diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2021-09-26 09:34:52 -0600 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-09-26 09:34:52 -0600 |
commit | 468142495461319f06a8debf57a3c0aa2703f9df (patch) | |
tree | 19cef9e83e86436b28a278d702b0433f0ec26161 /numpy/f2py/tests | |
parent | 26e656e7989e776a9292b9eba88cef7ec9fec5cb (diff) | |
parent | 88f988ae6226ffb5e3c9ae41a2d0cf9fd982109a (diff) | |
download | numpy-468142495461319f06a8debf57a3c0aa2703f9df.tar.gz |
Merge pull request #19805 from pearu/gh-8062-dimdecs
ENH: Symbolic solver for dimension specifications.
Diffstat (limited to 'numpy/f2py/tests')
-rw-r--r-- | numpy/f2py/tests/test_crackfortran.py | 99 | ||||
-rw-r--r-- | numpy/f2py/tests/test_symbolic.py | 462 |
2 files changed, 561 insertions, 0 deletions
diff --git a/numpy/f2py/tests/test_crackfortran.py b/numpy/f2py/tests/test_crackfortran.py index 140f42cbc..da7974d1a 100644 --- a/numpy/f2py/tests/test_crackfortran.py +++ b/numpy/f2py/tests/test_crackfortran.py @@ -1,3 +1,4 @@ +import pytest import numpy as np from numpy.testing import assert_array_equal, assert_equal from numpy.f2py.crackfortran import markinnerspaces @@ -39,6 +40,7 @@ class TestNoSpace(util.F2PyTest): class TestPublicPrivate(): + def test_defaultPrivate(self, tmp_path): f_path = tmp_path / "mod.f90" with f_path.open('w') as ff: @@ -165,3 +167,100 @@ class TestMarkinnerspaces(): def test_multiple_relevant_spaces(self): assert_equal(markinnerspaces("a 'b c' 'd e'"), "a 'b@_@c' 'd@_@e'") assert_equal(markinnerspaces(r'a "b c" "d e"'), r'a "b@_@c" "d@_@e"') + + +class TestDimSpec(util.F2PyTest): + """This test site tests various expressions that are used as dimension + specifications. + + There exists two usage cases where analyzing dimensions + specifications are important. + + In the first case, the size of output arrays must be defined based + on the inputs to a Fortran function. Because Fortran supports + arbitrary bases for indexing, for instance, `arr(lower:upper)`, + f2py has to evaluate an expression `upper - lower + 1` where + `lower` and `upper` are arbitrary expressions of input parameters. + The evaluation is performed in C, so f2py has to translate Fortran + expressions to valid C expressions (an alternative approach is + that a developer specifies the corresponing C expressions in a + .pyf file). + + In the second case, when user provides an input array with a given + size but some hidden parameters used in dimensions specifications + need to be determined based on the input array size. This is a + harder problem because f2py has to solve the inverse problem: find + a parameter `p` such that `upper(p) - lower(p) + 1` equals to the + size of input array. In the case when this equation cannot be + solved (e.g. because the input array size is wrong), raise an + error before calling the Fortran function (that otherwise would + likely crash Python process when the size of input arrays is + wrong). f2py currently supports this case only when the equation + is linear with respect to unknown parameter. + + """ + + suffix = '.f90' + + code_template = textwrap.dedent(""" + function get_arr_size_{count}(a, n) result (length) + integer, intent(in) :: n + integer, dimension({dimspec}), intent(out) :: a + integer length + length = size(a) + end function + + subroutine get_inv_arr_size_{count}(a, n) + integer :: n + ! the value of n is computed in f2py wrapper + !f2py intent(out) n + integer, dimension({dimspec}), intent(in) :: a + if (a({first}).gt.0) then + print*, "a=", a + endif + end subroutine + """) + + linear_dimspecs = ['n', '2*n', '2:n', 'n/2', '5 - n/2', '3*n:20', + 'n*(n+1):n*(n+5)'] + nonlinear_dimspecs = ['2*n:3*n*n+2*n'] + all_dimspecs = linear_dimspecs + nonlinear_dimspecs + + code = '' + for count, dimspec in enumerate(all_dimspecs): + code += code_template.format( + count=count, dimspec=dimspec, + first=dimspec.split(':')[0] if ':' in dimspec else '1') + + @pytest.mark.parametrize('dimspec', all_dimspecs) + def test_array_size(self, dimspec): + + count = self.all_dimspecs.index(dimspec) + get_arr_size = getattr(self.module, f'get_arr_size_{count}') + + for n in [1, 2, 3, 4, 5]: + sz, a = get_arr_size(n) + assert len(a) == sz + + @pytest.mark.parametrize('dimspec', all_dimspecs) + def test_inv_array_size(self, dimspec): + + count = self.all_dimspecs.index(dimspec) + get_arr_size = getattr(self.module, f'get_arr_size_{count}') + get_inv_arr_size = getattr(self.module, f'get_inv_arr_size_{count}') + + for n in [1, 2, 3, 4, 5]: + sz, a = get_arr_size(n) + if dimspec in self.nonlinear_dimspecs: + # one must specify n as input, the call we'll ensure + # that a and n are compatible: + n1 = get_inv_arr_size(a, n) + else: + # in case of linear dependence, n can be determined + # from the shape of a: + n1 = get_inv_arr_size(a) + # n1 may be different from n (for instance, when `a` size + # is a function of some `n` fraction) but it must produce + # the same sized array + sz1, _ = get_arr_size(n1) + assert sz == sz1, (n, n1, sz, sz1) diff --git a/numpy/f2py/tests/test_symbolic.py b/numpy/f2py/tests/test_symbolic.py new file mode 100644 index 000000000..52cabac53 --- /dev/null +++ b/numpy/f2py/tests/test_symbolic.py @@ -0,0 +1,462 @@ +from numpy.testing import assert_raises +from numpy.f2py.symbolic import ( + Expr, Op, ArithOp, Language, + as_symbol, as_number, as_string, as_array, as_complex, + as_terms, as_factors, eliminate_quotes, insert_quotes, + fromstring, as_expr, as_apply, + as_numer_denom, as_ternary, as_ref, as_deref, + normalize, as_eq, as_ne, as_lt, as_gt, as_le, as_ge + ) +from . import util + + +class TestSymbolic(util.F2PyTest): + + def test_eliminate_quotes(self): + def worker(s): + r, d = eliminate_quotes(s) + s1 = insert_quotes(r, d) + assert s1 == s + + for kind in ['', 'mykind_']: + worker(kind + '"1234" // "ABCD"') + worker(kind + '"1234" // ' + kind + '"ABCD"') + worker(kind + '"1234" // \'ABCD\'') + worker(kind + '"1234" // ' + kind + '\'ABCD\'') + worker(kind + '"1\\"2\'AB\'34"') + worker('a = ' + kind + "'1\\'2\"AB\"34'") + + def test_sanity(self): + x = as_symbol('x') + y = as_symbol('y') + z = as_symbol('z') + + assert x.op == Op.SYMBOL + assert repr(x) == "Expr(Op.SYMBOL, 'x')" + assert x == x + assert x != y + assert hash(x) is not None + + n = as_number(123) + m = as_number(456) + assert n.op == Op.INTEGER + assert repr(n) == "Expr(Op.INTEGER, (123, 4))" + assert n == n + assert n != m + assert hash(n) is not None + + fn = as_number(12.3) + fm = as_number(45.6) + assert fn.op == Op.REAL + assert repr(fn) == "Expr(Op.REAL, (12.3, 4))" + assert fn == fn + assert fn != fm + assert hash(fn) is not None + + c = as_complex(1, 2) + c2 = as_complex(3, 4) + assert c.op == Op.COMPLEX + assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4))," + " Expr(Op.INTEGER, (2, 4))))") + assert c == c + assert c != c2 + assert