summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
authorMatteo Raso <matteo_luigi_raso@protonmail.com>2023-04-01 23:11:26 -0400
committerMatteo Raso <matteo_luigi_raso@protonmail.com>2023-04-01 23:11:26 -0400
commitf283fe07eb302df130c5dafaf07d06a8fb9c34fd (patch)
treeba95f1d94a959b06c37fec0450ac078c102346ff /numpy/lib/function_base.py
parentcf07cd7c715d42913c4d92d0a8bef128fd2e8367 (diff)
downloadnumpy-f283fe07eb302df130c5dafaf07d06a8fb9c34fd.tar.gz
Fixed failing tests
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py40
1 files changed, 28 insertions, 12 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 90caac062..277ae3dc4 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -24,7 +24,7 @@ from numpy.core import overrides
from numpy.core.function_base import add_newdoc
from numpy.lib.twodim_base import diag
from numpy.core.multiarray import (
- _insert, add_docstring, bincount, normalize_axis_index, _monotonicity,
+ _place, add_docstring, bincount, normalize_axis_index, _monotonicity,
interp as compiled_interp, interp_complex as compiled_interp_complex
)
from numpy.core.umath import _add_newdoc_ufunc as add_newdoc_ufunc
@@ -1311,6 +1311,8 @@ def gradient(f, *varargs, axis=None, edge_order=1):
if len_axes == 1:
return outvals[0]
+ elif np._using_numpy2_behavior():
+ return tuple(outvals)
else:
return outvals
@@ -1949,11 +1951,7 @@ def place(arr, mask, vals):
[44, 55, 44]])
"""
- if not isinstance(arr, np.ndarray):
- raise TypeError("argument 1 must be numpy.ndarray, "
- "not {name}".format(name=type(arr).__name__))
-
- return _insert(arr, mask, vals)
+ return _place(arr, mask, vals)
def disp(mesg, device=None, linefeed=True):
@@ -2738,7 +2736,7 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
if fact <= 0:
warnings.warn("Degrees of freedom <= 0 for slice",
- RuntimeWarning, stacklevel=3)
+ RuntimeWarning, stacklevel=2)
fact = 0.0
X -= avg[:, None]
@@ -2887,7 +2885,7 @@ def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue, *,
if bias is not np._NoValue or ddof is not np._NoValue:
# 2015-03-15, 1.10
warnings.warn('bias and ddof have no effect and are deprecated',
- DeprecationWarning, stacklevel=3)
+ DeprecationWarning, stacklevel=2)
c = cov(x, y, rowvar, dtype=dtype)
try:
d = diag(c)
@@ -3727,7 +3725,7 @@ def msort(a):
warnings.warn(
"msort is deprecated, use np.sort(a, axis=0) instead",
DeprecationWarning,
- stacklevel=3,
+ stacklevel=2,
)
b = array(a, subok=True, copy=True)
b.sort(0)
@@ -4955,6 +4953,24 @@ def trapz(y, x=None, dx=1.0, axis=-1):
return ret
+# __array_function__ has no __code__ or other attributes normal Python funcs we
+# wrap everything into a C callable. SciPy however, tries to "clone" `trapz`
+# into a new Python function which requires `__code__` and a few other
+# attributes. So we create a dummy clone and copy over its attributes allowing
+# SciPy <= 1.10 to work: https://github.com/scipy/scipy/issues/17811
+assert not hasattr(trapz, "__code__")
+
+def _fake_trapz(y, x=None, dx=1.0, axis=-1):
+ return trapz(y, x=x, dx=dx, axis=axis)
+
+
+trapz.__code__ = _fake_trapz.__code__
+trapz.__globals__ = _fake_trapz.__globals__
+trapz.__defaults__ = _fake_trapz.__defaults__
+trapz.__closure__ = _fake_trapz.__closure__
+trapz.__kwdefaults__ = _fake_trapz.__kwdefaults__
+
+
def _meshgrid_dispatcher(*xi, copy=None, sparse=None, indexing=None):
return xi
@@ -4963,7 +4979,7 @@ def _meshgrid_dispatcher(*xi, copy=None, sparse=None, indexing=None):
@array_function_dispatch(_meshgrid_dispatcher)
def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
"""
- Return coordinate matrices from coordinate vectors.
+ Return a list of coordinate matrices from coordinate vectors.
Make N-D coordinate arrays for vectorized evaluations of
N-D scalar/vector fields over N-D grids, given
@@ -5004,7 +5020,7 @@ def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
Returns
-------
- X1, X2,..., XN : ndarray
+ X1, X2,..., XN : list of ndarrays
For vectors `x1`, `x2`,..., `xn` with lengths ``Ni=len(xi)``,
returns ``(N1, N2, N3,..., Nn)`` shaped arrays if indexing='ij'
or ``(N2, N1, N3,..., Nn)`` shaped arrays if indexing='xy'
@@ -5441,7 +5457,7 @@ def insert(arr, obj, values, axis=None):
warnings.warn(
"in the future insert will treat boolean arrays and "
"array-likes as a boolean index instead of casting it to "
- "integer", FutureWarning, stacklevel=3)
+ "integer", FutureWarning, stacklevel=2)
indices = indices.astype(intp)
# Code after warning period:
#if obj.ndim != 1: