casting='unsafe'), [0, 0, 1])
- b = np.zeros((3,),dtype='f8')
- np.add(a,0.5,out=b)
+ b = np.zeros((3,), dtype='f8')
+ np.add(a, 0.5, out=b)
assert_equal(b, [0.5, 1, 1.5])
b[:] = 0
- np.add(a,0.5,sig='i',out=b, casting='unsafe')
+ np.add(a, 0.5, sig='i', out=b, casting='unsafe')
assert_equal(b, [0, 0, 1])
b[:] = 0
- np.add(a,0.5,sig='ii->i',out=b, casting='unsafe')
+ np.add(a, 0.5, sig='ii->i', out=b, casting='unsafe')
assert_equal(b, [0, 0, 1])
b[:] = 0
- np.add(a,0.5,sig=('i4',),out=b, casting='unsafe')
+ np.add(a, 0.5, sig=('i4',), out=b, casting='unsafe')
assert_equal(b, [0, 0, 1])
b[:] = 0
- np.add(a,0.5,sig=('i4','i4','i4'),out=b, casting='unsafe')
+ np.add(a, 0.5, sig=('i4', 'i4', 'i4'), out=b, casting='unsafe')
assert_equal(b, [0, 0, 1])
def test_inner1d(self):
- a = np.arange(6).reshape((2,3))
- assert_array_equal(umt.inner1d(a,a), np.sum(a*a,axis=-1))
+ a = np.arange(6).reshape((2, 3))
+ assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1))
a = np.arange(6)
- assert_array_equal(umt.inner1d(a,a), np.sum(a*a))
+ assert_array_equal(umt.inner1d(a, a), np.sum(a*a))
def test_broadcast(self):
msg = "broadcast"
- a = np.arange(4).reshape((2,1,2))
- b = np.arange(4).reshape((1,2,2))
- assert_array_equal(umt.inner1d(a,b), np.sum(a*b,axis=-1), err_msg=msg)
+ a = np.arange(4).reshape((2, 1, 2))
+ b = np.arange(4).reshape((1, 2, 2))
+ assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
msg = "extend & broadcast loop dimensions"
- b = np.arange(4).reshape((2,2))
- assert_array_equal(umt.inner1d(a,b), np.sum(a*b,axis=-1), err_msg=msg)
+ b = np.arange(4).reshape((2, 2))
+ assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
msg = "broadcast in core dimensions"
- a = np.arange(8).reshape((4,2))
- b = np.arange(4).reshape((4,1))
- assert_array_equal(umt.inner1d(a,b), np.sum(a*b,axis=-1), err_msg=msg)
+ a = np.arange(8).reshape((4, 2))
+ b = np.arange(4).reshape((4, 1))
+ assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
msg = "extend & broadcast core and loop dimensions"
- a = np.arange(8).reshape((4,2))
+ a = np.arange(8).reshape((4, 2))
b = np.array(7)
- assert_array_equal(umt.inner1d(a,b), np.sum(a*b,axis=-1), err_msg=msg)
+ assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
msg = "broadcast should fail"
- a = np.arange(2).reshape((2,1,1))
- b = np.arange(3).reshape((3,1,1))
+ a = np.arange(2).reshape((2, 1, 1))
+ b = np.arange(3).reshape((3, 1, 1))
try:
- ret = umt.inner1d(a,b)
+ ret = umt.inner1d(a, b)
assert_equal(ret, None, err_msg=msg)
except ValueError: None
def test_type_cast(self):
msg = "type cast"
- a = np.arange(6, dtype='short').reshape((2,3))
- assert_array_equal(umt.inner1d(a,a), np.sum(a*a,axis=-1), err_msg=msg)
+ a = np.arange(6, dtype='short').reshape((2, 3))
+ assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg)
msg = "type cast on one argument"
- a = np.arange(6).reshape((2,3))
+ a = np.arange(6).reshape((2, 3))
b = a+0.1
- assert_array_almost_equal(umt.inner1d(a,a), np.sum(a*a,axis=-1),
+ assert_array_almost_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1),
err_msg=msg)
def test_endian(self):
msg = "big endian"
- a = np.arange(6, dtype='>i4').reshape((2,3))
- assert_array_equal(umt.inner1d(a,a), np.sum(a*a,axis=-1), err_msg=msg)
+ a = np.arange(6, dtype='>i4').reshape((2, 3))
+ assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg)
msg = "little endian"
- a = np.arange(6, dtype='<i4').reshape((2,3))
- assert_array_equal(umt.inner1d(a,a), np.sum(a*a,axis=-1), err_msg=msg)
+ a = np.arange(6, dtype='<i4').reshape((2, 3))
+ assert_array_equal(umt.inner1d(a, a), np.sum(a*a, axis=-1), err_msg=msg)
# Output should always be native-endian
Ba = np.arange(1, dtype='>f8')
@@ -379,71 +379,71 @@ class TestUfunc(TestCase):
def test_incontiguous_array(self):
msg = "incontiguous memory layout of array"
- x = np.arange(64).reshape((2,2,2,2,2,2))
- a = x[:,0,:,0,:,0]
- b = x[:,1,:,1,:,1]
- a[0,0,0] = -1
+ x = np.arange(64).reshape((2, 2, 2, 2, 2, 2))
+ a = x[:, 0,:, 0,:, 0]
+ b = x[:, 1,:, 1,:, 1]
+ a[0, 0, 0] = -1
msg2 = "make sure it references to the original array"