hash(c) is not None + + s = as_string("'123'") + s2 = as_string('"ABC"') + assert s.op == Op.STRING + assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s) + assert s == s + assert s != s2 + + a = as_array((n, m)) + b = as_array((n,)) + assert a.op == Op.ARRAY + assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4))," + " Expr(Op.INTEGER, (456, 4))))") + assert a == a + assert a != b + + t = as_terms(x) + u = as_terms(y) + assert t.op == Op.TERMS + assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})" + assert t == t + assert t != u + assert hash(t) is not None + + v = as_factors(x) + w = as_factors(y) + assert v.op == Op.FACTORS + assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})" + assert v == v + assert w != v + assert hash(v) is not None + + t = as_ternary(x, y, z) + u = as_ternary(x, z, y) + assert t.op == Op.TERNARY + assert t == t + assert t != u + assert hash(t) is not None + + e = as_eq(x, y) + f = as_lt(x, y) + assert e.op == Op.RELATIONAL + assert e == e + assert e != f + assert hash(e) is not None + + def test_tostring_fortran(self): + x = as_symbol('x') + y = as_symbol('y') + z = as_symbol('z') + n = as_number(123) + m = as_number(456) + a = as_array((n, m)) + c = as_complex(n, m) + + assert str(x) == 'x' + assert str(n) == '123' + assert str(a) == '[123, 456]' + assert str(c) == '(123, 456)' + + assert str(Expr(Op.TERMS, {x: 1})) == 'x' + assert str(Expr(Op.TERMS, {x: 2})) == '2 * x' + assert str(Expr(Op.TERMS, {x: -1})) == '-x' + assert str(Expr(Op.TERMS, {x: -2})) == '-2 * x' + assert str(Expr(Op.TERMS, {x: 1, y: 1})) == 'x + y' + assert str(Expr(Op.TERMS, {x: -1, y: -1})) == '-x - y' + assert str(Expr(Op.TERMS, {x: 2, y: 3})) == '2 * x + 3 * y' + assert str(Expr(Op.TERMS, {x: -2, y: 3})) == '-2 * x + 3 * y' + assert str(Expr(Op.TERMS, {x: 2, y: -3})) == '2 * x - 3 * y' + + assert str(Expr(Op.FACTORS, {x: 1})) == 'x' + assert str(Expr(Op.FACTORS, {x: 2})) == 'x ** 2' + assert str(Expr(Op.FACTORS, {x: -1})) == 'x ** -1' + assert str(Expr(Op.FACTORS, {x: -2})) == 'x ** -2' + assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == 'x * y' + assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == 'x ** 2 * y ** 3' + + v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3}) + assert str(v) == 'x ** 2 * (x + y) ** 3', str(v) + v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3}) + assert str(v) == 'x ** 2 * (x * y) ** 3', str(v) + + assert str(Expr(Op.APPLY, ('f', (), {}))) == 'f()' + assert str(Expr(Op.APPLY, ('f', (x,), {}))) == 'f(x)' + assert str(Expr(Op.APPLY, ('f', (x, y), {}))) == 'f(x, y)' + assert str(Expr(Op.INDEXING, ('f', x))) == 'f[x]' + + assert str(as_ternary(x, y, z)) == 'merge(y, z, x)' + assert str(as_eq(x, y)) == 'x .eq. y' + assert str(as_ne(x, y)) == 'x .ne. y' + assert str(as_lt(x, y)) == 'x .lt. y' + assert str(as_le(x, y)) == 'x .le. y' + assert str(as_gt(x, y)) == 'x .gt. y' + assert str(as_ge(x, y)) == 'x .ge. y' + + def test_tostring_c(self): + language = Language.C + x = as_symbol('x') + y = as_symbol('y') + z = as_symbol('z') + n = as_number(123) + + assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == 'x * x' + assert Expr(Op.FACTORS, {x + y: 2}).tostring( + language=language) == '(x + y) * (x + y)' + assert Expr(Op.FACTORS, {x: 12}).tostring( + language=language) == 'pow(x, 12)' + + assert as_apply(ArithOp.DIV, x, y).tostring( + language=language) == 'x / y' + assert as_apply(ArithOp.DIV, x, x + y).tostring( + language=language) == 'x / (x + y)' + assert as_apply(ArithOp.DIV, x - y, x + y).tostring( + language=language) == '(x - y) / (x + y)' + assert (x + (x - y) / (x + y) + n).tostring( + language=language) == '123 + x + (x - y) / (x + y)' + + assert as_ternary(x, y, z).tostring(language=language) == '(x ? y : z)' + assert as_eq(x, y).tostring(language=language) == 'x == y' + assert as_ne(x, y).tostring(language=language) == 'x != y' + assert as_lt(x, y).tostring(language=language) == 'x < y' + assert as_le(x, y).tostring(language=language) == 'x <= y' + assert as_gt(x, y).tostring(language=language) == 'x > y' + assert as_ge(x, y).tostring(language=language) == 'x >= y' + + def test_operations(self): + x = as_symbol('x') + y = as_symbol('y') + z = as_symbol('z') + + assert x + x == Expr(Op.TERMS, {x: 2}) + assert x - x == Expr(Op.INTEGER, (0, 4)) + assert x + y == Expr(Op.TERMS, {x: 1, y: 1}) + assert x - y == Expr(Op.TERMS, {x: 1, y: -1}) + assert x * x == Expr(Op.FACTORS, {x: 2}) + assert x * y == Expr(Op.FACTORS, {x: 1, y: 1}) + + assert +x == x + assert -x == Expr(Op.TERMS, {x: -1}), repr(-x) + assert 2 * x == Expr(Op.TERMS, {x: 2}) + assert 2 + x == Expr(Op.TERMS, {x: 1, as_number(1): 2}) + assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3}) + assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2}) + + assert x ** 2 == Expr(Op.FACTORS, {x: 2}) + assert (x + y) ** 2 == Expr(Op.TERMS, + {Expr(Op.FACTORS, {x: 2}): 1, + Expr(Op.FACTORS, {y: 2}): 1, + Expr(Op.FACTORS, {x: 1, y: 1}): 2}) + assert (x + y) * x == x ** 2 + x * y + assert (x + y) ** 2 == x ** 2 + 2 * x * y + y ** 2 + assert (x + y) ** 2 + (x - y) ** 2 == 2 * x ** 2 + 2 * y ** 2 + assert (x + y) * z == x * z + y * z + assert z * (x + y) == x * z + y * z + + assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2)) + assert (2 * x / 2) == x + assert (3 * x / 2) == as_apply(ArithOp.DIV, 3*x, as_number(2)) + assert (4 * x / 2) == 2 * x + assert (5 * x / 2) == as_apply(ArithOp.DIV, 5*x, as_number(2)) + assert (6 * x / 2) == 3 * x + assert ((3*5) * x / 6) == as_apply(ArithOp.DIV, 5*x, as_number(2)) + assert (30*x**2*y**4 / (24*x**3*y**3)) == as_apply(ArithOp.DIV, + 5*y, 4*x) + assert ((15 * x / 6) / 5) == as_apply( + ArithOp.DIV, x, as_number(2)), ((15 * x / 6) / 5) + assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5)) + + assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5}) + + s = as_string('"ABC"') + t = as_string('"123"') + + assert s // t == Expr(Op.STRING, ('"ABC123"', 1)) + assert s // x == Expr(Op.CONCAT, (s, x)) + assert x // s == Expr(Op.CONCAT, (x, s)) + + c = as_complex(1., 2.) + assert -c == as_complex(-1., -2.) + assert c + c == as_expr((1+2j)*2) + assert c * c == as_expr((1+2j)**2) + + def test_substitute(self): + x = as_symbol('x') + y = as_symbol('y') + z = as_symbol('z') + a = as_array((x, y)) + + assert x.substitute({x: y}) == y + assert (x + y).substitute({x: z}) == y + z + assert (x * y).substitute({x: z}) == y * z + assert (x ** 4).substitute({x: z}) == z ** 4 + assert (x / y).substitute({x: z}) == z / y + assert x.substitute({x: y + z}) == y + z + assert a.substitute({x: y + z}) == as_array((y + z, y)) + + assert as_ternary(x, y, z).substitute( + {x: y + z}) == as_ternary(y + z, y, z) + assert as_eq(x, y).substitute( + {x: y + z}) == as_eq(y + z, y) + + def test_fromstring(self): + + x = as_symbol('x') + y = as_symbol('y') + z = as_symbol('z') + f = as_symbol('f') + s = as_string('"ABC"') + t = as_string('"123"') + a = as_array((x, y)) + + assert fromstring('x') == x + assert fromstring('+ x') == x + assert fromstring('- x') == -x + assert fromstring('x + y') == x + y + assert fromstring('x + 1') == x + 1 + assert fromstring('x * y') == x * y + assert fromstring('x * 2') == x * 2 + assert fromstring('x / y') == x / y + assert fromstring('x ** 2', + language=Language.Python) == x ** 2 + assert fromstring('x ** 2 ** 3', + language=Language.Python) == x ** 2 ** 3 + assert fromstring('(x + y) * z') == (x + y) * z + + assert fromstring('f(x)') == f(x) + assert fromstring('f(x,y)') == f(x, y) + assert fromstring('f[x]') == f[x] + assert fromstring('f[x][y]') == f[x][y] + + assert fromstring('"ABC"') == s + assert normalize(fromstring('"ABC" // "123" ', + language=Language.Fortran)) == s // t + assert fromstring('f("ABC")') == f(s) + assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', 'MYSTRKIND') + + assert fromstring('(/x, y/)') == a, fromstring('(/x, y/)') + assert fromstring('f((/x, y/))') == f(a) + assert fromstring('(/(x+y)*z/)') == as_array(((x+y)*z,)) + + assert fromstring('123') == as_number(123) + assert fromstring('123_2') == as_number(123, 2) + assert fromstring('123_myintkind') == as_number(123, 'myintkind') + + assert fromstring('123.0') == as_number(123.0, 4) + assert fromstring('123.0_4') == as_number(123.0, 4) + assert fromstring('123.0_8') == as_number(123.0, 8) + assert fromstring('123.0e0') == as_number(123.0, 4) + assert fromstring('123.0d0') == as_number(123.0, 8) + assert fromstring('123d0') == as_number(123.0, 8) + assert fromstring('123e-0') == as_number(123.0, 4) + assert fromstring('123d+0') == as_number(123.0, 8) + assert fromstring('123.0_myrealkind') == as_number(123.0, 'myrealkind') + assert fromstring('3E4') == as_number(30000.0, 4) + + assert fromstring('(1, 2)') == as_complex(1, 2) + assert fromstring('(1e2, PI)') == as_complex( + as_number(100.0), as_symbol('PI')) + + assert fromstring('[1, 2]') == as_array((as_number(1), as_number(2))) + + assert fromstring('POINT(x, y=1)') == as_apply( + as_symbol('POINT'), x, y=as_number(1)) + assert (fromstring('PERSON(name="John", age=50, shape=(/34, 23/))') + == as_apply(as_symbol('PERSON'), + name=as_string('"John"'), + age=as_number(50), + shape=as_array((as_number(34), as_number(23))))) + + assert fromstring('x?y:z') == as_ternary(x, y, z) + + assert fromstring('*x') == as_deref(x) + assert fromstring('**x') == as_deref(as_deref(x)) + assert fromstring('&x') == as_ref(x) + assert fromstring('(*x) * (*y)') == as_deref(x) * as_deref(y) + assert fromstring('(*x) * *y') == as_deref(x) * as_deref(y) + assert fromstring('*x * *y') == as_deref(x) * as_deref(y) + assert fromstring('*x**y') == as_deref(x) * as_deref(y) + + assert fromstring('x == y') == as_eq(x, y) + assert fromstring('x != y') == as_ne(x, y) + assert fromstring('x < y') == as_lt(x, y) + assert fromstring('x > y') == as_gt(x, y) + assert fromstring('x <= y') == as_le(x, y) + assert fromstring('x >= y') == as_ge(x, y) + + assert fromstring('x .eq. y', language=Language.Fortran) == as_eq(x, y) + assert fromstring('x .ne. y', language=Language.Fortran) == as_ne(x, y) + assert fromstring('x .lt. y', language=Language.Fortran) == as_lt(x, y) + assert fromstring('x .gt. y', language=Language.Fortran) == as_gt(x, y) + assert fromstring('x .le. y', language=Language.Fortran) == as_le(x, y) + assert