diff options
author | Eric Wieser <wieser.eric@gmail.com> | 2017-12-09 13:58:42 -0800 |
---|---|---|
committer | Eric Wieser <wieser.eric@gmail.com> | 2017-12-10 16:58:42 -0800 |
commit | 34c9950ccdb8a2f64916903b09c2c39233be0adf (patch) | |
tree | 793c0714f9ace7b4722804263d456d02f39a0843 /numpy/lib/histograms.py | |
parent | bbe92a4820eb3eba7235a9ffbd44605032981f42 (diff) | |
download | numpy-34c9950ccdb8a2f64916903b09c2c39233be0adf.tar.gz |
MAINT: Move histogram and histogramdd into their own module
800 self-contained lines are easily enough to go in their own file, as are the 500 lines of tests.
For compatibility, the names are still available through `np.lib.function_base.histogram` and `from np.lib.function_base import *`
For simplicity of imports, all of the unqualified `np.` names are now qualified
Diffstat (limited to 'numpy/lib/histograms.py')
-rw-r--r-- | numpy/lib/histograms.py | 811 |
1 files changed, 811 insertions, 0 deletions
diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py new file mode 100644 index 000000000..61bbab6eb --- /dev/null +++ b/numpy/lib/histograms.py @@ -0,0 +1,811 @@ +""" +Histogram-related functions +""" +from __future__ import division, absolute_import, print_function + +import operator + +import numpy as np +from numpy.compat.py3k import basestring + +__all__ = ['histogram', 'histogramdd'] + + +def _hist_bin_sqrt(x): + """ + Square root histogram bin estimator. + + Bin width is inversely proportional to the data size. Used by many + programs for its simplicity. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + return x.ptp() / np.sqrt(x.size) + + +def _hist_bin_sturges(x): + """ + Sturges histogram bin estimator. + + A very simplistic estimator based on the assumption of normality of + the data. This estimator has poor performance for non-normal data, + which becomes especially obvious for large data sets. The estimate + depends only on size of the data. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + return x.ptp() / (np.log2(x.size) + 1.0) + + +def _hist_bin_rice(x): + """ + Rice histogram bin estimator. + + Another simple estimator with no normality assumption. It has better + performance for large data than Sturges, but tends to overestimate + the number of bins. The number of bins is proportional to the cube + root of data size (asymptotically optimal). The estimate depends + only on size of the data. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + return x.ptp() / (2.0 * x.size ** (1.0 / 3)) + + +def _hist_bin_scott(x): + """ + Scott histogram bin estimator. + + The binwidth is proportional to the standard deviation of the data + and inversely proportional to the cube root of data size + (asymptotically optimal). + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x) + + +def _hist_bin_doane(x): + """ + Doane's histogram bin estimator. + + Improved version of Sturges' formula which works better for + non-normal data. See + stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + if x.size > 2: + sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3))) + sigma = np.std(x) + if sigma > 0.0: + # These three operations add up to + # g1 = np.mean(((x - np.mean(x)) / sigma)**3) + # but use only one temp array instead of three + temp = x - np.mean(x) + np.true_divide(temp, sigma, temp) + np.power(temp, 3, temp) + g1 = np.mean(temp) + return x.ptp() / (1.0 + np.log2(x.size) + + np.log2(1.0 + np.absolute(g1) / sg1)) + return 0.0 + + +def _hist_bin_fd(x): + """ + The Freedman-Diaconis histogram bin estimator. + + The Freedman-Diaconis rule uses interquartile range (IQR) to + estimate binwidth. It is considered a variation of the Scott rule + with more robustness as the IQR is less affected by outliers than + the standard deviation. However, the IQR depends on fewer points + than the standard deviation, so it is less accurate, especially for + long tailed distributions. + + If the IQR is 0, this function returns 1 for the number of bins. + Binwidth is inversely proportional to the cube root of data size + (asymptotically optimal). + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + iqr = np.subtract(*np.percentile(x, [75, 25])) + return 2.0 * iqr * x.size ** (-1.0 / 3.0) + + +def _hist_bin_auto(x): + """ + Histogram bin estimator that uses the minimum width of the + Freedman-Diaconis and Sturges estimators. + + The FD estimator is usually the most robust method, but its width + estimate tends to be too large for small `x`. The Sturges estimator + is quite good for small (<1000) datasets and is the default in the R + language. This method gives good off the shelf behaviour. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + + See Also + -------- + _hist_bin_fd, _hist_bin_sturges + """ + # There is no need to check for zero here. If ptp is, so is IQR and + # vice versa. Either both are zero or neither one is. + return min(_hist_bin_fd(x), _hist_bin_sturges(x)) + + +# Private dict initialized at module load time +_hist_bin_selectors = {'auto': _hist_bin_auto, + 'doane': _hist_bin_doane, + 'fd': _hist_bin_fd, + 'rice': _hist_bin_rice, + 'scott': _hist_bin_scott, + 'sqrt': _hist_bin_sqrt, + 'sturges': _hist_bin_sturges} + + +def histogram(a, bins=10, range=None, normed=False, weights=None, + density=None): + r""" + Compute the histogram of a set of data. + + Parameters + ---------- + a : array_like + Input data. The histogram is computed over the flattened array. + bins : int or sequence of scalars or str, optional + If `bins` is an int, it defines the number of equal-width + bins in the given range (10, by default). If `bins` is a + sequence, it defines the bin edges, including the rightmost + edge, allowing for non-uniform bin widths. + + .. versionadded:: 1.11.0 + + If `bins` is a string from the list below, `histogram` will use + the method chosen to calculate the optimal bin width and + consequently the number of bins (see `Notes` for more detail on + the estimators) from the data that falls within the requested + range. While the bin width will be optimal for the actual data + in the range, the number of bins will be computed to fill the + entire range, including the empty portions. For visualisation, + using the 'auto' option is suggested. Weighted data is not + supported for automated bin size selection. + + 'auto' + Maximum of the 'sturges' and 'fd' estimators. Provides good + all around performance. + + 'fd' (Freedman Diaconis Estimator) + Robust (resilient to outliers) estimator that takes into + account data variability and data size. + + 'doane' + An improved version of Sturges' estimator that works better + with non-normal datasets. + + 'scott' + Less robust estimator that that takes into account data + variability and data size. + + 'rice' + Estimator does not take variability into account, only data + size. Commonly overestimates number of bins required. + + 'sturges' + R's default method, only accounts for data size. Only + optimal for gaussian data and underestimates number of bins + for large non-gaussian datasets. + + 'sqrt' + Square root (of data size) estimator, used by Excel and + other programs for its speed and simplicity. + + range : (float, float), optional + The lower and upper range of the bins. If not provided, range + is simply ``(a.min(), a.max())``. Values outside the range are + ignored. The first element of the range must be less than or + equal to the second. `range` affects the automatic bin + computation as well. While bin width is computed to be optimal + based on the actual data within `range`, the bin count will fill + the entire range including portions containing no data. + normed : bool, optional + This keyword is deprecated in NumPy 1.6.0 due to confusing/buggy + behavior. It will be removed in NumPy 2.0.0. Use the ``density`` + keyword instead. If ``False``, the result will contain the + number of samples in each bin. If ``True``, the result is the + value of the probability *density* function at the bin, + normalized such that the *integral* over the range is 1. Note + that this latter behavior is known to be buggy with unequal bin + widths; use ``density`` instead. + weights : array_like, optional + An array of weights, of the same shape as `a`. Each value in + `a` only contributes its associated weight towards the bin count + (instead of 1). If `density` is True, the weights are + normalized, so that the integral