- assert_equal(x[0,0,0,0,0,0], -1, err_msg=msg2)
- assert_array_equal(umt.inner1d(a,b), np.sum(a*b,axis=-1), err_msg=msg)
- x = np.arange(24).reshape(2,3,4)
+ assert_equal(x[0, 0, 0, 0, 0, 0], -1, err_msg=msg2)
+ assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
+ x = np.arange(24).reshape(2, 3, 4)
a = x.T
b = x.T
- a[0,0,0] = -1
- assert_equal(x[0,0,0], -1, err_msg=msg2)
- assert_array_equal(umt.inner1d(a,b), np.sum(a*b,axis=-1), err_msg=msg)
+ a[0, 0, 0] = -1
+ assert_equal(x[0, 0, 0], -1, err_msg=msg2)
+ assert_array_equal(umt.inner1d(a, b), np.sum(a*b, axis=-1), err_msg=msg)
def test_output_argument(self):
msg = "output argument"
- a = np.arange(12).reshape((2,3,2))
- b = np.arange(4).reshape((2,1,2)) + 1
- c = np.zeros((2,3),dtype='int')
- umt.inner1d(a,b,c)
- assert_array_equal(c, np.sum(a*b,axis=-1), err_msg=msg)
+ a = np.arange(12).reshape((2, 3, 2))
+ b = np.arange(4).reshape((2, 1, 2)) + 1
+ c = np.zeros((2, 3), dtype='int')
+ umt.inner1d(a, b, c)
+ assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
c[:] = -1
- umt.inner1d(a,b,out=c)
- assert_array_equal(c, np.sum(a*b,axis=-1), err_msg=msg)
+ umt.inner1d(a, b, out=c)
+ assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
msg = "output argument with type cast"
- c = np.zeros((2,3),dtype='int16')
- umt.inner1d(a,b,c)
- assert_array_equal(c, np.sum(a*b,axis=-1), err_msg=msg)
+ c = np.zeros((2, 3), dtype='int16')
+ umt.inner1d(a, b, c)
+ assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
c[:] = -1
- umt.inner1d(a,b,out=c)
- assert_array_equal(c, np.sum(a*b,axis=-1), err_msg=msg)
+ umt.inner1d(a, b, out=c)
+ assert_array_equal(c, np.sum(a*b, axis=-1), err_msg=msg)
msg = "output argument with incontiguous layout"
- c = np.zeros((2,3,4),dtype='int16')
- umt.inner1d(a,b,c[...,0])
- assert_array_equal(c[...,0], np.sum(a*b,axis=-1), err_msg=msg)
+ c = np.zeros((2, 3, 4), dtype='int16')
+ umt.inner1d(a, b, c[..., 0])
+ assert_array_equal(c[..., 0], np.sum(a*b, axis=-1), err_msg=msg)
c[:] = -1
- umt.inner1d(a,b,out=c[...,0])
- assert_array_equal(c[...,0], np.sum(a*b,axis=-1), err_msg=msg)
+ umt.inner1d(a, b, out=c[..., 0])
+ assert_array_equal(c[..., 0], np.sum(a*b, axis=-1), err_msg=msg)
def test_innerwt(self):
- a = np.arange(6).reshape((2,3))
- b = np.arange(10,16).reshape((2,3))
- w = np.arange(20,26).reshape((2,3))
- assert_array_equal(umt.innerwt(a,b,w), np.sum(a*b*w,axis=-1))
- a = np.arange(100,124).reshape((2,3,4))
- b = np.arange(200,224).reshape((2,3,4))
- w = np.arange(300,324).reshape((2,3,4))
- assert_array_equal(umt.innerwt(a,b,w), np.sum(a*b*w,axis=-1))
+ a = np.arange(6).reshape((2, 3))
+ b = np.arange(10, 16).reshape((2, 3))
+ w = np.arange(20, 26).reshape((2, 3))
+ assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1))
+ a = np.arange(100, 124).reshape((2, 3, 4))
+ b = np.arange(200, 224).reshape((2, 3, 4))
+ w = np.arange(300, 324).reshape((2, 3, 4))
+ assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1))
def test_innerwt_empty(self):
"""Test generalized ufunc with zero-sized operands"""
a = np.array([], dtype='f8')
b = np.array([], dtype='f8')
w = np.array([], dtype='f8')
- assert_array_equal(umt.innerwt(a,b,w), np.sum(a*b*w,axis=-1))
+ assert_array_equal(umt.innerwt(a, b, w), np.sum(a*b*w, axis=-1))
def test_matrix_multiply(self):
self.compare_matrix_multiply_results(np.long)
self.compare_matrix_multiply_results(np.double)
def compare_matrix_multiply_results(self, tp):
- d1 = np.array(rand(2,3,4), dtype=tp)
- d2 = np.array(rand(2,3,4), dtype=tp)
+ d1 = np.array(rand(2, 3, 4), dtype=tp)
+ d2 = np.array(rand(2, 3, 4), dtype=tp)
msg = "matrix multiply on type %s" % d1.dtype.name
def permute_n(n):
@@ -466,14 +466,14 @@ class TestUfunc(TestCase):
base = slice_n(n-1)
for sl in base:
ret += (sl+(slice(None),),)
- ret += (sl+(slice(0,1),),)
+ ret += (sl+(slice(0, 1),),)
return ret
- def broadcastable(s1,s2):
+ def broadcastable(s1, s2):
return s1 == s2 or s1 == 1 or s2 == 1
permute_3 = permute_n(3)
- slice_3 = slice_n(3) + ((slice(None,None,-1),)*3,)
