summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_function_base.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2012-04-01 09:40:12 -0600
committerCharles Harris <charlesr.harris@gmail.com>2012-04-01 09:40:12 -0600
commit1957cb3c3574aaecf45d1512bddc10a0bcc39639 (patch)
tree10359bdaf478a95827ec940419b5119ac68e0d95 /numpy/lib/tests/test_function_base.py
parentb9576ed22a57cb8c7bf04038c5792bb2b499f390 (diff)
downloadnumpy-1957cb3c3574aaecf45d1512bddc10a0bcc39639.tar.gz
STY: Style cleanups in numpy/lib/tests/test_function_base.
Make imports from numpy.testing explicit. Use np namespace.
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r--numpy/lib/tests/test_function_base.py485
1 files changed, 245 insertions, 240 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 67a5204a1..910fd5283 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -1,27 +1,28 @@
import warnings
-
-from numpy.testing import *
-import numpy.lib
+import numpy as np
+from numpy.testing import (
+ run_module_suite, TestCase, assert_, assert_equal,
+ assert_array_equal, assert_almost_equal, assert_array_almost_equal,
+ assert_raises, assert_allclose, assert_array_max_ulp
+ )
+from numpy.random import rand
from numpy.lib import *
-from numpy.core import *
-from numpy import matrix, asmatrix
-import numpy as np
class TestAny(TestCase):
def test_basic(self):
y1 = [0, 0, 1, 0]
y2 = [0, 0, 0, 0]
y3 = [1, 0, 1, 0]
- assert_(any(y1))
- assert_(any(y3))
- assert_(not any(y2))
+ assert_(np.any(y1))
+ assert_(np.any(y3))
+ assert_(not np.any(y2))
def test_nd(self):
y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]]
- assert_(any(y1))
- assert_array_equal(sometrue(y1, axis=0), [1, 1, 0])
- assert_array_equal(sometrue(y1, axis=1), [0, 1, 1])
+ assert_(np.any(y1))
+ assert_array_equal(np.sometrue(y1, axis=0), [1, 1, 0])
+ assert_array_equal(np.sometrue(y1, axis=1), [0, 1, 1])
class TestAll(TestCase):
@@ -29,28 +30,28 @@ class TestAll(TestCase):
y1 = [0, 1, 1, 0]
y2 = [0, 0, 0, 0]
y3 = [1, 1, 1, 1]
- assert_(not all(y1))
- assert_(all(y3))
- assert_(not all(y2))
- assert_(all(~array(y2)))
+ assert_(not np.all(y1))
+ assert_(np.all(y3))
+ assert_(not np.all(y2))
+ assert_(np.all(~np.array(y2)))
def test_nd(self):
y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
- assert_(not all(y1))
- assert_array_equal(alltrue(y1, axis=0), [0, 0, 1])
- assert_array_equal(alltrue(y1, axis=1), [0, 0, 1])
+ assert_(not np.all(y1))
+ assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1])
+ assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1])
class TestAverage(TestCase):
def test_basic(self):
- y1 = array([1, 2, 3])
+ y1 = np.array([1, 2, 3])
assert_(average(y1, axis=0) == 2.)
- y2 = array([1., 2., 3.])
+ y2 = np.array([1., 2., 3.])
assert_(average(y2, axis=0) == 2.)
y3 = [0., 0., 0.]
assert_(average(y3, axis=0) == 0.)
- y4 = ones((4, 4))
+ y4 = np.ones((4, 4))
y4[0, 1] = 0
y4[1, 0] = 2
assert_almost_equal(y4.mean(0), average(y4, 0))
@@ -60,25 +61,25 @@ class TestAverage(TestCase):
assert_almost_equal(y5.mean(0), average(y5, 0))
assert_almost_equal(y5.mean(1), average(y5, 1))
- y6 = matrix(rand(5, 5))
+ y6 = np.matrix(rand(5, 5))
assert_array_equal(y6.mean(0), average(y6, 0))
def test_weights(self):
- y = arange(10)
- w = arange(10)
+ y = np.arange(10)
+ w = np.arange(10)
actual = average(y, weights=w)
- desired = (arange(10) ** 2).sum()*1. / arange(10).sum()
+ desired = (np.arange(10) ** 2).sum()*1. / np.arange(10).sum()
assert_almost_equal(actual, desired)
- y1 = array([[1, 2, 3], [4, 5, 6]])
+ y1 = np.array([[1, 2, 3], [4, 5, 6]])
w0 = [1, 2]
actual = average(y1, weights=w0, axis=0)
- desired = array([3., 4., 5.])
+ desired = np.array([3., 4., 5.])
assert_almost_equal(actual, desired)
w1 = [0, 0, 1]
actual = average(y1, weights=w1, axis=1)
- desired = array([3., 6.])
+ desired = np.array([3., 6.])
assert_almost_equal(actual, desired)
# This should raise an error. Can we test for that ?
@@ -86,35 +87,35 @@ class TestAverage(TestCase):
# 2D Case
w2 = [[0, 0, 1], [0, 0, 2]]
- desired = array([3., 6.])
+ desired = np.array([3., 6.])
assert_array_equal(average(y1, weights=w2, axis=1), desired)
assert_equal(average(y1, weights=w2), 5.)
def test_returned(self):
- y = array([[1, 2, 3], [4, 5, 6]])
+ y = np.array([[1, 2, 3], [4, 5, 6]])
# No weights
avg, scl = average(y, returned=True)
assert_equal(scl, 6.)
avg, scl = average(y, 0, returned=True)
- assert_array_equal(scl, array([2., 2., 2.]))
+ assert_array_equal(scl, np.array([2., 2., 2.]))
avg, scl = average(y, 1, returned=True)
- assert_array_equal(scl, array([3., 3.]))
+ assert_array_equal(scl, np.array([3., 3.]))
# With weights
w0 = [1, 2]
avg, scl = average(y, weights=w0, axis=0, returned=True)
- assert_array_equal(scl, array([3., 3., 3.]))