fromstring('x .ge. y', language=Language.Fortran) == as_ge(x, y) + + def test_traverse(self): + x = as_symbol('x') + y = as_symbol('y') + z = as_symbol('z') + f = as_symbol('f') + + # Use traverse to substitute a symbol + def replace_visit(s, r=z): + if s == x: + return r + + assert x.traverse(replace_visit) == z + assert y.traverse(replace_visit) == y + assert z.traverse(replace_visit) == z + assert (f(y)).traverse(replace_visit) == f(y) + assert (f(x)).traverse(replace_visit) == f(z) + assert (f[y]).traverse(replace_visit) == f[y] + assert (f[z]).traverse(replace_visit) == f[z] + assert (x + y + z).traverse(replace_visit) == (2 * z + y) + assert (x + f(y, x - z)).traverse( + replace_visit) == (z + f(y, as_number(0))) + assert as_eq(x, y).traverse(replace_visit) == as_eq(z, y) + + # Use traverse to collect symbols, method 1 + function_symbols = set() + symbols = set() + + def collect_symbols(s): + if s.op is Op.APPLY: + oper = s.data[0] + function_symbols.add(oper) + if oper in symbols: + symbols.remove(oper) + elif s.op is Op.SYMBOL and s not in function_symbols: + symbols.add(s) + + (x + f(y, x - z)).traverse(collect_symbols) + assert function_symbols == {f} + assert symbols == {x, y, z} + + # Use traverse to collect symbols, method 2 + def collect_symbols2(expr, symbols): + if expr.op is Op.SYMBOL: + symbols.add(expr) + + symbols = set() + (x + f(y, x - z)).traverse(collect_symbols2, symbols) + assert symbols == {x, y, z, f} + + # Use traverse to partially collect symbols + def collect_symbols3(expr, symbols): + if expr.op is Op.APPLY: + # skip traversing function calls + return expr + if expr.op is Op.SYMBOL: + symbols.add(expr) + + symbols = set() + (x + f(y, x - z)).traverse(collect_symbols3, symbols) + assert symbols == {x} + + def test_linear_solve(self): + x = as_symbol('x') + y = as_symbol('y') + z = as_symbol('z') + + assert x.linear_solve(x) == (as_number(1), as_number(0)) + assert (x+1).linear_solve(x) == (as_number(1), as_number(1)) + assert (2*x).linear_solve(x) == (as_number(2), as_number(0)) + assert (2*x+3).linear_solve(x) == (as_number(2), as_number(3)) + assert as_number(3).linear_solve(x) == (as_number(0), as_number(3)) + assert y.linear_solve(x) == (as_number(0), y) + assert (y*z).linear_solve(x) == (as_number(0), y * z) + + assert (x+y).linear_solve(x) == (as_number(1), y) + assert (z*x+y).linear_solve(x) == (z, y) + assert ((z+y)*x+y).linear_solve(x) == (z + y, y) + assert (z*y*x+y).linear_solve(x) == (z * y, y) + + assert_raises(RuntimeError, lambda: (x*x).linear_solve(x)) + + def test_as_numer_denom(self): + x = as_symbol('x') + y = as_symbol('y') + n = as_number(123) + + assert as_numer_denom(x) == (x, as_number(1)) + assert as_numer_denom(x / n) == (x, n) + assert as_numer_denom(n / x) == (n, x) + assert as_numer_denom(x / y) == (x, y) + assert as_numer_denom(x * y) == (x * y, as_number(1)) + assert as_numer_denom(n + x / y) == (x + n * y, y) + assert as_numer_denom(n + x / (y - x / n)) == (y * n ** 2, y * n - x) + + def test_polynomial_atoms(self): + x = as_symbol('x') + y = as_symbol('y') + n = as_number(123) + + assert x.polynomial_atoms() == {x} + assert n.polynomial_atoms() == set() + assert (y[x]).polynomial_atoms() == {y[x]} + assert (y(x)).polynomial_atoms() == {y(x)} + assert (y(x) + x).polynomial_atoms() == {y(x), x} + assert (y(x) * x[y]).polynomial_atoms() == {y(x), x[y]} + assert (y(x) ** x).polynomial_atoms() == {y(x)} |