+ slice_3 = slice_n(3) + ((slice(None, None, -1),)*3,)
ref = True
for p1 in permute_3:
@@ -487,9 +487,9 @@ class TestUfunc(TestCase):
if broadcastable(a1.shape[-1], a2.shape[-2]) and \
broadcastable(a1.shape[0], a2.shape[0]):
assert_array_almost_equal(
- umt.matrix_multiply(a1,a2),
- np.sum(a2[...,np.newaxis].swapaxes(-3,-1) *
- a1[...,np.newaxis,:], axis=-1),
+ umt.matrix_multiply(a1, a2),
+ np.sum(a2[..., np.newaxis].swapaxes(-3, -1) *
+ a1[..., np.newaxis,:], axis=-1),
err_msg = msg+' %s %s' % (str(a1.shape),
str(a2.shape)))
@@ -587,9 +587,9 @@ class TestUfunc(TestCase):
def test_casting_out_param(self):
# Test that it's possible to do casts on output
- a = np.ones((200,100), np.int64)
- b = np.ones((200,100), np.int64)
- c = np.ones((200,100), np.float64)
+ a = np.ones((200, 100), np.int64)
+ b = np.ones((200, 100), np.int64)
+ c = np.ones((200, 100), np.float64)
np.add(a, b, out=c)
assert_equal(c, 2)
@@ -604,13 +604,13 @@ class TestUfunc(TestCase):
b = np.ones(7)
c = np.zeros(7)
np.add(a, b, out=c, where=(a % 2 == 1))
- assert_equal(c, [0,2,0,4,0,6,0])
+ assert_equal(c, [0, 2, 0, 4, 0, 6, 0])
- a = np.arange(4).reshape(2,2) + 2
- np.power(a, [2,3], out=a, where=[[0,1],[1,0]])
+ a = np.arange(4).reshape(2, 2) + 2
+ np.power(a, [2, 3], out=a, where=[[0, 1], [1, 0]])
assert_equal(a, [[2, 27], [16, 5]])
# Broadcasting the where= parameter
- np.subtract(a, 2, out=a, where=[True,False])
+ np.subtract(a, 2, out=a, where=[True, False])
assert_equal(a, [[0, 27], [14, 5]])
def test_where_param_buffer_output(self):
@@ -621,76 +621,76 @@ class TestUfunc(TestCase):
a = np.ones(10, np.int64)
b = np.ones(10, np.int64)
c = 1.5 * np.ones(10, np.float64)
- np.add(a, b, out=c, where=[1,0,0,1,0,0,1,1,1,0])
- assert_equal(c, [2,1.5,1.5,2,1.5,1.5,2,2,2,1.5])
+ np.add(a, b, out=c, where=[1, 0, 0, 1, 0, 0, 1, 1, 1, 0])
+ assert_equal(c, [2, 1.5, 1.5, 2, 1.5, 1.5, 2, 2, 2, 1.5])
def check_identityless_reduction(self, a):
# np.minimum.reduce is a identityless reduction
# Verify that it sees the zero at various positions
a[...] = 1
- a[1,0,0] = 0
+ a[1, 0, 0] = 0
assert_equal(np.minimum.reduce(a, axis=None), 0)
- assert_equal(np.minimum.reduce(a, axis=(0,1)), [0,1,1,1])
- assert_equal(np.minimum.reduce(a, axis=(0,2)), [0,1,1])
- assert_equal(np.minimum.reduce(a, axis=(1,2)), [1,0])
+ assert_equal(np.minimum.reduce(a, axis=(0, 1)), [0, 1, 1, 1])
+ assert_equal(np.minimum.reduce(a, axis=(0, 2)), [0, 1, 1])
+ assert_equal(np.minimum.reduce(a, axis=(1, 2)), [1, 0])
assert_equal(np.minimum.reduce(a, axis=0),
- [[0,1,1,1], [1,1,1,1], [1,1,1,1]])
+ [[0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]])
assert_equal(np.minimum.reduce(a, axis=1),
- [[1,1,1,1], [0,1,1,1]])
+ [[1, 1, 1, 1], [0, 1, 1, 1]])
assert_equal(np.minimum.reduce(a, axis=2),
- [[1,1,1], [0,1,1]])
+ [[1, 1, 1], [0, 1, 1]])
assert_equal(np.minimum.reduce(a, axis=()), a)
a[...] = 1
- a[0,1,0] = 0
+ a[0, 1, 0] = 0
assert_equal(np.minimum.reduce(a, axis=None), 0)
- assert_equal(np.minimum.reduce(a, axis=(0,1)), [0,1,1,1])
- assert_equal(np.minimum.reduce(a, axis=(0,2)), [1,0,1])
- assert_equal(np.minimum.reduce(a, axis=(1,2)), [0,1])
+ assert_equal(np.minimum.reduce(a, axis=(0, 1)), [0, 1, 1, 1])
+ assert_equal(np.minimum.reduce(a, axis=(0, 2)), [1, 0, 1])
+ assert_equal(np.minimum.reduce(a, axis=(1, 2)), [0, 1])
assert_equal(np.minimum.reduce(a, axis=0),
- [[1,1,1,1], [0,1,1,1], [1,1,1,1]])
+ [[1, 1, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1]])
assert_equal(np.minimum.reduce(a, axis=1),
- [[0,1,1,1], [1,1,1,1]])
+ [[0, 1, 1, 1], [1, 1, 1, 1]])
assert_equal(np.minimum.reduce(a, axis=2),
- [[1,0,1], [1,1,1]])
+ [[1, 0, 1], [1, 1, 1]])
assert_equal(np.minimum.reduce(a, axis=()), a)
a[...] = 1
- a[0,0,1] = 0
+ a[0, 0, 1] = 0
assert_equal(np.minimum.reduce(a, axis=None), 0)
- assert_equal(np.minimum.reduce(a, axis=(0,1)), [1,0,1,1])
- assert_equal(np.minimum.reduce(a, axis=(0,2)), [0,1,1])
- assert_equal(np.minimum.reduce(a, axis=(1,2)), [0,1])
+ assert_equal(np.minimum.reduce(a, axis=(0, 1)), [1, 0, 1, 1])
+ assert_equal(np.minimum.reduce(a, axis=(0, 2)), [0, 1, 1])