of the density over the range + remains 1. + density : bool, optional + If ``False``, the result will contain the number of samples in + each bin. If ``True``, the result is the value of the + probability *density* function at the bin, normalized such that + the *integral* over the range is 1. Note that the sum of the + histogram values will not be equal to 1 unless bins of unity + width are chosen; it is not a probability *mass* function. + + Overrides the ``normed`` keyword if given. + + Returns + ------- + hist : array + The values of the histogram. See `density` and `weights` for a + description of the possible semantics. + bin_edges : array of dtype float + Return the bin edges ``(length(hist)+1)``. + + + See Also + -------- + histogramdd, bincount, searchsorted, digitize + + Notes + ----- + All but the last (righthand-most) bin is half-open. In other words, + if `bins` is:: + + [1, 2, 3, 4] + + then the first bin is ``[1, 2)`` (including 1, but excluding 2) and + the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which + *includes* 4. + + .. versionadded:: 1.11.0 + + The methods to estimate the optimal number of bins are well founded + in literature, and are inspired by the choices R provides for + histogram visualisation. Note that having the number of bins + proportional to :math:`n^{1/3}` is asymptotically optimal, which is + why it appears in most estimators. These are simply plug-in methods + that give good starting points for number of bins. In the equations + below, :math:`h` is the binwidth and :math:`n_h` is the number of + bins. All estimators that compute bin counts are recast to bin width + using the `ptp` of the data. The final bin count is obtained from + ``np.round(np.ceil(range / h))`. + + 'Auto' (maximum of the 'Sturges' and 'FD' estimators) + A compromise to get a good value. For small datasets the Sturges + value will usually be chosen, while larger datasets will usually + default to FD. Avoids the overly conservative behaviour of FD + and Sturges for small and large datasets respectively. + Switchover point is usually :math:`a.size \approx 1000`. + + 'FD' (Freedman Diaconis Estimator) + .. math:: h = 2 \frac{IQR}{n^{1/3}} + + The binwidth is proportional to the interquartile range (IQR) + and inversely proportional to cube root of a.size. Can be too + conservative for small datasets, but is quite good for large + datasets. The IQR is very robust to outliers. + + 'Scott' + .. math:: h = \sigma \sqrt[3]{\frac{24 * \sqrt{\pi}}{n}} + + The binwidth is proportional to the standard deviation of the + data and inversely proportional to cube root of ``x.size``. Can + be too conservative for small datasets, but is quite good for + large datasets. The standard deviation is not very robust to + outliers. Values are very similar to the Freedman-Diaconis + estimator in the absence of outliers. + + 'Rice' + .. math:: n_h = 2n^{1/3} + + The number of bins is only proportional to cube root of + ``a.size``. It tends to overestimate the number of bins and it + does not take into account data variability. + + 'Sturges' + .. math:: n_h = \log _{2}n+1 + + The number of bins is the base 2 log of ``a.size``. This + estimator assumes normality of data and is too conservative for + larger, non-normal datasets. This is the default method in R's + ``hist`` method. + + 'Doane' + .. math:: n_h = 1 + \log_{2}(n) + + \log_{2}(1 + \frac{|g_1|}{\sigma_{g_1}}) + + g_1 = mean[(\frac{x - \mu}{\sigma})^3] + + \sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}} + + An improved version of Sturges' formula that produces better + estimates for non-normal datasets. This estimator attempts to + account for the skew of the data. + + 'Sqrt' + .. math:: n_h = \sqrt n + The simplest and fastest estimator. Only takes into account the + data size. + + Examples + -------- + >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) + (array([0, 2, 1]), array([0, 1, 2, 3])) + >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) + (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) + >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) + (array([1, 4, 1]), array([0, 1, 2, 3])) + + >>> a = np.arange(5) + >>> hist, bin_edges = np.histogram(a, density=True) + >>> hist + array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) + >>> hist.sum() + 2.4999999999999996 + >>> np.sum(hist * np.diff(bin_edges)) + 1.0 + + .. versionadded:: 1.11.0 + + Automated Bin Selection Methods example, using 2 peak random data + with 2000 points: + + >>> import matplotlib.pyplot as plt + >>> rng = np.random.RandomState(10) # deterministic random data + >>> a = np.hstack((rng.normal(size=1000), + ... rng.normal(loc=5, scale=2, size=1000))) + >>> plt.hist(a, bins='auto') # arguments are passed to np.histogram + >>> plt.title("Histogram with 'auto' bins") + >>> plt.show() + + """ + a = np.asarray(a) + if weights is not None: + weights = np.asarray(weights) + if weights.shape != a.shape: + raise ValueError( + 'weights should have the same shape as a.') + weights = weights.ravel() + a = a.ravel() + + # Do not modify the original value of range so we can check for `None` + if range is None: + if a.size == 0: + # handle empty arrays. Can't determine range, so use 0-1. + first_edge, last_edge = 0.0, 1.0 + else: + first_edge, last_edge = a.min() + 0.0, a.max() + 0.0 + else: + first_edge, last_edge = [mi + 0.0 for mi in range] + if first_edge > last_edge: + raise ValueError( + 'max must be larger than min in range parameter.') + if not np.all(np.isfinite([first_edge, last_edge])): + raise ValueError( + 'range parameter must be finite.') + if first_edge == last_edge: + first_edge -= 0.5 + last_edge += 0.5 + + # density overrides the normed keyword + if density is not None: + normed = False + + # parse the overloaded bins argument + n_equal_bins = None + bin_edges = None + + if isinstance(bins, basestring): + bin_name = bins + # if `bins` is a string for an automatic method, + # this will replace it with the number of bins calculated + if bin_name not in _hist_bin_selectors: + raise ValueError( + "{!r} is not a valid estimator for `bins`".format(bin_name)) + if weights is not None: + raise TypeError("Automated estimation of the number of " + "bins is not supported for weighted data") + # Make a reference to `a` + b = a + # Update the reference if the range needs truncation + if range is not None: + keep = (a >= first_edge) + keep &= (a <= last_edge) + if not np.logical_and.reduce(keep): + b = a[keep] + + if b.size == 0: + n_equal_bins = 1 + else: + # Do not call selectors on empty arrays + width = _hist_bin_selectors[bin_name](b) + if width: + n_equal_bins = int(np.ceil((last_edge - first_edge) / width)) + else: + # Width can be zero for some estimators, e.g. FD when + # the IQR of the data is zero. + n_equal_bins = 1 + + elif np.ndim(bins) == 0: + try: + n_equal_bins = operator.index(bins) + except TypeError: + raise TypeError( + '`bins` must be an integer, a string, or an array') + if n_equal_bins < 1: + raise ValueError('`bins` must be positive, when an integer') + + elif np.ndim(bins) == 1: + bin_edges = np.asarray(bins) + if np.any(bin_edges[:-1] > bin_edges[1:]): + raise ValueError( + '`bins` must increase monotonically, when an array') + + else: + raise ValueError('`bins` must be 1d, when an array') + + del bins + + # compute the bins if only the count was specified + if n_equal_bins is not None: + bin_edges = np.linspace( + first_edge, last_edge, n_equal_bins + 1, endpoint=True) + + # Histogram is an integer or a float array depending on the weights. + if weights is None: + ntype = np.dtype(np.intp) + else: + ntype = weights.dtype + + # We set a block size, as this allows us to iterate over chunks when + # computing histograms, to minimize memory usage. + BLOCK = 65536 + + # The fast path uses bincount, but that only works for certain types + # of weight + simple_weights = ( + weights is None or + np.can_cast(weights.dtype, np.double) or + np.can_cast(weights.dtype, complex) + ) + + if n_equal_bins is not None and simple_weights: + # Fast algorithm for equal bins + # We now convert values of a to bin indices, under the assumption of + # equal bin widths (which is valid here). + + # Initialize empty histogram + n = np.zeros(n_equal_bins, ntype) + + # Pre-compute histogram scaling factor + norm = n_equal_bins / (last_edge - first_edge) + + # We iterate over