summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
authorTravis Oliphant <oliphant@enthought.com>2006-01-15 03:10:36 +0000
committerTravis Oliphant <oliphant@enthought.com>2006-01-15 03:10:36 +0000
commit0283b6f480b7239dc1390dadf29fcb5e1f2516e3 (patch)
tree6d75e6fb25fb7ff9e5668df1dfad9c7edba7a00e /numpy/lib/function_base.py
parentd04bb02f393f0122e52b804bf548e0e18a0a2ecc (diff)
downloadnumpy-0283b6f480b7239dc1390dadf29fcb5e1f2516e3.tar.gz
Moved .dtypedescr to .dtype; .dtype->.dtype.type; .dtypestr ->.dtype.str; .dtypechar -> .dtype.char
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py26
1 files changed, 13 insertions, 13 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 0b9928577..d0a28b4dd 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -163,7 +163,7 @@ def asarray_chkfinite(a):
"""Like asarray, but check that no NaNs or Infs are present.
"""
a = asarray(a)
- if (a.dtypechar in _nx.typecodes['AllFloat']) \
+ if (a.dtype.char in _nx.typecodes['AllFloat']) \
and (_nx.isnan(a).any() or _nx.isinf(a).any()):
raise ValueError, "array must not contain infs or NaNs"
return a
@@ -322,13 +322,13 @@ def gradient(f, *varargs):
slice2 = [slice(None)]*N
slice3 = [slice(None)]*N
- otype = f.dtypechar
+ otype = f.dtype.char
if otype not in ['f', 'd', 'F', 'D']:
otype = 'd'
for axis in range(N):
# select out appropriate parts for this dimension
- out = zeros(f.shape, f.dtypechar)
+ out = zeros(f.shape, f.dtype.char)
slice1[axis] = slice(1, -1)
slice2[axis] = slice(2, None)
slice3[axis] = slice(None, -2)
@@ -387,7 +387,7 @@ def angle(z, deg=0):
else:
fact = 1.0
z = asarray(z)
- if (issubclass(z.dtype, _nx.complexfloating)):
+ if (issubclass(z.dtype.type, _nx.complexfloating)):
zimag = z.imag
zreal = z.real
else:
@@ -420,10 +420,10 @@ def sort_complex(a):
"""
b = array(a,copy=True)
b.sort()
- if not issubclass(b.dtype, _nx.complexfloating):
- if b.dtypechar in 'bhBH':
+ if not issubclass(b.dtype.type, _nx.complexfloating):
+ if b.dtype.char in 'bhBH':
return b.astype('F')
- elif b.dtypechar == 'g':
+ elif b.dtype.char == 'g':
return b.astype('G')
else:
return b.astype('D')
@@ -480,7 +480,7 @@ def nansum(a, axis=-1):
"""Sum the array over the given axis, treating NaNs as 0.
"""
y = array(a)
- if not issubclass(y.dtype, _nx.integer):
+ if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = 0
return y.sum(axis)
@@ -488,7 +488,7 @@ def nanmin(a, axis=-1):
"""Find the minimium over the given axis, ignoring NaNs.
"""
y = array(a)
- if not issubclass(y.dtype, _nx.integer):
+ if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = _nx.inf
return y.min(axis)
@@ -496,7 +496,7 @@ def nanargmin(a, axis=-1):
"""Find the indices of the minimium over the given axis ignoring NaNs.
"""
y = array(a)
- if not issubclass(y.dtype, _nx.integer):
+ if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = _nx.inf
return y.argmin(axis)
@@ -504,7 +504,7 @@ def nanmax(a, axis=-1):
"""Find the maximum over the given axis ignoring NaNs.
"""
y = array(a)
- if not issubclass(y.dtype, _nx.integer):
+ if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = -_nx.inf
return y.max(axis)
@@ -512,7 +512,7 @@ def nanargmax(a, axis=-1):
"""Find the maximum over the given axis ignoring NaNs.
"""
y = array(a)
- if not issubclass(y.dtype, _nx.integer):
+ if not issubclass(y.dtype.type, _nx.integer):
y[isnan(a)] = -_nx.inf
return y.argmax(axis)
@@ -608,7 +608,7 @@ class vectorize(object):
if self.otypes == '':
otypes = []
for k in range(self.nout):
- otypes.append(asarray(theout[k]).dtypechar)
+ otypes.append(asarray(theout[k]).dtype.char)
self.otypes = ''.join(otypes)
if (self.ufunc is None) or (self.lastcallargs != nargs):