+ assert_equal(np.minimum.reduce(a, axis=(1, 2)), [0, 1])
assert_equal(np.minimum.reduce(a, axis=0),
- [[1,0,1,1], [1,1,1,1], [1,1,1,1]])
+ [[1, 0, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]])
assert_equal(np.minimum.reduce(a, axis=1),
- [[1,0,1,1], [1,1,1,1]])
+ [[1, 0, 1, 1], [1, 1, 1, 1]])
assert_equal(np.minimum.reduce(a, axis=2),
- [[0,1,1], [1,1,1]])
+ [[0, 1, 1], [1, 1, 1]])
assert_equal(np.minimum.reduce(a, axis=()), a)
def test_identityless_reduction_corder(self):
- a = np.empty((2,3,4), order='C')
+ a = np.empty((2, 3, 4), order='C')
self.check_identityless_reduction(a)
def test_identityless_reduction_forder(self):
- a = np.empty((2,3,4), order='F')
+ a = np.empty((2, 3, 4), order='F')
self.check_identityless_reduction(a)
def test_identityless_reduction_otherorder(self):
- a = np.empty((2,4,3), order='C').swapaxes(1,2)
+ a = np.empty((2, 4, 3), order='C').swapaxes(1, 2)
self.check_identityless_reduction(a)
def test_identityless_reduction_noncontig(self):
- a = np.empty((3,5,4), order='C').swapaxes(1,2)
+ a = np.empty((3, 5, 4), order='C').swapaxes(1, 2)
a = a[1:, 1:, 1:]
self.check_identityless_reduction(a)
def test_identityless_reduction_noncontig_unaligned(self):
a = np.empty((3*4*5*8 + 1,), dtype='i1')
a = a[1:].view(dtype='f8')
- a.shape = (3,4,5)
+ a.shape = (3, 4, 5)
a = a[1:, 1:, 1:]
self.check_identityless_reduction(a)
@@ -706,7 +706,7 @@ class TestUfunc(TestCase):
res = np.divide.reduce(a, axis=())
assert_equal(res, a)
- assert_raises(ValueError, np.divide.reduce, a, axis=(0,1))
+ assert_raises(ValueError, np.divide.reduce, a, axis=(0, 1))
def test_reduce_zero_axis(self):
# If we have a n x m array and do a reduction with axis=1, then we are
@@ -803,11 +803,11 @@ class TestUfunc(TestCase):
assert_raises(TypeError, test_add, a, b)
def test_operand_flags(self):
- a = np.arange(16, dtype='l').reshape(4,4)
- b = np.arange(9, dtype='l').reshape(3,3)
- opflag_tests.inplace_add(a[:-1,:-1], b)
- assert_equal(a, np.array([[0,2,4,3],[7,9,11,7],
- [14,16,18,11],[12,13,14,15]], dtype='l'))
+ a = np.arange(16, dtype='l').reshape(4, 4)
+ b = np.arange(9, dtype='l').reshape(3, 3)
+ opflag_tests.inplace_add(a[:-1, :-1], b)
+ assert_equal(a, np.array([[0, 2, 4, 3], [7, 9, 11, 7],
+ [14, 16, 18, 11], [12, 13, 14, 15]], dtype='l'))
a = np.array(0)
opflag_tests.inplace_add(a, 3)
@@ -818,20 +818,20 @@ class TestUfunc(TestCase):
def test_struct_ufunc(self):
import numpy.core.struct_ufunc_test as struct_ufunc
- a = np.array([(1,2,3)], dtype='u8,u8,u8')
- b = np.array([(1,2,3)], dtype='u8,u8,u8')
+ a = np.array([(1, 2, 3)], dtype='u8,u8,u8')
+ b = np.array([(1, 2, 3)], dtype='u8,u8,u8')
result = struct_ufunc.add_triplet(a, b)
assert_equal(result, np.array([(2, 4, 6)], dtype='u8,u8,u8'))
def test_custom_ufunc(self):
- a = np.array([rational(1,2), rational(1,3), rational(1,4)],
+ a = np.array([rational(1, 2), rational(1, 3), rational(1, 4)],
dtype=rational);
- b = np.array([rational(1,2), rational(1,3), rational(1,4)],
+ b = np.array([rational(1, 2), rational(1, 3), rational(1, 4)],
dtype=rational);
result = test_add_rationals(a, b)
- expected = np.array([rational(1), rational(2,3), rational(1,2)],
+ expected = np.array([rational(1), rational(2, 3), rational(1, 2)],
dtype=rational);
assert_equal(result, expected);
@@ -868,95 +868,95 @@ class TestUfunc(TestCase):
def test_inplace_fancy_indexing(self):
a = np.arange(10)
- np.add.at(a, [2,5,2], 1)
+ np.add.at(a, [2, 5, 2], 1)
assert_equal(a, [0, 1, 4, 3, 4, 6, 6, 7, 8, 9])
a = np.arange(10)
- b = np.array([100,100,100])
- np.add.at(a, [2,5,2], b)
+ b = np.array([100, 100, 100])
+ np.add.at(a, [2, 5, 2], b)
assert_equal(a, [0, 1, 202, 3, 4, 105, 6, 7, 8, 9])
- a = np.arange(9).reshape(3,3)
- b = np.array([[100,100,100],[200,200,200],[300,300,300]])
- np.add.at(a, (slice(None), [1,2,1]), b)
- assert_equal(a, [[0,201,102], [3,404,205], [6,607,308]])
+ a = np.arange(9).reshape(3, 3)
+ b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]])
+ np.add.at(a, (slice(None), [1, 2, 1]), b)
+ assert_equal(a, [[0, 201, 102], [3, 404, 205], [6, 607, 308]])