+ assert_array_equal(scl, np.array([3., 3., 3.]))
w1 = [1, 2, 3]
avg, scl = average(y, weights=w1, axis=1, returned=True)
- assert_array_equal(scl, array([6., 6.]))
+ assert_array_equal(scl, np.array([6., 6.]))
w2 = [[0, 0, 1], [1, 2, 3]]
avg, scl = average(y, weights=w2, axis=1, returned=True)
- assert_array_equal(scl, array([1., 6.]))
+ assert_array_equal(scl, np.array([1., 6.]))
class TestSelect(TestCase):
@@ -125,12 +126,12 @@ class TestSelect(TestCase):
return output
def test_basic(self):
- choices = [array([1, 2, 3]),
- array([4, 5, 6]),
- array([7, 8, 9])]
- conditions = [array([0, 0, 0]),
- array([0, 1, 0]),
- array([0, 0, 1])]
+ choices = [np.array([1, 2, 3]),
+ np.array([4, 5, 6]),
+ np.array([7, 8, 9])]
+ conditions = [np.array([0, 0, 0]),
+ np.array([0, 1, 0]),
+ np.array([0, 0, 1])]
assert_array_equal(select(conditions, choices, default=15),
self._select(conditions, choices, default=15))
@@ -149,104 +150,104 @@ class TestInsert(TestCase):
class TestAmax(TestCase):
def test_basic(self):
a = [3, 4, 5, 10, -3, -5, 6.0]
- assert_equal(amax(a), 10.0)
+ assert_equal(np.amax(a), 10.0)
b = [[3, 6.0, 9.0],
[4, 10.0, 5.0],
[8, 3.0, 2.0]]
- assert_equal(amax(b, axis=0), [8.0, 10.0, 9.0])
- assert_equal(amax(b, axis=1), [9.0, 10.0, 8.0])
+ assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0])
+ assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0])
class TestAmin(TestCase):
def test_basic(self):
a = [3, 4, 5, 10, -3, -5, 6.0]
- assert_equal(amin(a), -5.0)
+ assert_equal(np.amin(a), -5.0)
b = [[3, 6.0, 9.0],
[4, 10.0, 5.0],
[8, 3.0, 2.0]]
- assert_equal(amin(b, axis=0), [3.0, 3.0, 2.0])
- assert_equal(amin(b, axis=1), [3.0, 4.0, 2.0])
+ assert_equal(np.amin(b, axis=0), [3.0, 3.0, 2.0])
+ assert_equal(np.amin(b, axis=1), [3.0, 4.0, 2.0])
class TestPtp(TestCase):
def test_basic(self):
a = [3, 4, 5, 10, -3, -5, 6.0]
- assert_equal(ptp(a, axis=0), 15.0)
+ assert_equal(np.ptp(a, axis=0), 15.0)
b = [[3, 6.0, 9.0],
[4, 10.0, 5.0],
[8, 3.0, 2.0]]
- assert_equal(ptp(b, axis=0), [5.0, 7.0, 7.0])
- assert_equal(ptp(b, axis= -1), [6.0, 6.0, 6.0])
+ assert_equal(np.ptp(b, axis=0), [5.0, 7.0, 7.0])
+ assert_equal(np.ptp(b, axis= -1), [6.0, 6.0, 6.0])
class TestCumsum(TestCase):
def test_basic(self):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
- for ctype in [int8, uint8, int16, uint16, int32, uint32,
- float32, float64, complex64, complex128]:
- a = array(ba, ctype)
- a2 = array(ba2, ctype)
- assert_array_equal(cumsum(a, axis=0), array([1, 3, 13, 24, 30, 35, 39], ctype))
- assert_array_equal(cumsum(a2, axis=0), array([[1, 2, 3, 4], [6, 8, 10, 13],
- [16, 11, 14, 18]], ctype))
- assert_array_equal(cumsum(a2, axis=1),
- array([[1, 3, 6, 10],
- [5, 11, 18, 27],
- [10, 13, 17, 22]], ctype))
+ for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
+ np.uint32, np.float32, np.float64, np.complex64, np.complex128]:
+ a = np.array(ba, ctype)
+ a2 = np.array(ba2, ctype)
+
+ tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
+ assert_array_equal(np.cumsum(a, axis=0), tgt)
+
+ tgt = np.array([[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
+ assert_array_equal(np.cumsum(a2, axis=0), tgt)
+
+ tgt = np.array([[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
+ assert_array_equal(np.cumsum(a2, axis=1), tgt)
class TestProd(TestCase):
def test_basic(self):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
- for ctype in [int16, uint16, int32, uint32,
- float32, float64, complex64, complex128]:
- a = array(ba, ctype)
- a2 = array(ba2, ctype)
+ for ctype in [np.int16, np.uint16, np.int32, np.uint32,
+ np.float32, np.float64, np.complex64, np.complex128]:
+ a = np.array(ba, ctype)
+ a2 = np.array(ba2, ctype)
if ctype in ['1', 'b']:
self.assertRaises(ArithmeticError, prod, a)
self.assertRaises(ArithmeticError, prod, a2, 1)
self.assertRaises(ArithmeticError, prod, a)
else:
- assert_equal(prod(a, axis=0), 26400)
- assert_array_equal(prod(a2, axis=0),
- array([50, 36, 84, 180], ctype))
- assert_array_equal(prod(a2, axis= -1), array([24, 1890, 600], ctype))
+ assert_equal(np.prod(a, axis=0), 26400)
+ assert_array_equal(np.prod(a2, axis=0),
+ np.array([50, 36, 84, 180], ctype))
+ assert_array_equal(np.prod(a2, axis= -1),
