summaryrefslogtreecommitdiff
path: root/numpy/lib/arraysetops.py
diff options
context:
space:
mode:
authorSebastian Berg <sebastian@sipsolutions.net>2022-06-01 13:06:27 -0700
committerSebastian Berg <sebastian@sipsolutions.net>2022-06-01 13:29:09 -0700
commit911015e445f94340ab41900c4d96f81569978f6f (patch)
tree73b51d6f29b71ac8c7ca5c69b90d7fa546af91dc /numpy/lib/arraysetops.py
parent6cada27f1744d004a6d8ca7731c9a6d5dfed9b3a (diff)
downloadnumpy-911015e445f94340ab41900c4d96f81569978f6f.tar.gz
MAINT: Fixup `unique`s `equal_nan` kwarg to match `np.array_equal`
The other similar arguments in the testing functions and `np.array_equal` use `equal_nan` and not `equal_nans` (with plural s). So it seems we should use that here as well for consistency. Does some very minor style fixes otherwise.
Diffstat (limited to 'numpy/lib/arraysetops.py')
-rw-r--r--numpy/lib/arraysetops.py22
1 files changed, 11 insertions, 11 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index 6d36fdcbd..d42ab2675 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -131,13 +131,13 @@ def _unpack_tuple(x):
def _unique_dispatcher(ar, return_index=None, return_inverse=None,
- return_counts=None, axis=None, *, equal_nans=None):
+ return_counts=None, axis=None, *, equal_nan=None):
return (ar,)
@array_function_dispatch(_unique_dispatcher)
def unique(ar, return_index=False, return_inverse=False,
- return_counts=False, axis=None, *, equal_nans=True):
+ return_counts=False, axis=None, *, equal_nan=True):
"""
Find the unique elements of an array.
@@ -162,11 +162,6 @@ def unique(ar, return_index=False, return_inverse=False,
return_counts : bool, optional
If True, also return the number of times each unique item appears
in `ar`.
- equal_nans : bool, optional
- If True, collapses multiple NaN values in return array into 1
-
- .. versionchanged: 1.24
-
axis : int or None, optional
The axis to operate on. If None, `ar` will be flattened. If an integer,
the subarrays indexed by the given axis will be flattened and treated
@@ -177,6 +172,11 @@ def unique(ar, return_index=False, return_inverse=False,
.. versionadded:: 1.13.0
+ equal_nan : bool, optional
+ If True, collapses multiple NaN values in the return array into one.
+
+ .. versionadded:: 1.24
+
Returns
-------
unique : ndarray
@@ -272,7 +272,7 @@ def unique(ar, return_index=False, return_inverse=False,
ar = np.asanyarray(ar)
if axis is None:
ret = _unique1d(ar, return_index, return_inverse, return_counts,
- equal_nans = equal_nans)
+ equal_nan=equal_nan)
return _unpack_tuple(ret)
# axis was specified and not None
@@ -315,13 +315,13 @@ def unique(ar, return_index=False, return_inverse=False,
return uniq
output = _unique1d(consolidated, return_index,
- return_inverse, return_counts, equal_nans = equal_nans)
+ return_inverse, return_counts, equal_nan=equal_nan)
output = (reshape_uniq(output[0]),) + output[1:]
return _unpack_tuple(output)
def _unique1d(ar, return_index=False, return_inverse=False,
- return_counts=False, *, equal_nans=True):
+ return_counts=False, *, equal_nan=True):
"""
Find the unique elements of an array, ignoring shape.
"""
@@ -337,7 +337,7 @@ def _unique1d(ar, return_index=False, return_inverse=False,
aux = ar
mask = np.empty(aux.shape, dtype=np.bool_)
mask[:1] = True
- if (equal_nans and aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and
+ if (equal_nan and aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and
np.isnan(aux[-1])):
if aux.dtype.kind == "c": # for complex all NaNs are considered equivalent
aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left')