- a = np.arange(27).reshape(3,3,3)
- b = np.array([100,200,300])
- np.add.at(a, (slice(None), slice(None), [1,2,1]), b)
+ a = np.arange(27).reshape(3, 3, 3)
+ b = np.array([100, 200, 300])
+ np.add.at(a, (slice(None), slice(None), [1, 2, 1]), b)
assert_equal(a,
- [[[0,401,202],
- [3,404,205],
- [6,407,208]],
-
- [[9, 410,211],
- [12,413,214],
- [15,416,217]],
-
- [[18,419,220],
- [21,422,223],
- [24,425,226]]])
-
- a = np.arange(9).reshape(3,3)
- b = np.array([[100,100,100],[200,200,200],[300,300,300]])
- np.add.at(a, ([1,2,1], slice(None)), b)
- assert_equal(a, [[0,1,2], [403,404,405], [206,207,208]])
-
- a = np.arange(27).reshape(3,3,3)
- b = np.array([100,200,300])
- np.add.at(a, (slice(None), [1,2,1], slice(None)), b)
+ [[[0, 401, 202],
+ [3, 404, 205],
+ [6, 407, 208]],
+
+ [[9, 410, 211],
+ [12, 413, 214],
+ [15, 416, 217]],
+
+ [[18, 419, 220],
+ [21, 422, 223],
+ [24, 425, 226]]])
+
+ a = np.arange(9).reshape(3, 3)
+ b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]])
+ np.add.at(a, ([1, 2, 1], slice(None)), b)
+ assert_equal(a, [[0, 1, 2], [403, 404, 405], [206, 207, 208]])
+
+ a = np.arange(27).reshape(3, 3, 3)
+ b = np.array([100, 200, 300])
+ np.add.at(a, (slice(None), [1, 2, 1], slice(None)), b)
assert_equal(a,
[[[0, 1, 2 ],
- [203,404,605],
- [106,207,308]],
+ [203, 404, 605],
+ [106, 207, 308]],
[[9, 10, 11 ],
- [212,413,614],
- [115,216,317]],
+ [212, 413, 614],
+ [115, 216, 317]],
[[18, 19, 20 ],
- [221,422,623],
- [124,225,326]]])
+ [221, 422, 623],
+ [124, 225, 326]]])
- a = np.arange(9).reshape(3,3)
- b = np.array([100,200,300])
- np.add.at(a, (0, [1,2,1]), b)
- assert_equal(a, [[0,401,202], [3,4,5], [6,7,8]])
+ a = np.arange(9).reshape(3, 3)
+ b = np.array([100, 200, 300])
+ np.add.at(a, (0, [1, 2, 1]), b)
+ assert_equal(a, [[0, 401, 202], [3, 4, 5], [6, 7, 8]])
- a = np.arange(27).reshape(3,3,3)
- b = np.array([100,200,300])
- np.add.at(a, ([1,2,1], 0, slice(None)), b)
+ a = np.arange(27).reshape(3, 3, 3)
+ b = np.array([100, 200, 300])
+ np.add.at(a, ([1, 2, 1], 0, slice(None)), b)
assert_equal(a,
[[[0, 1, 2],
[3, 4, 5],
[6, 7, 8]],
- [[209,410,611],
+ [[209, 410, 611],
[12, 13, 14],
[15, 16, 17]],
- [[118,219,320],
+ [[118, 219, 320],
[21, 22, 23],
[24, 25, 26]]])
- a = np.arange(27).reshape(3,3,3)
- b = np.array([100,200,300])
+ a = np.arange(27).reshape(3, 3, 3)
+ b = np.array([100, 200, 300])
np.add.at(a, (slice(None), slice(None), slice(None)), b)
assert_equal(a,
- [[[100,201,302],
- [103,204,305],
- [106,207,308]],
+ [[[100, 201, 302],
+ [103, 204, 305],
+ [106, 207, 308]],
- [[109,210,311],
- [112,213,314],
- [115,216,317]],
+ [[109, 210, 311],
+ [112, 213, 314],
+ [115, 216, 317]],
- [[118,219,320],
- [121,222,323],
- [124,225,326]]])
+ [[118, 219, 320],
+ [121, 222, 323],
+ [124, 225, 326]]])
a = np.arange(10)
- np.negative.at(a, [2,5,2])
+ np.negative.at(a, [2, 5, 2])
assert_equal(a, [0, 1, 2, 3, 4, -5, 6, 7, 8, 9])
# Test 0-dim array
@@ -969,7 +969,7 @@ class TestUfunc(TestCase):
# Test mixed dtypes
a = np.arange(10)
- np.power.at(a, [1,2,3,2], 3.5)
+ np.power.at(a, [1, 2, 3, 2], 3.5)
assert_equal(a, np.array([0, 1, 4414, 46, 4, 5, 6, 7, 8, 9]))
# Test boolean indexing and boolean ufuncs
@@ -985,19 +985,19 @@ class TestUfunc(TestCase):
# Test empty subspace
orig = np.arange(4)
- a = orig[:,None][:,0:0]
- np.add.at(a, [0,1], 3)
+ a = orig[:, None][:, 0:0]
+ np.add.at(a, [0, 1], 3)
assert_array_equal(orig, np.arange(4))
# Test with swapped byte order
- index = np.array([1,2,1], np.dtype('i').newbyteorder())
- values = np.array([1,2,3,4], np.dtype('f').newbyteorder())
+ index = np.array([1, 2, 1], np.dtype('i').newbyteorder())
+ values = np.array([1, 2, 3, 4], np.dtype('f').newbyteorder())
np.add.at(values, index, 3)
- assert_array_equal(values, [1,8,6,4])
+ assert_array_equal(values, [1, 8, 6, 4])
# Test exception thrown
values = np.array(['a', 1], dtype=np.object)
- self.assertRaises(TypeError, np.add.at, values, [0,1], 1)
+ self.assertRaises(TypeError, np.add.at, values, [0, 1], 1)
assert_array_equal(values, np.array(['a', 1], dtype=np.object))