+ np.array([24, 1890, 600], ctype))
class TestCumprod(TestCase):
def test_basic(self):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
- for ctype in [int16, uint16, int32, uint32,
- float32, float64, complex64, complex128]:
- a = array(ba, ctype)
- a2 = array(ba2, ctype)
+ for ctype in [np.int16, np.uint16, np.int32, np.uint32,
+ np.float32, np.float64, np.complex64, np.complex128]:
+ a = np.array(ba, ctype)
+ a2 = np.array(ba2, ctype)
if ctype in ['1', 'b']:
self.assertRaises(ArithmeticError, cumprod, a)
self.assertRaises(ArithmeticError, cumprod, a2, 1)
self.assertRaises(ArithmeticError, cumprod, a)
else:
- assert_array_equal(cumprod(a, axis= -1),
- array([1, 2, 20, 220,
- 1320, 6600, 26400], ctype))
- assert_array_equal(cumprod(a2, axis=0),
- array([[ 1, 2, 3, 4],
- [ 5, 12, 21, 36],
- [50, 36, 84, 180]], ctype))
- assert_array_equal(cumprod(a2, axis= -1),
- array([[ 1, 2, 6, 24],
- [ 5, 30, 210, 1890],
- [10, 30, 120, 600]], ctype))
+ assert_array_equal(np.cumprod(a, axis= -1),
+ np.array([1, 2, 20, 220, 1320, 6600, 26400], ctype))
+ assert_array_equal(np.cumprod(a2, axis=0),
+ np.array([[ 1, 2, 3, 4], [ 5, 12, 21, 36],
+ [50, 36, 84, 180]], ctype))
+ assert_array_equal(np.cumprod(a2, axis= -1),
+ np.array([[ 1, 2, 6, 24], [ 5, 30, 210, 1890],
+ [10, 30, 120, 600]], ctype))
class TestDiff(TestCase):
def test_basic(self):
x = [1, 4, 6, 7, 12]
- out = array([3, 2, 1, 5])
- out2 = array([-1, -1, 4])
- out3 = array([0, 5])
+ out = np.array([3, 2, 1, 5])
+ out2 = np.array([-1, -1, 4])
+ out3 = np.array([0, 5])
assert_array_equal(diff(x), out)
assert_array_equal(diff(x, n=2), out2)
assert_array_equal(diff(x, n=3), out3)
@@ -266,17 +267,17 @@ class TestDiff(TestCase):
class TestGradient(TestCase):
def test_basic(self):
v = [[1, 1], [3, 4]]
- x = array(v)
- dx = [array([[2., 3.], [2., 3.]]),
- array([[0., 0.], [1., 1.]])]
+ x = np.array(v)
+ dx = [np.array([[2., 3.], [2., 3.]]),
+ np.array([[0., 0.], [1., 1.]])]
assert_array_equal(gradient(x), dx)
assert_array_equal(gradient(v), dx)
def test_badargs(self):
# for 2D array, gradient can take 0,1, or 2 extra args
- x = array([[1, 1], [3, 4]])
- assert_raises(SyntaxError, gradient, x, array([1., 1.]),
- array([1., 1.]), array([1., 1.]))
+ x = np.array([[1, 1], [3, 4]])
+ assert_raises(SyntaxError, gradient, x, np.array([1., 1.]),
+ np.array([1., 1.]), np.array([1., 1.]))
def test_masked(self):
# Make sure that gradient supports subclasses like masked arrays
@@ -285,29 +286,30 @@ class TestGradient(TestCase):
def test_datetime64(self):
# Make sure gradient() can handle special types like datetime64
- x = array(['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12',
+ x = np.array(['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12',
'1910-10-12', '1910-12-12', '1912-12-12'],
dtype='datetime64[D]')
- dx = array([ -5, -3, 0, 31, 61, 396, 731], dtype='timedelta64[D]')
+ dx = np.array([ -5, -3, 0, 31, 61, 396, 731], dtype='timedelta64[D]')
assert_array_equal(gradient(x), dx)
assert_(dx.dtype == np.dtype('timedelta64[D]'))
def test_timedelta64(self):
# Make sure gradient() can handle special types like timedelta64
- x = array([-5, -3, 10, 12, 61, 321, 300], dtype='timedelta64[D]')
- dx = array([ 2, 7, 7, 25, 154, 119, -21], dtype='timedelta64[D]')
+ x = np.array([-5, -3, 10, 12, 61, 321, 300], dtype='timedelta64[D]')
+ dx = np.array([ 2, 7, 7, 25, 154, 119, -21], dtype='timedelta64[D]')
assert_array_equal(gradient(x), dx)
assert_(dx.dtype == np.dtype('timedelta64[D]'))
class TestAngle(TestCase):
def test_basic(self):
- x = [1 + 3j, sqrt(2) / 2.0 + 1j * sqrt(2) / 2, 1, 1j, -1, -1j, 1 - 3j, -1 + 3j]
+ x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2,
+ 1, 1j, -1, -1j, 1 - 3j, -1 + 3j]
y = angle(x)
- yo = [arctan(3.0 / 1.0), arctan(1.0), 0, pi / 2, pi, -pi / 2.0,
- - arctan(3.0 / 1.0), pi - arctan(3.0 / 1.0)]
+ yo = [np.arctan(3.0 / 1.0), np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0,
+ - np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)]
z = angle(x, deg=1)
- zo = array(yo) * 180 / pi
+ zo = np.array(yo) * 180 / np.pi
assert_array_almost_equal(y, yo, 11)
assert_array_almost_equal(z, zo, 11)
@@ -316,29 +318,29 @@ class TestTrimZeros(TestCase):
""" only testing for integer splits.
