summaryrefslogtreecommitdiff
path: root/numpy/lib/index_tricks.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2014-07-30 18:06:28 -0600
committerJulian Taylor <jtaylor.debian@googlemail.com>2014-07-31 21:21:17 +0200
commit01b0d7e82211b581aaff925e3ccc36cff9ac1895 (patch)
tree8ec68353d5f09b9f0411948f1345ec79f5443b4c /numpy/lib/index_tricks.py
parentdec6658cdc10a23ad0e733fb52a814306033d88c (diff)
downloadnumpy-01b0d7e82211b581aaff925e3ccc36cff9ac1895.tar.gz
STY: Make files in numpy/lib PEP8 compliant.
The rules enforced are the same as those used for scipy.
Diffstat (limited to 'numpy/lib/index_tricks.py')
-rw-r--r--numpy/lib/index_tricks.py80
1 files changed, 50 insertions, 30 deletions
diff --git a/numpy/lib/index_tricks.py b/numpy/lib/index_tricks.py
index f0066be81..98c6b291b 100644
--- a/numpy/lib/index_tricks.py
+++ b/numpy/lib/index_tricks.py
@@ -1,28 +1,30 @@
from __future__ import division, absolute_import, print_function
-__all__ = ['ravel_multi_index',
- 'unravel_index',
- 'mgrid',
- 'ogrid',
- 'r_', 'c_', 's_',
- 'index_exp', 'ix_',
- 'ndenumerate', 'ndindex',
- 'fill_diagonal', 'diag_indices', 'diag_indices_from']
-
import sys
+import math
+
import numpy.core.numeric as _nx
-from numpy.core.numeric import ( asarray, ScalarType, array, alltrue, cumprod,
- arange )
+from numpy.core.numeric import (
+ asarray, ScalarType, array, alltrue, cumprod, arange
+ )
from numpy.core.numerictypes import find_common_type
-import math
from . import function_base
import numpy.matrixlib as matrix
from .function_base import diff
from numpy.lib._compiled_base import ravel_multi_index, unravel_index
from numpy.lib.stride_tricks import as_strided
+
makemat = matrix.matrix
+
+__all__ = [
+ 'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_',
+ 's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal',
+ 'diag_indices', 'diag_indices_from'
+ ]
+
+
def ix_(*args):
"""
Construct an open mesh from multiple sequences.
@@ -142,8 +144,10 @@ class nd_grid(object):
[4]]), array([[0, 1, 2, 3, 4]])]
"""
+
def __init__(self, sparse=False):
self.sparse = sparse
+
def __getitem__(self, key):
try:
size = []
@@ -151,16 +155,19 @@ class nd_grid(object):
for k in range(len(key)):
step = key[k].step
start = key[k].start
- if start is None: start=0
- if step is None: step=1
+ if start is None:
+ start = 0
+ if step is None:
+ step = 1
if isinstance(step, complex):
size.append(int(abs(step)))
typ = float
else:
- size.append(int(math.ceil((key[k].stop - start)/(step*1.0))))
- if isinstance(step, float) or \
- isinstance(start, float) or \
- isinstance(key[k].stop, float):
+ size.append(
+ int(math.ceil((key[k].stop - start)/(step*1.0))))
+ if (isinstance(step, float) or
+ isinstance(start, float) or
+ isinstance(key[k].stop, float)):
typ = float
if self.sparse:
nn = [_nx.arange(_x, dtype=_t)
@@ -170,8 +177,10 @@ class nd_grid(object):
for k in range(len(size)):
step = key[k].step
start = key[k].start
- if start is None: start=0
- if step is None: step=1
+ if start is None:
+ start = 0
+ if step is None:
+ step = 1
if isinstance(step, complex):
step = int(abs(step))
if step != 1:
@@ -188,13 +197,14 @@ class nd_grid(object):
step = key.step
stop = key.stop
start = key.start
- if start is None: start = 0
+ if start is None:
+ start = 0
if isinstance(step, complex):
step = abs(step)
length = int(step)
if step != 1:
step = (key.stop-start)/float(step-1)
- stop = key.stop+step
+ stop = key.stop + step
return _nx.arange(0, length, 1, float)*step + start
else:
return _nx.arange(start, stop, step)
@@ -207,8 +217,8 @@ class nd_grid(object):
mgrid = nd_grid(sparse=False)
ogrid = nd_grid(sparse=True)
-mgrid.__doc__ = None # set in numpy.add_newdocs
-ogrid.__doc__ = None # set in numpy.add_newdocs
+mgrid.__doc__ = None # set in numpy.add_newdocs
+ogrid.__doc__ = None # set in numpy.add_newdocs
class AxisConcatenator(object):
"""
@@ -217,6 +227,7 @@ class AxisConcatenator(object):
For detailed documentation on usage, see `r_`.
"""
+
def _retval(self, res):
if self.matrix:
oldndim = res.ndim
@@ -256,7 +267,8 @@ class AxisConcatenator(object):
step = key[k].step
start = key[k].start
stop = key[k].stop
- if start is None: start = 0
+ if start is None:
+ start = 0
if step is None:
step = 1
if isinstance(step, complex):
@@ -431,6 +443,7 @@ class RClass(AxisConcatenator):
matrix([[1, 2, 3, 4, 5, 6]])
"""
+
def __init__(self):
AxisConcatenator.__init__(self, 0)
@@ -453,6 +466,7 @@ class CClass(AxisConcatenator):
array([[1, 2, 3, 0, 0, 4, 5, 6]])
"""
+
def __init__(self):
AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)
@@ -484,6 +498,7 @@ class ndenumerate(object):
(1, 1) 4
"""
+
def __init__(self, arr):
self.iter = asarray(arr).flat
@@ -536,10 +551,12 @@ class ndindex(object):
(2, 1, 0)
"""
+
def __init__(self, *shape):
if len(shape) == 1 and isinstance(shape[0], tuple):
shape = shape[0]
- x = as_strided(_nx.zeros(1), shape=shape, strides=_nx.zeros_like(shape))
+ x = as_strided(_nx.zeros(1), shape=shape,
+ strides=_nx.zeros_like(shape))
self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
order='C')
@@ -556,18 +573,20 @@ class ndindex(object):
def __next__(self):
"""
- Standard iterator method, updates the index and returns the index tuple.
+ Standard iterator method, updates the index and returns the index
+ tuple.
Returns
-------
val : tuple of ints
- Returns a tuple containing the indices of the current iteration.
+ Returns a tuple containing the indices of the current
+ iteration.
"""
next(self._it)
return self._it.multi_index
- next = __next__
+ next = __next__
# You can do all this with slice() plus a few special objects,
@@ -624,6 +643,7 @@ class IndexExpression(object):
array([2, 4])
"""
+
def __init__(self, maketuple):
self.maketuple = maketuple
@@ -743,7 +763,7 @@ def fill_diagonal(a, val, wrap=False):
else:
# For more than d=2, the strided formula is only valid for arrays with
# all dimensions equal, so we check first.
- if not alltrue(diff(a.shape)==0):
+ if not alltrue(diff(a.shape) == 0):
raise ValueError("All dimensions of input must be of equal length")
step = 1 + (cumprod(a.shape[:-1])).sum()