diff options
author | Eric Wieser <wieser.eric@gmail.com> | 2019-04-23 01:33:13 -0700 |
---|---|---|
committer | Eric Wieser <wieser.eric@gmail.com> | 2019-04-23 01:33:13 -0700 |
commit | 20472595f5b9f4b2fcfedcf6aae9684f95af1c8c (patch) | |
tree | 6e39eabe01a85454c1703b1a1ee201e57d02b1eb /numpy/lib/tests/test_function_base.py | |
parent | b5895be146cdc3063ffa9ca8ae27b5bcf7992719 (diff) | |
parent | f91b033aa35b929610c0db12f16b1b0c1ddc08e6 (diff) | |
download | numpy-20472595f5b9f4b2fcfedcf6aae9684f95af1c8c.tar.gz |
Merge remote-tracking branch 'upstream/master' into fix-1-field-unstructured
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r-- | numpy/lib/tests/test_function_base.py | 226 |
1 files changed, 148 insertions, 78 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py index 0c789e012..e2c24a123 100644 --- a/numpy/lib/tests/test_function_base.py +++ b/numpy/lib/tests/test_function_base.py @@ -4,28 +4,28 @@ import operator import warnings import sys import decimal +import types import pytest import numpy as np from numpy import ma from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_almost_equal, - assert_array_almost_equal, assert_raises, assert_allclose, - assert_array_max_ulp, assert_warns, assert_raises_regex, suppress_warnings, - HAS_REFCOUNT, + assert_array_almost_equal, assert_raises, assert_allclose, IS_PYPY, + assert_warns, assert_raises_regex, suppress_warnings, HAS_REFCOUNT, ) import numpy.lib.function_base as nfb from numpy.random import rand from numpy.lib import ( add_newdoc_ufunc, angle, average, bartlett, blackman, corrcoef, cov, delete, diff, digitize, extract, flipud, gradient, hamming, hanning, - histogram, histogramdd, i0, insert, interp, kaiser, meshgrid, msort, - piecewise, place, rot90, select, setxor1d, sinc, split, trapz, trim_zeros, - unwrap, unique, vectorize + i0, insert, interp, kaiser, meshgrid, msort, piecewise, place, rot90, + select, setxor1d, sinc, trapz, trim_zeros, unwrap, unique, vectorize ) from numpy.compat import long +PY2 = sys.version_info[0] == 2 def get_mat(n): data = np.arange(n) @@ -33,6 +33,17 @@ def get_mat(n): return data +def _make_complex(real, imag): + """ + Like real + 1j * imag, but behaves as expected when imag contains non-finite + values + """ + ret = np.zeros(np.broadcast(real, imag).shape, np.complex_) + ret.real = real + ret.imag = imag + return ret + + class TestRot90(object): def test_basic(self): assert_raises(ValueError, rot90, np.ones(4)) @@ -355,9 +366,9 @@ class TestAverage(object): assert_equal(type(np.average(a, weights=w)), subclass) def test_upcasting(self): - types = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'), + typs = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'), ('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')] - for at, wt, rt in types: + for at, wt, rt in typs: a = np.array([[1,2],[3,4]], dtype=at) w = np.array([[1,2],[3,4]], dtype=wt) assert_equal(np.average(a, weights=w).dtype, np.dtype(rt)) @@ -1500,6 +1511,49 @@ class TestVectorize(object): f(x) +class TestLeaks(object): + class A(object): + iters = 20 + + def bound(self, *args): + return 0 + + @staticmethod + def unbound(*args): + return 0 + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + @pytest.mark.parametrize('name, incr', [ + ('bound', A.iters), + ('unbound', 0), + ]) + def test_frompyfunc_leaks(self, name, incr): + # exposed in gh-11867 as np.vectorized, but the problem stems from + # frompyfunc. + # class.attribute = np.frompyfunc(<method>) creates a + # reference cycle if <method> is a bound class method. It requires a + # gc collection cycle to break the cycle (on CPython 3) + import gc + A_func = getattr(self.A, name) + gc.disable() + try: + refcount = sys.getrefcount(A_func) + for i in range(self.A.iters): + a = self.A() + a.f = np.frompyfunc(getattr(a, name), 1, 1) + out = a.f(np.arange(10)) + a = None + if PY2: + assert_equal(sys.getrefcount(A_func), refcount) + else: + # A.func is part of a reference cycle if incr is non-zero + assert_equal(sys.getrefcount(A_func), refcount + incr) + for i in range(5): + gc.collect() + assert_equal(sys.getrefcount(A_func), refcount) + finally: + gc.enable() + class TestDigitize(object): def