"""
def test_basic(self):
- a = array([0, 0, 1, 2, 3, 4, 0])
+ a = np.array([0, 0, 1, 2, 3, 4, 0])
res = trim_zeros(a)
- assert_array_equal(res, array([1, 2, 3, 4]))
+ assert_array_equal(res, np.array([1, 2, 3, 4]))
def test_leading_skip(self):
- a = array([0, 0, 1, 0, 2, 3, 4, 0])
+ a = np.array([0, 0, 1, 0, 2, 3, 4, 0])
res = trim_zeros(a)
- assert_array_equal(res, array([1, 0, 2, 3, 4]))
+ assert_array_equal(res, np.array([1, 0, 2, 3, 4]))
def test_trailing_skip(self):
- a = array([0, 0, 1, 0, 2, 3, 0, 4, 0])
+ a = np.array([0, 0, 1, 0, 2, 3, 0, 4, 0])
res = trim_zeros(a)
- assert_array_equal(res, array([1, 0, 2, 3, 0, 4]))
+ assert_array_equal(res, np.array([1, 0, 2, 3, 0, 4]))
class TestExtins(TestCase):
def test_basic(self):
- a = array([1, 3, 2, 1, 2, 3, 3])
+ a = np.array([1, 3, 2, 1, 2, 3, 3])
b = extract(a > 1, a)
assert_array_equal(b, [3, 2, 2, 3, 3])
def test_place(self):
- a = array([1, 4, 3, 2, 5, 8, 7])
+ a = np.array([1, 4, 3, 2, 5, 8, 7])
place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6])
assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7])
@@ -374,7 +376,7 @@ class TestVectorize(TestCase):
assert_array_equal(r, [5, 8, 1, 4])
def test_large(self):
- x = linspace(-3, 2, 10000)
+ x = np.linspace(-3, 2, 10000)
f = vectorize(lambda x: x)
y = f(x)
assert_array_equal(y, x)
@@ -382,9 +384,9 @@ class TestVectorize(TestCase):
def test_ufunc(self):
import math
f = vectorize(math.cos)
- args = array([0, 0.5*pi, pi, 1.5*pi, 2*pi])
+ args = np.array([0, 0.5*np.pi, np.pi, 1.5*np.pi, 2*np.pi])
r1 = f(args)
- r2 = cos(args)
+ r2 = np.cos(args)
assert_array_equal(r1, r2)
def test_keywords(self):
@@ -392,12 +394,12 @@ class TestVectorize(TestCase):
def foo(a, b=1):
return a + b
f = vectorize(foo)
- args = array([1,2,3])
+ args = np.array([1,2,3])
r1 = f(args)
- r2 = array([2,3,4])
+ r2 = np.array([2,3,4])
assert_array_equal(r1, r2)
r1 = f(args, 2)
- r2 = array([3,4,5])
+ r2 = np.array([3,4,5])
assert_array_equal(r1, r2)
def test_keywords_no_func_code(self):
@@ -413,27 +415,27 @@ class TestVectorize(TestCase):
class TestDigitize(TestCase):
def test_forward(self):
- x = arange(-6, 5)
- bins = arange(-5, 5)
- assert_array_equal(digitize(x, bins), arange(11))
+ x = np.arange(-6, 5)
+ bins = np.arange(-5, 5)
+ assert_array_equal(digitize(x, bins), np.arange(11))
def test_reverse(self):
- x = arange(5, -6, -1)
- bins = arange(5, -5, -1)
- assert_array_equal(digitize(x, bins), arange(11))
+ x = np.arange(5, -6, -1)
+ bins = np.arange(5, -5, -1)
+ assert_array_equal(digitize(x, bins), np.arange(11))
def test_random(self):
x = rand(10)
- bin = linspace(x.min(), x.max(), 10)
- assert_(all(digitize(x, bin) != 0))
+ bin = np.linspace(x.min(), x.max(), 10)
+ assert_(np.all(digitize(x, bin) != 0))
class TestUnwrap(TestCase):
def test_simple(self):
#check that unwrap removes jumps greather that 2*pi
- assert_array_equal(unwrap([1, 1 + 2 * pi]), [1, 1])
+ assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1])
#check that unwrap maintans continuity
- assert_(all(diff(unwrap(rand(10) * 100)) < pi))
+ assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi))
class TestFilterwindows(TestCase):
@@ -442,48 +444,49 @@ class TestFilterwindows(TestCase):
w = hanning(10)
assert_array_almost_equal(w, flipud(w), 7)
#check known value
- assert_almost_equal(sum(w, axis=0), 4.500, 4)
+ assert_almost_equal(np.sum(w, axis=0), 4.500, 4)
def test_hamming(self):
#check symmetry
w = hamming(10)
assert_array_almost_equal(w, flipud(w), 7)
#check known value
- assert_almost_equal(sum(w, axis=0), 4.9400, 4)
+ assert_almost_equal(np.sum(w, axis=0), 4.9400, 4)
def test_bartlett(self):
#check symmetry
w = bartlett(10)
assert_array_almost_equal(w, flipud(w), 7)
#check known value
- assert_almost_equal(sum(w, axis=0), 4.4444, 4)
+ assert_almost_equal(np.sum(w, axis=0), 4.4444, 4)
def test_blackman(self):
#check symmetry
w = blackman(10)
assert_array_almost_equal(w, flipud(w), 7)
#check known value
- assert_almost_equal(sum(w, axis=0), 3.7800, 4)
+ assert_almost_equal(np.sum(w, axis=0), 3.7800, 4)
class TestTrapz(TestCase):
def test_simple(self):
- r = trapz(exp(-1.0 / 2 * (arange(-10, 10, .1)) ** 2) / sqrt(2 * pi), dx=0.1)
+ x = np.arange(-10, 10, .1)
+ r = trapz(np.exp(-.5*x**2) / np.sqrt(2*np.pi), dx=0.1)
#check integral of normal equals 1
assert_almost_equal(r, 1, 7)
def test_ndim(self):
- x = linspace(0, 1, 3)
- y = linspace(0, 2, 8)
- z = linspace(0, 3, 13)
+ x = np.linspace(0, 1, 3)
+ y = np.linspace(0, 2, 8)
+ z = np.linspace(0, 3, 13)
- wx = ones_like(x) * (x[1] - x[0])
+ wx = np.ones_like(x) * (x[1] - x[0])
wx[0] /= 2
wx[-1] /= 2
- wy = ones_like(y) * (y[1] - y[0])
+ wy = np.ones_like(y) * (y[1] - y[0])
wy[0] /= 2
wy[-1] /= 2
- wz = ones_like(z) * (z[1] - z[0])
+ wz = np.ones_like(z) * (z[1] - z[0])
wz[0] /= 2
wz[-1] /= 2
@@ -512,7 +515,7 @@ class TestTrapz(TestCase):
def test_masked(self):
#Testing that masked arrays behave as if the function is 0 where
#masked
- x = arange(5)
+ x = np.arange(5)
y = x * x
mask = x == 2
ym = np.ma.array(y, mask=mask)
@@ -527,11 +530,11 @@ class TestTrapz(TestCase):
def test_matrix(self):
#Test to make sure matrices give the same answer as ndarrays
- x = linspace(0, 5)