blocks here for two reasons: the first is that for + # large arrays, it is actually faster (for example for a 10^8 array it + # is 2x as fast) and it results in a memory footprint 3x lower in the + # limit of large arrays. + for i in np.arange(0, len(a), BLOCK): + tmp_a = a[i:i+BLOCK] + if weights is None: + tmp_w = None + else: + tmp_w = weights[i:i + BLOCK] + + # Only include values in the right range + keep = (tmp_a >= first_edge) + keep &= (tmp_a <= last_edge) + if not np.logical_and.reduce(keep): + tmp_a = tmp_a[keep] + if tmp_w is not None: + tmp_w = tmp_w[keep] + tmp_a_data = tmp_a.astype(float) + tmp_a = tmp_a_data - first_edge + tmp_a *= norm + + # Compute the bin indices, and for values that lie exactly on + # last_edge we need to subtract one + indices = tmp_a.astype(np.intp) + indices[indices == n_equal_bins] -= 1 + + # The index computation is not guaranteed to give exactly + # consistent results within ~1 ULP of the bin edges. + decrement = tmp_a_data < bin_edges[indices] + indices[decrement] -= 1 + # The last bin includes the right edge. The other bins do not. + increment = ((tmp_a_data >= bin_edges[indices + 1]) + & (indices != n_equal_bins - 1)) + indices[increment] += 1 + + # We now compute the histogram using bincount + if ntype.kind == 'c': + n.real += np.bincount(indices, weights=tmp_w.real, + minlength=n_equal_bins) + n.imag += np.bincount(indices, weights=tmp_w.imag, + minlength=n_equal_bins) + else: + n += np.bincount(indices, weights=tmp_w, + minlength=n_equal_bins).astype(ntype) + else: + # Compute via cumulative histogram + cum_n = np.zeros(bin_edges.shape, ntype) + if weights is None: + for i in np.arange(0, len(a), BLOCK): + sa = np.sort(a[i:i+BLOCK]) + cum_n += np.r_[sa.searchsorted(bin_edges[:-1], 'left'), + sa.searchsorted(bin_edges[-1], 'right')] + else: + zero = np.array(0, dtype=ntype) + for i in np.arange(0, len(a), BLOCK): + tmp_a = a[i:i+BLOCK] + tmp_w = weights[i:i+BLOCK] + sorting_index = np.argsort(tmp_a) + sa = tmp_a[sorting_index] + sw = tmp_w[sorting_index] + cw = np.concatenate(([zero], sw.cumsum())) + bin_index = np.r_[sa.searchsorted(bin_edges[:-1], 'left'), + sa.searchsorted(bin_edges[-1], 'right')] + cum_n += cw[bin_index] + + n = np.diff(cum_n) + + if density: + db = np.array(np.diff(bin_edges), float) + return n/db/n.sum(), bin_edges + elif normed: + # deprecated, buggy behavior. Remove for NumPy 2.0.0 + db = np.array(np.diff(bin_edges), float) + return n/(n*db).sum(), bin_edges + else: + return n, bin_edges + + +def histogramdd(sample, bins=10, range=None, normed=False, weights=None): + """ + Compute the multidimensional histogram of some data. + + Parameters + ---------- + sample : array_like + The data to be histogrammed. It must be an (N,D) array or data + that can be converted to such. The rows of the resulting array + are the coordinates of points in a D dimensional polytope. + bins : sequence or int, optional + The bin specification: + + * A sequence of arrays describing the bin edges along each dimension. + * The number of bins for each dimension (nx, ny, ... =bins) + * The number of bins for all dimensions (nx=ny=...=bins). + + range : sequence, optional + A sequence of lower and upper bin edges to be used if the edges are + not given explicitly in `bins`. Defaults to the minimum and maximum + values along each dimension. + normed : bool, optional + If False, returns the number of samples in each bin. If True, + returns the bin density ``bin_count / sample_count / bin_volume``. + weights : (N,) array_like, optional + An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. + Weights are normalized to 1 if normed is True. If normed is False, + the values of the returned histogram are equal to the sum of the + weights belonging to the samples falling into each bin. + + Returns + ------- + H : ndarray + The multidimensional histogram of sample x. See normed and weights + for the different possible semantics. + edges : list + A list of D arrays describing the bin edges for each dimension. + + See Also + -------- + histogram: 1-D histogram + histogram2d: 2-D histogram + + Examples + -------- + >>> r = np.random.randn(100,3) + >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) + >>> H.shape, edges[0].size, edges[1].size, edges[2].size + ((5, 8, 4), 6, 9, 5) + + """ + + try: + # Sample is an ND-array. + N, D = sample.shape + except (AttributeError, ValueError): + # Sample is a sequence of 1D arrays. + sample = np.atleast_2d(sample).T + N, D = sample.shape + + nbin = np.empty(D, int) + edges = D*[None] + dedges = D*[None] + if weights is not None: + weights = np.asarray(weights) + + try: + M = len(bins) + if M != D: + raise ValueError( + 'The dimension of bins must be equal to the dimension of the ' + ' sample x.') + except TypeError: + # bins is an integer + bins = D*[bins] + + # Select range for each dimension + # Used only if number of bins is given. + if range is None: + # Handle empty input. Range can't be determined in that case, use 0-1. + if N == 0: + smin = np.zeros(D) + smax = np.ones(D) + else: + smin = np.atleast_1d(np.array(sample.min(0), float)) + smax = np.atleast_1d(np.array(sample.max(0), float)) + else: + if not np.all(np.isfinite(range)): + raise ValueError( + 'range parameter must be finite.') + smin = np.zeros(D) + smax = np.zeros(D) + for i in np.arange(D): + smin[i], smax[i] = range[i] + + # Make sure the bins have a finite width. + for i in np.arange(len(smin)): + if smin[i] == smax[i]: + smin[i] = smin[i] - .5 + smax[i] = smax[i] + .5 + + # avoid rounding issues for comparisons when dealing with inexact types + if np.issubdtype(sample.dtype, np.inexact): + edge_dt = sample.dtype + else: + edge_dt = float + # Create edge arrays + for i in np.arange(D): + if np.isscalar(bins[i]): + if bins[i] < 1: + raise ValueError( + "Element at index %s in `bins` should be a positive " + "integer." % i) + nbin[i] = bins[i] + 2 # +2 for outlier bins + edges[i] = np.linspace(smin[i], smax[i], nbin[i]-1, dtype=edge_dt) + else: + edges[i] = np.asarray(bins[i], edge_dt) + nbin[i] = len(edges[i]) + 1 # +1 for outlier bins + dedges[i] = np.diff(edges[i]) + if np.any(np.asarray(dedges[i]) <= 0): + raise ValueError( + "Found bin edge of size <= 0. Did you specify `bins` with" + "non-monotonic sequence?") + + nbin = np.asarray(nbin) + + # Handle empty input. + if N == 0: + return np.zeros(nbin-2), edges + + # Compute the bin number each sample falls into. + Ncount = {} + for i in np.arange(D): + Ncount[i] = np.digitize(sample[:, i], edges[i]) + + # Using digitize, values that fall on an edge are put in the right bin. + # For the rightmost bin, we want values equal to the right edge to be + # counted in the last bin, and not as an outlier. + for i in np.arange(D): + # Rounding precision + mindiff = dedges[i].min() + if not np.isinf(mindiff): + decimal = int(-np.log10(mindiff)) + 6 + # Find which points are on the rightmost edge. + not_smaller_than_edge = (sample[:, i] >= edges[i][-1]) + on_edge = (np.around(sample[:, i], decimal) == + np.around(edges[i][-1], decimal)) + # Shift these points one bin to the left. + Ncount[i][np.nonzero(on_edge & not_smaller_than_edge)[0]] -= 1 + + # Flattened histogram matrix (1D) + # Reshape is used so that overlarge arrays + # will raise an error. + hist = np.zeros(nbin, float).reshape(-1) + + # Compute the sample indices in the flattened histogram matrix. + ni = nbin.argsort() + xy = np.zeros(N, int) + for i in np.arange(0, D-1): + xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() + xy += Ncount[ni[-1]] + + # Compute the number of repetitions in xy and assign it to the + # flattened histmat. + if len(xy) == 0: + return np.zeros(nbin-2, int), edges + + flatcount = np.bincount(xy, weights) + a = np.arange(len(flatcount)) + hist[a] = flatcount + + # Shape into a proper matrix + hist = hist.reshape(np.sort(nbin)) + for i in np.arange(nbin.size): + j = ni.argsort()[i] + hist = hist.swapaxes(i, j) + ni[i], ni[j] = ni[j], ni[i] + + # Remove outliers (indices 0 and -1 for each dimension). + core = D*[slice(1, -1)] + hist = hist[core] + + # Normalize if normed is True + if normed: + s = hist.sum() + for i in np.arange(D): + shape = np.ones(D, int) + shape[i] = nbin[i] - 2 + hist = hist / dedges[i].reshape(shape) + hist /= s + + if (hist.shape != nbin - 2).any(): + raise RuntimeError( + "Internal Shape Error") + return hist, edges |