summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
authorMatti Picus <matti.picus@gmail.com>2023-03-27 09:36:25 +0300
committerGitHub <noreply@github.com>2023-03-27 09:36:25 +0300
commited1732410f51293e4c5f63dcf162d9f1d417335a (patch)
treef0acf4850a47de8209c47131e4cec1b33853bf81 /numpy/lib/function_base.py
parent7761175e3df8ef30b09e2d71113251cd2de8f6f9 (diff)
downloadnumpy-ed1732410f51293e4c5f63dcf162d9f1d417335a.tar.gz
Revert "ENH: Enabled the use of numpy.vectorize as a decorator"
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py65
1 files changed, 11 insertions, 54 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 5e1309dfd..f0f374f97 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -2117,10 +2117,10 @@ def _create_arrays(broadcast_shape, dim_sizes, list_of_core_dims, dtypes,
@set_module('numpy')
class vectorize:
"""
- vectorize(pyfunc=np._NoValue, otypes=None, doc=None, excluded=None,
- cache=False, signature=None)
+ vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False,
+ signature=None)
- Returns an object that acts like pyfunc, but takes arrays as input.
+ Generalized function class.
Define a vectorized function which takes a nested sequence of objects or
numpy arrays as inputs and returns a single numpy array or a tuple of numpy
@@ -2134,9 +2134,8 @@ class vectorize:
Parameters
----------
- pyfunc : callable, optional
+ pyfunc : callable
A python function or method.
- Can be omitted to produce a decorator with keyword arguments.
otypes : str or list of dtypes, optional
The output data type. It must be specified as either a string of
typecode characters or a list of data type specifiers. There should
@@ -2168,9 +2167,8 @@ class vectorize:
Returns
-------
- out : callable
- A vectorized function if ``pyfunc`` was provided,
- a decorator otherwise.
+ vectorized : callable
+ Vectorized function.
See Also
--------
@@ -2267,44 +2265,18 @@ class vectorize:
[0., 0., 1., 2., 1., 0.],
[0., 0., 0., 1., 2., 1.]])
- Decorator syntax is supported. The decorator can be called as
- a function to provide keyword arguments.
- >>>@np.vectorize
- ...def identity(x):
- ... return x
- ...
- >>>identity([0, 1, 2])
- array([0, 1, 2])
- >>>@np.vectorize(otypes=[float])
- ...def as_float(x):
- ... return x
- ...
- >>>as_float([0, 1, 2])
- array([0., 1., 2.])
"""
- def __init__(self, pyfunc=np._NoValue, otypes=None, doc=None,
- excluded=None, cache=False, signature=None):
-
- if (pyfunc != np._NoValue) and (not callable(pyfunc)):
- #Splitting the error message to keep
- #the length below 79 characters.
- part1 = "When used as a decorator, "
- part2 = "only accepts keyword arguments."
- raise TypeError(part1 + part2)
-
+ def __init__(self, pyfunc, otypes=None, doc=None, excluded=None,
+ cache=False, signature=None):
self.pyfunc = pyfunc
self.cache = cache
self.signature = signature
- if pyfunc != np._NoValue:
- self.__name__ = pyfunc.__name__
-
self._ufunc = {} # Caching to improve default performance
- self._doc = None
- self.__doc__ = doc
+
if doc is None:
self.__doc__ = pyfunc.__doc__
else:
- self._doc = doc
+ self.__doc__ = doc
if isinstance(otypes, str):
for char in otypes:
@@ -2326,15 +2298,7 @@ class vectorize:
else:
self._in_and_out_core_dims = None
- def _init_stage_2(self, pyfunc, *args, **kwargs):
- self.__name__ = pyfunc.__name__
- self.pyfunc = pyfunc
- if self._doc is None:
- self.__doc__ = pyfunc.__doc__
- else:
- self.__doc__ = self._doc
-
- def _call_as_normal(self, *args, **kwargs):
+ def __call__(self, *args, **kwargs):
"""
Return arrays with the results of `pyfunc` broadcast (vectorized) over
`args` and `kwargs` not in `excluded`.
@@ -2364,13 +2328,6 @@ class vectorize:
return self._vectorize_call(func=func, args=vargs)
- def __call__(self, *args, **kwargs):
- if self.pyfunc is np._NoValue:
- self._init_stage_2(*args, **kwargs)
- return self
-
- return self._call_as_normal(*args, **kwargs)
-
def _get_ufunc_and_otypes(self, func, args):
"""Return (ufunc, otypes)."""
# frompyfunc will fail if args is empty