+ x = np.linspace(0, 5)
y = x * x
r = trapz(y, x)
- mx = matrix(x)
- my = matrix(y)
+ mx = np.matrix(x)
+ my = np.matrix(y)
mr = trapz(my, mx)
assert_almost_equal(mr, r)
@@ -539,13 +542,13 @@ class TestTrapz(TestCase):
class TestSinc(TestCase):
def test_simple(self):
assert_(sinc(0) == 1)
- w = sinc(linspace(-1, 1, 100))
+ w = sinc(np.linspace(-1, 1, 100))
#check symmetry
assert_array_almost_equal(w, flipud(w), 7)
def test_array_like(self):
x = [0, 0.5]
- y1 = sinc(array(x))
+ y1 = sinc(np.array(x))
y2 = sinc(list(x))
y3 = sinc(tuple(x))
assert_array_equal(y1, y2)
@@ -563,10 +566,10 @@ class TestHistogram(TestCase):
v = rand(n)
(a, b) = histogram(v)
#check if the sum of the bins equals the number of samples
- assert_equal(sum(a, axis=0), n)
+ assert_equal(np.sum(a, axis=0), n)
#check that the bin counts are evenly spaced when the data is from a
# linear function
- (a, b) = histogram(linspace(0, 10, 100))
+ (a, b) = histogram(np.linspace(0, 10, 100))
assert_array_equal(a, 10)
def test_one_bin(self):
@@ -576,22 +579,22 @@ class TestHistogram(TestCase):
assert_array_equal(edges, [1, 2])
assert_raises(ValueError, histogram, [1, 2], bins=0)
h, e = histogram([1,2], bins=1)
- assert_equal(h, array([2]))
- assert_allclose(e, array([1., 2.]))
+ assert_equal(h, np.array([2]))
+ assert_allclose(e, np.array([1., 2.]))
def test_normed(self):
# Check that the integral of the density equals 1.
n = 100
v = rand(n)
a, b = histogram(v, normed=True)
- area = sum(a * diff(b))
+ area = np.sum(a * diff(b))
assert_almost_equal(area, 1)
# Check with non-constant bin widths (buggy but backwards compatible)
v = np.arange(10)
bins = [0, 1, 5, 9, 10]
a, b = histogram(v, bins, normed=True)
- area = sum(a * diff(b))
+ area = np.sum(a * diff(b))
assert_almost_equal(area, 1)
def test_density(self):
@@ -599,7 +602,7 @@ class TestHistogram(TestCase):
n = 100
v = rand(n)
a, b = histogram(v, density=True)
- area = sum(a * diff(b))
+ area = np.sum(a * diff(b))
assert_almost_equal(area, 1)
# Check with non-constant bin widths
@@ -607,7 +610,7 @@ class TestHistogram(TestCase):
bins = [0,1,3,6,10]
a, b = histogram(v, bins, density=True)
assert_array_equal(a, .1)
- assert_equal(sum(a*diff(b)), 1)
+ assert_equal(np.sum(a*diff(b)), 1)
# Variale bin widths are especially useful to deal with
# infinities.
@@ -623,7 +626,7 @@ class TestHistogram(TestCase):
def test_outliers(self):
# Check that outliers are not tallied
- a = arange(10) + .5
+ a = np.arange(10) + .5
# Lower outliers
h, b = histogram(a, range=[0, 9])
@@ -638,7 +641,7 @@ class TestHistogram(TestCase):
assert_equal((h * diff(b)).sum(), 1)
# Weights
- w = arange(10) + .5
+ w = np.arange(10) + .5
h, b = histogram(a, range=[1, 9], weights=w, normed=True)
assert_equal((h * diff(b)).sum(), 1)
@@ -647,22 +650,22 @@ class TestHistogram(TestCase):
def test_type(self):
# Check the type of the returned histogram
- a = arange(10) + .5
+ a = np.arange(10) + .5
h, b = histogram(a)
assert_(issubdtype(h.dtype, int))
h, b = histogram(a, normed=True)
assert_(issubdtype(h.dtype, float))
- h, b = histogram(a, weights=ones(10, int))
+ h, b = histogram(a, weights=np.ones(10, int))
assert_(issubdtype(h.dtype, int))
- h, b = histogram(a, weights=ones(10, float))
+ h, b = histogram(a, weights=np.ones(10, float))
assert_(issubdtype(h.dtype, float))
def test_weights(self):
v = rand(100)
- w = ones(100) * 5
+ w = np.ones(100) * 5
a, b = histogram(v)
na, nb = histogram(v, normed=True)
wa, wb = histogram(v, weights=w)
@@ -671,16 +674,16 @@ class TestHistogram(TestCase):
assert_array_almost_equal(na, nwa)
# Check weights are properly applied.
- v = linspace(0, 10, 10)
- w = concatenate((zeros(5), ones(5)))
- wa, wb = histogram(v, bins=arange(11), weights=w)
+ v = np.linspace(0, 10, 10)
+ w = np.concatenate((np.zeros(5), np.ones(5)))
+ wa, wb = histogram(v, bins=np.arange(11), weights=w)
assert_array_almost_equal(wa, w)
# Check with integer weights
wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
assert_array_equal(wa, [4, 5, 0, 1])
wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], normed=True)
- assert_array_almost_equal(wa, array([4, 5, 0, 1]) / 10. / 3. * 4)
+ assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)
# Check weights with non-uniform bin widths
a,b = histogram(np.arange(9), [0,1,3,6,10], \
@@ -689,41 +692,41 @@ class TestHistogram(TestCase):
def test_empty(self):
a, b = histogram([], bins=([0,1]))
- assert_array_equal(a, array([0]))
- assert_array_equal(b, array([0, 1]))
+ assert_array_equal(a, np.array([0]))
+ assert_array_equal(b, np.array([0, 1]))
class TestHistogramdd(TestCase):
def test_simple(self):
- x = array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \
+ x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
H, edges = histogramdd(x, (2, 3, 3), range=[[-1, 1], [0, 3], [0, 3]])
- answer = asarray([[[0, 1, 0], [0, 0, 1], [1, 0, 0]], [[0, 1, 0], [0, 0, 1],
+ answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]], [[0, 1, 0], [0, 0, 1],
[0, 0, 1]]])
assert_array_equal(H, answer)
# Check normalization
ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
H, edges = histogramdd(x, bins=ed, normed=True)
- assert_(all(H == answer / 12.))