test_forward(self): @@ -2311,7 +2365,7 @@ class TestInterp(object): x0 = np.nan assert_almost_equal(np.interp(x0, x, y), x0) - def test_non_finite_behavior(self): + def test_non_finite_behavior_exact_x(self): x = [1, 2, 2.5, 3, 4] xp = [1, 2, 3, 4] fp = [1, 2, np.inf, 4] @@ -2319,6 +2373,64 @@ class TestInterp(object): fp = [1, 2, np.nan, 4] assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.nan, np.nan, 4]) + @pytest.fixture(params=[ + lambda x: np.float_(x), + lambda x: _make_complex(x, 0), + lambda x: _make_complex(0, x), + lambda x: _make_complex(x, np.multiply(x, -2)) + ], ids=[ + 'real', + 'complex-real', + 'complex-imag', + 'complex-both' + ]) + def sc(self, request): + """ scale function used by the below tests """ + return request.param + + def test_non_finite_any_nan(self, sc): + """ test that nans are propagated """ + assert_equal(np.interp(0.5, [np.nan, 1], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, np.nan], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([np.nan, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([ 0, np.nan])), sc(np.nan)) + + def test_non_finite_inf(self, sc): + """ Test that interp between opposite infs gives nan """ + assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([-np.inf, +np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([+np.inf, -np.inf])), sc(np.nan)) + + # unless the y values are equal + assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 10, 10])), sc(10)) + + def test_non_finite_half_inf_xf(self, sc): + """ Test that interp where both axes have a bound at inf gives nan """ + assert_equal(np.interp(0.5, [-np.inf, 1], sc([-np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([+np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, -np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, +np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([-np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([+np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, -np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, +np.inf])), sc(np.nan)) + + def test_non_finite_half_inf_x(self, sc): + """ Test interp where the x axis has a bound at inf """ + assert_equal(np.interp(0.5, [-np.inf, -np.inf], sc([0, 10])), sc(10)) + assert_equal(np.interp(0.5, [-np.inf, 1 ], sc([0, 10])), sc(10)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([0, 10])), sc(0)) + assert_equal(np.interp(0.5, [+np.inf, +np.inf], sc([0, 10])), sc(0)) + + def test_non_finite_half_inf_f(self, sc): + """ Test interp where the f axis has a bound at inf """ + assert_equal(np.interp(0.5, [0, 1], sc([ 0, -np.inf])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([ 0, +np.inf])), sc(+np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf)) + def test_complex_interp(self): # test complex interpolation x = np.linspace(0, 1, 5) @@ -2393,11 +2505,8 @@ class TestPercentile(object): assert_equal(np.percentile(x, 100), 3.5) assert_equal(np.percentile(x, 50), 1.75) x[1] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile(x, 0), np.nan) - assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan) - assert_(w[0].category is RuntimeWarning) + assert_equal(np.percentile(x, 0), np.nan) + assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan) def test_api(self): d = np.ones(5) @@ -2735,85 +2844,63 @@ class TestPercentile(object): def test_nan_behavior(self): a = np.arange(24, dtype=float) a[2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile(a, 0.3), np.nan) - assert_equal(np.percentile(a, 0.3, axis=0), np.nan) - assert_equal(np.percentile(a, [0.3, 0.6], axis=0), - np.array([np.nan] * 2)) - assert_(w[0].category is RuntimeWarning) - assert_(w[1].category is RuntimeWarning) - assert_(w[2].category is RuntimeWarning) + assert_equal(np.percentile(a, 0.3), np.nan) + assert_equal(np.percentile(a, 0.3, axis=0), np.nan) + assert_equal(np.percentile(a, [0.3, 0.6], axis=0), + np.array([np.nan] * 2)) a = np.arange(24, dtype=float).reshape(2, 3, 4) a[1, 2, 3] = np.nan a[1, 1, 2] = np.nan # no axis - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile(a, 0.3), np.nan) - assert_equal(np.percentile(a, 0.3).ndim, 0) - assert_(w[0].category is RuntimeWarning) + assert_equal(np.percentile(a, 