if __name__ == "__main__":
diff --git a/numpy/core/tests/test_umath.py b/numpy/core/tests/test_umath.py
index b2d47d052..eb18304ea 100644
--- a/numpy/core/tests/test_umath.py
+++ b/numpy/core/tests/test_umath.py
@@ -78,7 +78,7 @@ class TestDivision(TestCase):
msg = "Complex floor division implementation check"
x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128)
y = np.array([0., -1., 0., 0.], dtype=np.complex128)
- assert_equal(np.floor_divide(x**2,x), y, err_msg=msg)
+ assert_equal(np.floor_divide(x**2, x), y, err_msg=msg)
# check overflow, underflow
msg = "Complex floor division overflow/underflow check"
x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
@@ -169,14 +169,14 @@ class TestPower(TestCase):
assert_complex_equal(np.power(zero, -1+0.2j), cnan)
def test_fast_power(self):
- x = np.array([1,2,3], np.int16)
+ x = np.array([1, 2, 3], np.int16)
assert_((x**2.00001).dtype is (x**2.0).dtype)
class TestLog2(TestCase):
def test_log2_values(self) :
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- for dt in ['f','d','g'] :
+ for dt in ['f', 'd', 'g'] :
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_almost_equal(np.log2(xf), yf)
@@ -186,7 +186,7 @@ class TestExp2(TestCase):
def test_exp2_values(self) :
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- for dt in ['f','d','g'] :
+ for dt in ['f', 'd', 'g'] :
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_almost_equal(np.exp2(yf), xf)
@@ -198,7 +198,7 @@ class TestLogAddExp2(_FilterInvalids):
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]
z = [6, 6, 6, 6, 6]
- for dt, dec in zip(['f','d','g'],[6, 15, 15]) :
+ for dt, dec in zip(['f', 'd', 'g'], [6, 15, 15]) :
xf = np.log2(np.array(x, dtype=dt))
yf = np.log2(np.array(y, dtype=dt))
zf = np.log2(np.array(z, dtype=dt))
@@ -208,7 +208,7 @@ class TestLogAddExp2(_FilterInvalids):
x = [1000000, -1000000, 1000200, -1000200]
y = [1000200, -1000200, 1000000, -1000000]
z = [1000200, -1000000, 1000200, -1000000]
- for dt in ['f','d','g'] :
+ for dt in ['f', 'd', 'g'] :
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
@@ -220,7 +220,7 @@ class TestLogAddExp2(_FilterInvalids):
y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
z = [inf, inf, inf, -inf, inf, inf, 1, 1]
with np.errstate(invalid='ignore'):
- for dt in ['f','d','g'] :
+ for dt in ['f', 'd', 'g'] :
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
@@ -238,7 +238,7 @@ class TestLog(TestCase):
def test_log_values(self) :
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- for dt in ['f','d','g'] :
+ for dt in ['f', 'd', 'g'] :
log2_ = 0.69314718055994530943
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)*log2_
@@ -249,7 +249,7 @@ class TestExp(TestCase):
def test_exp_values(self) :
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- for dt in ['f','d','g'] :
+ for dt in ['f', 'd', 'g'] :
log2_ = 0.69314718055994530943
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)*log2_
@@ -261,7 +261,7 @@ class TestLogAddExp(_FilterInvalids):
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]
z = [6, 6, 6, 6, 6]
- for dt, dec in zip(['f','d','g'],[6, 15, 15]) :
+ for dt, dec in zip(['f', 'd', 'g'], [6, 15, 15]) :
xf = np.log(np.array(x, dtype=dt))
yf = np.log(np.array(y, dtype=dt))
zf = np.log(np.array(z, dtype=dt))
@@ -271,7 +271,7 @@ class TestLogAddExp(_FilterInvalids):
x = [1000000, -1000000, 1000200, -1000200]
y = [1000200, -1000200, 1000000, -1000000]
z = [1000200, -1000000, 1000200, -1000000]
- for dt in ['f','d','g'] :
+ for dt in ['f', 'd', 'g'] :
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
@@ -283,7 +283,7 @@ class TestLogAddExp(_FilterInvalids):
y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
z = [inf, inf, inf, -inf, inf, inf, 1, 1]
with np.errstate(invalid='ignore'):
- for dt in ['f','d','g'] :
+ for dt in ['f', 'd', 'g'] :
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
@@ -479,8 +479,8 @@ class TestMaximum(_FilterInvalids):
assert_equal(func(tmp2), np.nan)
def test_reduce_complex(self):
- assert_equal(np.maximum.reduce([1,2j]),1)