+ assert_(np.all(H == answer / 12.))
# Check that H has the correct shape.
H, edges = histogramdd(x, (2, 3, 4), range=[[-1, 1], [0, 3], [0, 4]],
normed=True)
- answer = asarray([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]], [[0, 1, 0, 0],
+ answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]], [[0, 1, 0, 0],
[0, 0, 1, 0], [0, 0, 1, 0]]])
assert_array_almost_equal(H, answer / 6., 4)
# Check that a sequence of arrays is accepted and H has the correct
# shape.
- z = [squeeze(y) for y in split(x, 3, axis=1)]
+ z = [np.squeeze(y) for y in split(x, 3, axis=1)]
H, edges = histogramdd(z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
- answer = asarray([[[0, 0], [0, 0], [0, 0]],
+ answer = np.array([[[0, 0], [0, 0], [0, 0]],
[[0, 1], [0, 0], [1, 0]],
[[0, 1], [0, 0], [0, 0]],
[[0, 0], [0, 0], [0, 0]]])
assert_array_equal(H, answer)
- Z = zeros((5, 5, 5))
+ Z = np.zeros((5, 5, 5))
Z[range(5), range(5), range(5)] = 1.
- H, edges = histogramdd([arange(5), arange(5), arange(5)], 5)
+ H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5)
assert_array_equal(H, Z)
def test_shape_3d(self):
@@ -753,21 +756,21 @@ class TestHistogramdd(TestCase):
v = rand(100, 2)
hist, edges = histogramdd(v)
n_hist, edges = histogramdd(v, normed=True)
- w_hist, edges = histogramdd(v, weights=ones(100))
+ w_hist, edges = histogramdd(v, weights=np.ones(100))
assert_array_equal(w_hist, hist)
- w_hist, edges = histogramdd(v, weights=ones(100) * 2, normed=True)
+ w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, normed=True)
assert_array_equal(w_hist, n_hist)
- w_hist, edges = histogramdd(v, weights=ones(100, int) * 2)
+ w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2)
assert_array_equal(w_hist, 2 * hist)
def test_identical_samples(self):
- x = zeros((10, 2), int)
+ x = np.zeros((10, 2), int)
hist, edges = histogramdd(x, bins=2)
- assert_array_equal(edges[0], array([-0.5, 0. , 0.5]))
+ assert_array_equal(edges[0], np.array([-0.5, 0. , 0.5]))
def test_empty(self):
a, b = histogramdd([[], []], bins=([0,1], [0,1]))
- assert_array_max_ulp(a, array([[ 0.]]))
+ assert_array_max_ulp(a, np.array([[ 0.]]))
a, b = np.histogramdd([[], [], []], bins=2)
assert_array_max_ulp(a, np.zeros((2, 2, 2)))
@@ -800,111 +803,111 @@ class TestHistogramdd(TestCase):
class TestUnique(TestCase):
def test_simple(self):
- x = array([4, 3, 2, 1, 1, 2, 3, 4, 0])
- assert_(all(unique(x) == [0, 1, 2, 3, 4]))
- assert_(unique(array([1, 1, 1, 1, 1])) == array([1]))
+ x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0])
+ assert_(np.all(unique(x) == [0, 1, 2, 3, 4]))
+ assert_(unique(np.array([1, 1, 1, 1, 1])) == np.array([1]))
x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham']
- assert_(all(unique(x) == ['bar', 'foo', 'ham', 'widget']))
- x = array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j])
- assert_(all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10]))
+ assert_(np.all(unique(x) == ['bar', 'foo', 'ham', 'widget']))
+ x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j])
+ assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10]))
class TestCheckFinite(TestCase):
def test_simple(self):
a = [1, 2, 3]
- b = [1, 2, inf]
- c = [1, 2, nan]
- numpy.lib.asarray_chkfinite(a)
- assert_raises(ValueError, numpy.lib.asarray_chkfinite, b)
- assert_raises(ValueError, numpy.lib.asarray_chkfinite, c)
+ b = [1, 2, np.inf]
+ c = [1, 2, np.nan]
+ np.lib.asarray_chkfinite(a)
+ assert_raises(ValueError, np.lib.asarray_chkfinite, b)
+ assert_raises(ValueError, np.lib.asarray_chkfinite, c)
def test_dtype_order(self):
"""Regression test for missing dtype and order arguments"""
a = [1, 2, 3]
- a = numpy.lib.asarray_chkfinite(a, order='F', dtype=numpy.float64)
- assert_(a.dtype == numpy.float64)
+ a = np.lib.asarray_chkfinite(a, order='F', dtype=np.float64)
+ assert_(a.dtype == np.float64)
class TestNaNFuncts(TestCase):
def setUp(self):
- self.A = array([[[ nan, 0.01319214, 0.01620964],
- [ 0.11704017, nan, 0.75157887],
- [ 0.28333658, 0.1630199 , nan ]],
- [[ 0.59541557, nan, 0.37910852],
- [ nan, 0.87964135, nan ],
- [ 0.70543747, nan, 0.34306596]],
- [[ 0.72687499, 0.91084584, nan ],
+ self.A = np.array([[[ np.nan, 0.01319214, 0.01620964],
+ [ 0.11704017, np.nan, 0.75157887],
+ [ 0.28333658, 0.1630199 , np.nan ]],
+ [[ 0.59541557, np.nan, 0.37910852],
+ [ np.nan, 0.87964135, np.nan ],
+ [ 0.70543747, np.nan, 0.34306596]],
+ [[ 0.72687499, 0.91084584, np.nan ],
[ 0.84386844, 0.38944762, 0.23913896],
- [ nan, 0.37068164, 0.33850425]]])
+ [ np.nan, 0.37068164, 0.33850425]]])
def test_nansum(self):
assert_almost_equal(nansum(self.A), 8.0664079100000006)
assert_almost_equal(nansum(self.A, 0),
- array([[ 1.32229056, 0.92403798, 0.39531816],
+ np.array([[ 1.32229056, 0.92403798, 0.39531816],
[ 0.96090861, 1.26908897, 0.99071783],
[ 0.98877405, 0.53370154, 0.68157021]]))
assert_almost_equal(nansum(self.A, 1),
- array([[ 0.40037675, 0.17621204, 0.76778851],
+ np.array([[ 0.40037675, 0.17621204, 0.76778851],
[ 1.30085304, 0.87964135, 0.72217448],
[ 1.57074343, 1.6709751 , 0.57764321]]))
assert_almost_equal(nansum(self.A, 2),
- array([[ 0.02940178, 0.86861904, 0.44635648],
+ np.array([[ 0.02940178, 0.86861904, 0.44635648],
[ 0.97452409, 0.87964135, 1.04850343],
[ 1.63772083, 1.47245502, 0.70918589]]))
def test_nanmin(self):
assert_almost_equal(nanmin(self.A), 0.01319214)
assert_almost_equal(nanmin(self.A, 0),
- array([[ 0.59541557, 0.01319214, 0.01620964],
+ np.array([[ 0.59541557, 0.01319214, 0.01620964],
[ 0.11704017, 0.38944762, 0.23913896],
[ 0.28333658, 0.1630199 , 0.33850425]]))
assert_almost_equal(nanmin(self.A, 1),
- array([[ 0.11704017, 0.01319214, 0.01620964],
+ np.array([[ 0.11704017, 0.01319214, 0.01620964],
[ 0.59541557, 0.87964135, 0.34306596],
[ 0.72687499, 0.37068164, 0.23913896]]))
assert_almost_equal(nanmin(self.A, 2),
- array([[ 0.01319214, 0.11704017, 0.1630199 ],
+ np.array([[ 0.01319214, 0.11704017, 0.1630199 ],
[ 0.37910852, 0.87964135, 0.34306596],
[ 0.72687499, 0.23913896, 0.33850425]]))
- assert_(np.isnan(nanmin([nan, nan])))
+ assert_(np.isnan(nanmin([np.nan, np.nan])))
def test_nanargmin(self):
assert_almost_equal(nanargmin(self.A), 1)
assert_almost_equal(nanargmin(self.A, 0),
- array([[1, 0, 0],
+ np.array([[1, 0, 0],
[0, 2, 2],
[0, 0, 2]]))
assert_almost_equal(nanargmin(self.A, 1),
- array([[1, 0, 0],
+ np.array([[1, 0, 0],
[0, 1, 2],
[0, 2, 1]]))
assert_almost_equal(nanargmin(self.A, 2),
- array([[1, 0, 1],
+ np.array([[1, 0, 1],
[2, 1, 2],
[0, 2, 2]]))
def test_nanmax(self):
assert_almost_equal(nanmax(self.A), 0.91084584000000002)
assert_almost_equal(nanmax(self.A, 0),
- array([[ 0.72687499, 0.91084584, 0.37910852],
+ np.array([[ 0.72687499, 0.91084584, 0.37910852],
[ 0.84386844, 0.87964135, 0.75157887],
[ 0.70543747, 0.37068164, 0.34306596]]))
assert_almost_equal(nanmax(self.A, 1),
- array([[ 0.28333658, 0.1630199 , 0.75157887],
+ np.array([[ 0.28333658, 0.1630199 , 0.75157887],
[ 0.70543747, 0.87964135, 0.37910852],
[ 0.84386844, 0.91084584, 0.33850425]]))
assert_almost_equal(nanmax(self.A, 2),
- array([[ 0.01620964, 0.75157887, 0.28333658],
+ np.array([[ 0.01620964, 0.75157887, 0.28333658],
[ 0.59541557, 0.87964135, 0.70543747],
[ 0.91084584, 0.84386844, 0.37068164]]))
- assert_(np.isnan(nanmax([nan, nan])))
+ assert_(np.isnan(nanmax([np.nan, np.nan])))
def test_nanmin_allnan_on_axis(self):
- assert_array_equal(isnan(nanmin([[nan] * 2] * 3, axis=1)),
+ assert_array_equal(np.isnan(nanmin([[np.nan] * 2] * 3, axis=1)),
[True, True, True])
def test_nanmin_masked(self):
- a = np.ma.fix_invalid([[2, 1, 3, nan], [5, 2, 3, nan]])
+ a = np.ma.fix_invalid([[2, 1, 3, np.nan], [5, 2, 3, np.nan]])
ctrl_mask = a._mask.copy()
test = np.nanmin(a, axis=1)
assert_equal(test, [1, 2])
@@ -914,10 +917,12 @@ class TestNaNFuncts(TestCase):
class TestNanFunctsIntTypes(TestCase):
- int_types = (int8, int16, int32, int64, uint8, uint16, uint32, uint64)
+ int_types = (
+ np.int8, np.int16, np.int32, np.int64, np.uint8,
+ np.uint16, np.uint32, np.uint64)
def setUp(self, *args, **kwargs):
- self.A = array([127, 39, 93, 87, 46])
+ self.A = np.array([127, 39, 93, 87, 46])
def integer_arrays(self):
for dtype in self.int_types:
@@ -934,27 +939,27 @@ class TestNanFunctsIntTypes(TestCase):
assert_equal(nanmax(A), max_value)
def test_nanargmin(self):
- min_arg = argmin(self.A)
+ min_arg = np.argmin(self.A)
for A in self.integer_arrays():
assert_equal(nanargmin(A), min_arg)