0.3), np.nan) + assert_equal(np.percentile(a, 0.3).ndim, 0) # axis0 zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0) b[2, 3] = np.nan b[1, 2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile(a, 0.3, 0), b) + assert_equal(np.percentile(a, 0.3, 0), b) # axis0 not zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 0) b[:, 2, 3] = np.nan b[:, 1, 2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile(a, [0.3, 0.6], 0), b) + assert_equal(np.percentile(a, [0.3, 0.6], 0), b) # axis1 zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1) b[1, 3] = np.nan b[1, 2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile(a, 0.3, 1), b) + assert_equal(np.percentile(a, 0.3, 1), b) # axis1 not zerod b = np.percentile( np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1) b[:, 1, 3] = np.nan b[:, 1, 2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile(a, [0.3, 0.6], 1), b) + assert_equal(np.percentile(a, [0.3, 0.6], 1), b) # axis02 zerod b = np.percentile( np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2)) b[1] = np.nan b[2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile(a, 0.3, (0, 2)), b) + assert_equal(np.percentile(a, 0.3, (0, 2)), b) # axis02 not zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], (0, 2)) b[:, 1] = np.nan b[:, 2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b) + assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b) # axis02 not zerod with nearest interpolation b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], (0, 2), interpolation='nearest') b[:, 1] = np.nan b[:, 2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.percentile( - a, [0.3, 0.6], (0, 2), interpolation='nearest'), b) + assert_equal(np.percentile( + a, [0.3, 0.6], (0, 2), interpolation='nearest'), b) class TestQuantile(object): @@ -2860,10 +2947,7 @@ class TestMedian(object): # check array scalar result assert_equal(np.median(a).ndim, 0) a[1] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.median(a).ndim, 0) - assert_(w[0].category is RuntimeWarning) + assert_equal(np.median(a).ndim, 0) def test_axis_keyword(self): a3 = np.array([[2, 3], @@ -2962,58 +3046,43 @@ class TestMedian(object): def test_nan_behavior(self): a = np.arange(24, dtype=float) a[2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.median(a), np.nan) - assert_equal(np.median(a, axis=0), np.nan) - assert_(w[0].category is RuntimeWarning) - assert_(w[1].category is RuntimeWarning) + assert_equal(np.median(a), np.nan) + assert_equal(np.median(a, axis=0), np.nan) a = np.arange(24, dtype=float).reshape(2, 3, 4) a[1, 2, 3] = np.nan a[1, 1, 2] = np.nan # no axis - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.median(a), np.nan) - assert_equal(np.median(a).ndim, 0) - assert_(w[0].category is RuntimeWarning) + assert_equal(np.median(a), np.nan) + assert_equal(np.median(a).ndim, 0) # axis0 b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0) b[2, 3] = np.nan b[1, 2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.median(a, 0), b) - assert_equal(len(w), 1) + assert_equal(np.median(a, 0), b) # axis1 b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1) b[1, 3] = np.nan b[1, 2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.median(a, 1), b) - assert_equal(len(w), 1) + assert_equal(np.median(a, 1), b) # axis02 b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2)) b[1] = np.nan b[2] = np.nan - with warnings.catch_warnings(record=True) as w: - warnings.filterwarnings('always', '', RuntimeWarning) - assert_equal(np.median(a, (0, 2)), b) - assert_equal(len(w), 1) + assert_equal(np.median(a, (0, 2)), b) def test_empty(self): - # empty arrays + # mean(empty array) emits two warnings: empty slice and divide by 0 a = np.array([], dtype=float) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a), np.nan) assert_(w[0].category is RuntimeWarning) + assert_equal(len(w), 2) # multiple dimensions a = np.array([], dtype=float, ndmin=3) @@ -3108,6 +3177,7 @@ class TestAdd_newdoc_ufunc(object): class TestAdd_newdoc(object): @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO") + @pytest.mark.xfail(IS_PYPY, reason="PyPy does not modify tp_doc") def test_add_doc(self): # test np.add_newdoc tgt = "Current flat index into the array." |