- assert_equal(np.maximum.reduce([1+3j,2j]),1+3j)
+ assert_equal(np.maximum.reduce([1, 2j]), 1)
+ assert_equal(np.maximum.reduce([1+3j, 2j]), 1+3j)
def test_float_nans(self):
nan = np.nan
@@ -526,8 +526,8 @@ class TestMinimum(_FilterInvalids):
assert_equal(func(tmp2), np.nan)
def test_reduce_complex(self):
- assert_equal(np.minimum.reduce([1,2j]),2j)
- assert_equal(np.minimum.reduce([1+3j,2j]),2j)
+ assert_equal(np.minimum.reduce([1, 2j]), 2j)
+ assert_equal(np.minimum.reduce([1+3j, 2j]), 2j)
def test_float_nans(self):
nan = np.nan
@@ -573,8 +573,8 @@ class TestFmax(_FilterInvalids):
assert_equal(func(tmp2), 9)
def test_reduce_complex(self):
- assert_equal(np.fmax.reduce([1,2j]),1)
- assert_equal(np.fmax.reduce([1+3j,2j]),1+3j)
+ assert_equal(np.fmax.reduce([1, 2j]), 1)
+ assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
def test_float_nans(self):
nan = np.nan
@@ -615,8 +615,8 @@ class TestFmin(_FilterInvalids):
assert_equal(func(tmp2), 1)
def test_reduce_complex(self):
- assert_equal(np.fmin.reduce([1,2j]),2j)
- assert_equal(np.fmin.reduce([1+3j,2j]),2j)
+ assert_equal(np.fmin.reduce([1, 2j]), 2j)
+ assert_equal(np.fmin.reduce([1+3j, 2j]), 2j)
def test_float_nans(self):
nan = np.nan
@@ -784,21 +784,21 @@ class TestSpecialMethods(TestCase):
b = B()
c = C()
f = ncu.minimum
- self.assertTrue(type(f(x,x)) is np.ndarray)
- self.assertTrue(type(f(x,a)) is A)
- self.assertTrue(type(f(x,b)) is B)
- self.assertTrue(type(f(x,c)) is C)
- self.assertTrue(type(f(a,x)) is A)
- self.assertTrue(type(f(b,x)) is B)
- self.assertTrue(type(f(c,x)) is C)
-
- self.assertTrue(type(f(a,a)) is A)
- self.assertTrue(type(f(a,b)) is B)
- self.assertTrue(type(f(b,a)) is B)
- self.assertTrue(type(f(b,b)) is B)
- self.assertTrue(type(f(b,c)) is C)
- self.assertTrue(type(f(c,b)) is C)
- self.assertTrue(type(f(c,c)) is C)
+ self.assertTrue(type(f(x, x)) is np.ndarray)
+ self.assertTrue(type(f(x, a)) is A)
+ self.assertTrue(type(f(x, b)) is B)
+ self.assertTrue(type(f(x, c)) is C)
+ self.assertTrue(type(f(a, x)) is A)
+ self.assertTrue(type(f(b, x)) is B)
+ self.assertTrue(type(f(c, x)) is C)
+
+ self.assertTrue(type(f(a, a)) is A)
+ self.assertTrue(type(f(a, b)) is B)
+ self.assertTrue(type(f(b, a)) is B)
+ self.assertTrue(type(f(b, b)) is B)
+ self.assertTrue(type(f(b, c)) is C)
+ self.assertTrue(type(f(c, b)) is C)
+ self.assertTrue(type(f(c, c)) is C)
self.assertTrue(type(ncu.exp(a) is A))
self.assertTrue(type(ncu.exp(b) is B))
@@ -871,9 +871,9 @@ class TestSpecialMethods(TestCase):
class TestChoose(TestCase):
def test_mixed(self):
- c = np.array([True,True])
- a = np.array([True,True])
- assert_equal(np.choose(c, (a, 1)), np.array([1,1]))
+ c = np.array([True, True])
+ a = np.array([True, True])
+ assert_equal(np.choose(c, (a, 1)), np.array([1, 1]))
def is_longdouble_finfo_bogus():
@@ -966,7 +966,7 @@ class TestComplexFunctions(object):
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
- assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s"%(fname,p,a,b))
+ assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s"%(fname, p, a, b))
def check_loss_of_precision(self, dtype):
"""Check loss of precision in complex arc* functions"""
@@ -1046,8 +1046,8 @@ class TestComplexFunctions(object):
good = (abs(func(zp) - func(zm)) < 2*eps)
assert_(np.all(good), (func, z0[~good]))
- for func in (np.arcsinh,np.arcsinh,np.arcsin,np.arctanh,np.arctan):
- pts = [rp+1j*ip for rp in (-1e-3,0,1e-3) for ip in(-1e-3,0,1e-3)
+ for func in (np.arcsinh, np.arcsinh, np.arcsin, np.arctanh, np.arctan):
+ pts = [rp+1j*ip for rp in (-1e-3, 0, 1e-3) for ip in(-1e-3, 0, 1e-3)
if rp != 0 or ip != 0]
check(func, pts, 1)
check(func, pts, 1j)
@@ -1081,7 +1081,7 @@ class TestSubclass(TestCase):
self = np.ndarray.__new__(subtype, shape, dtype=object)
self.fill(0)
return self
- a = simple((3,4))
+ a = simple((3, 4))
assert_equal(a+a, a)
def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False,
@@ -1237,12 +1237,12 @@ def test_pos_nan():
def test_reduceat():
"""Test bug in reduceat when structured arrays are not copied."""