def test_nanargmax(self):
- max_arg = argmax(self.A)
+ max_arg = np.argmax(self.A)
for A in self.integer_arrays():
assert_equal(nanargmax(A), max_arg)
class TestCorrCoef(TestCase):
- A = array([[ 0.15391142, 0.18045767, 0.14197213],
+ A = np.array([[ 0.15391142, 0.18045767, 0.14197213],
[ 0.70461506, 0.96474128, 0.27906989],
[ 0.9297531 , 0.32296769, 0.19267156]])
- B = array([[ 0.10377691, 0.5417086 , 0.49807457],
+ B = np.array([[ 0.10377691, 0.5417086 , 0.49807457],
[ 0.82872117, 0.77801674, 0.39226705],
[ 0.9314666 , 0.66800209, 0.03538394]])
- res1 = array([[ 1. , 0.9379533 , -0.04931983],
+ res1 = np.array([[ 1. , 0.9379533 , -0.04931983],
[ 0.9379533 , 1. , 0.30007991],
[-0.04931983, 0.30007991, 1. ]])
- res2 = array([[ 1. , 0.9379533 , -0.04931983,
+ res2 = np.array([[ 1. , 0.9379533 , -0.04931983,
0.30151751, 0.66318558, 0.51532523],
[ 0.9379533 , 1. , 0.30007991,
- 0.04781421, 0.88157256, 0.78052386],
@@ -992,17 +997,17 @@ class TestCov(TestCase):
class Test_i0(TestCase):
def test_simple(self):
- assert_almost_equal(i0(0.5), array(1.0634833707413234))
- A = array([ 0.49842636, 0.6969809 , 0.22011976, 0.0155549])
+ assert_almost_equal(i0(0.5), np.array(1.0634833707413234))
+ A = np.array([ 0.49842636, 0.6969809 , 0.22011976, 0.0155549])
assert_almost_equal(i0(A),
- array([ 1.06307822, 1.12518299, 1.01214991, 1.00006049]))
- B = array([[ 0.827002 , 0.99959078],
+ np.array([ 1.06307822, 1.12518299, 1.01214991, 1.00006049]))
+ B = np.array([[ 0.827002 , 0.99959078],
[ 0.89694769, 0.39298162],
[ 0.37954418, 0.05206293],
[ 0.36465447, 0.72446427],
[ 0.48164949, 0.50324519]])
assert_almost_equal(i0(B),
- array([[ 1.17843223, 1.26583466],
+ np.array([[ 1.17843223, 1.26583466],
[ 1.21147086, 1.0389829 ],
[ 1.03633899, 1.00067775],
[ 1.03352052, 1.13557954],
@@ -1011,14 +1016,14 @@ class Test_i0(TestCase):
class TestKaiser(TestCase):
def test_simple(self):
- assert_almost_equal(kaiser(0, 1.0), array([]))
- assert_(isfinite(kaiser(1, 1.0)))
- assert_almost_equal(kaiser(2, 1.0), array([ 0.78984831, 0.78984831]))
+ assert_almost_equal(kaiser(0, 1.0), np.array([]))
+ assert_(np.isfinite(kaiser(1, 1.0)))
+ assert_almost_equal(kaiser(2, 1.0), np.array([ 0.78984831, 0.78984831]))
assert_almost_equal(kaiser(5, 1.0),
- array([ 0.78984831, 0.94503323, 1. ,
+ np.array([ 0.78984831, 0.94503323, 1. ,
0.94503323, 0.78984831]))
assert_almost_equal(kaiser(5, 1.56789),
- array([ 0.58285404, 0.88409679, 1. ,
+ np.array([ 0.58285404, 0.88409679, 1. ,
0.88409679, 0.58285404]))
def test_int_beta(self):
@@ -1027,11 +1032,11 @@ class TestKaiser(TestCase):
class TestMsort(TestCase):
def test_simple(self):
- A = array([[ 0.44567325, 0.79115165, 0.5490053 ],
+ A = np.array([[ 0.44567325, 0.79115165, 0.5490053 ],
[ 0.36844147, 0.37325583, 0.96098397],
[ 0.64864341, 0.52929049, 0.39172155]])
assert_almost_equal(msort(A),
- array([[ 0.36844147, 0.37325583, 0.39172155],
+ np.array([[ 0.36844147, 0.37325583, 0.39172155],
[ 0.44567325, 0.52929049, 0.5490053 ],
[ 0.64864341, 0.79115165, 0.96098397]]))
@@ -1039,11 +1044,11 @@ class TestMsort(TestCase):
class TestMeshgrid(TestCase):
def test_simple(self):
[X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7])
- assert_(all(X == array([[1, 2, 3],
+ assert_(np.all(X == np.array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])))
- assert_(all(Y == array([[4, 4, 4],
+ assert_(np.all(Y == np.array([[4, 4, 4],
[5, 5, 5],
[6, 6, 6],
[7, 7, 7]])))
@@ -1060,15 +1065,15 @@ class TestPiecewise(TestCase):
assert_array_equal(x, [1, 0])
# Conditions is single bool array
- x = piecewise([0, 0], array([True, False]), [1])
+ x = piecewise([0, 0], np.array([True, False]), [1])
assert_array_equal(x, [1, 0])
# Condition is single int array
- x = piecewise([0, 0], array([1, 0]), [1])
+ x = piecewise([0, 0], np.array([1, 0]), [1])
assert_array_equal(x, [1, 0])
# List of conditions: int array
- x = piecewise([0, 0], [array([1, 0])], [1])
+ x = piecewise([0, 0], [np.array([1, 0])], [1])
assert_array_equal(x, [1, 0])
@@ -1088,7 +1093,7 @@ class TestPiecewise(TestCase):
assert_array_equal(x, [2, 3])
def test_0d(self):
- x = array(3)
+ x = np.array(3)
y = piecewise(x, x > 3, [4, 0])
assert_(y.ndim == 0)
assert_(y == 0)