- db = np.dtype([('name', 'S11'),('time', np.int64), ('value', np.float32)])
+ db = np.dtype([('name', 'S11'), ('time', np.int64), ('value', np.float32)])
a = np.empty([100], dtype=db)
a['name'] = 'Simple'
a['time'] = 10
a['value'] = 100
- indx = [0,7,15,25]
+ indx = [0, 7, 15, 25]
h2 = []
val1 = indx[0]
@@ -1271,7 +1271,7 @@ def test_reduceat_empty():
assert_equal(result.dtype, x.dtype)
assert_equal(result.shape, (0,))
# Another case with a slightly different zero-sized shape
- x = np.ones((5,2))
+ x = np.ones((5, 2))
result = np.add.reduceat(x, [], axis=0)
assert_equal(result.dtype, x.dtype)
assert_equal(result.shape, (0, 2))
diff --git a/numpy/core/tests/test_umath_complex.py b/numpy/core/tests/test_umath_complex.py
index ebf805c6d..4f3da4397 100644
--- a/numpy/core/tests/test_umath_complex.py
+++ b/numpy/core/tests/test_umath_complex.py
@@ -484,7 +484,7 @@ class TestCarg(object):
# carg(+- 0 + yi) returns -pi/2 for y < 0
yield check_real_value, ncu._arg, np.PZERO, -1, 0.5 * np.pi, False
- yield check_real_value, ncu._arg, np.NZERO, -1,-0.5 * np.pi, False
+ yield check_real_value, ncu._arg, np.NZERO, -1, -0.5 * np.pi, False
#def test_branch_cuts(self):
# _check_branch_cut(ncu._arg, -1, 1j, -1, 1)
diff --git a/numpy/core/tests/test_unicode.py b/numpy/core/tests/test_unicode.py
index b29fe2010..d184b3a9f 100644
--- a/numpy/core/tests/test_unicode.py
+++ b/numpy/core/tests/test_unicode.py
@@ -84,9 +84,9 @@ class create_zeros(object):
def test_zerosMD(self):
"""Check creation of multi-dimensional objects"""
- ua = zeros((2,3,4), dtype='U%s' % self.ulen)
- self.content_check(ua, ua[0,0,0], 4*self.ulen*2*3*4)
- self.content_check(ua, ua[-1,-1,-1], 4*self.ulen*2*3*4)
+ ua = zeros((2, 3, 4), dtype='U%s' % self.ulen)
+ self.content_check(ua, ua[0, 0, 0], 4*self.ulen*2*3*4)
+ self.content_check(ua, ua[-1, -1, -1], 4*self.ulen*2*3*4)
class test_create_zeros_1(create_zeros, TestCase):
@@ -145,8 +145,8 @@ class create_values(object):
def test_valuesMD(self):
"""Check creation of multi-dimensional objects with values"""
ua = array([[[self.ucs_value*self.ulen]*2]*3]*4, dtype='U%s' % self.ulen)
- self.content_check(ua, ua[0,0,0], 4*self.ulen*2*3*4)
- self.content_check(ua, ua[-1,-1,-1], 4*self.ulen*2*3*4)
+ self.content_check(ua, ua[0, 0, 0], 4*self.ulen*2*3*4)
+ self.content_check(ua, ua[-1, -1, -1], 4*self.ulen*2*3*4)
class test_create_values_1_ucs2(create_values, TestCase):
@@ -232,11 +232,11 @@ class assign_values(object):
def test_valuesMD(self):
"""Check assignment of multi-dimensional objects with values"""
- ua = zeros((2,3,4), dtype='U%s' % self.ulen)
- ua[0,0,0] = self.ucs_value*self.ulen
- self.content_check(ua, ua[0,0,0], 4*self.ulen*2*3*4)
- ua[-1,-1,-1] = self.ucs_value*self.ulen
- self.content_check(ua, ua[-1,-1,-1], 4*self.ulen*2*3*4)
+ ua = zeros((2, 3, 4), dtype='U%s' % self.ulen)
+ ua[0, 0, 0] = self.ucs_value*self.ulen
+ self.content_check(ua, ua[0, 0, 0], 4*self.ulen*2*3*4)
+ ua[-1, -1, -1] = self.ucs_value*self.ulen
+ self.content_check(ua, ua[-1, -1, -1], 4*self.ulen*2*3*4)
class test_assign_values_1_ucs2(assign_values, TestCase):
@@ -310,8 +310,8 @@ class byteorder_values:
ua = array([[[self.ucs_value*self.ulen]*2]*3]*4,
dtype='U%s' % self.ulen)
ua2 = ua.newbyteorder()
- self.assertTrue(ua[0,0,0] != ua2[0,0,0])
- self.assertTrue(ua[-1,-1,-1] != ua2[-1,-1,-1])
+ self.assertTrue(ua[0, 0, 0] != ua2[0, 0, 0])
+ self.assertTrue(ua[-1, -1, -1] != ua2[-1, -1, -1])
ua3 = ua2.newbyteorder()
# Arrays must be equal after the round-trip
assert_equal(ua, ua3)