summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_function_base.py
diff options
context:
space:
mode:
authorgfyoung <gfyoung@mit.edu>2016-01-16 10:25:28 +0000
committergfyoung <gfyoung@mit.edu>2016-01-18 17:32:47 +0000
commit44c49f311f3c2e0fa6440ddde1c8fef9a4b5a93e (patch)
tree681544946ba6498d79916675f6d83b77613c8ad8 /numpy/lib/tests/test_function_base.py
parentaa824670cf6ad21c2f921856ba4eec00781347fe (diff)
downloadnumpy-44c49f311f3c2e0fa6440ddde1c8fef9a4b5a93e.tar.gz
TST: Added lots of new tests for fromnumeric.py
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r--numpy/lib/tests/test_function_base.py61
1 files changed, 29 insertions, 32 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 88a590517..d6a838f3a 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -255,7 +255,7 @@ class TestInsert(TestCase):
assert_equal(insert(b, 0, b[0]), [0., 0., 1.])
assert_equal(insert(b, [], []), b)
# Bools will be treated differently in the future:
- #assert_equal(insert(a, np.array([True]*4), 9), [9,1,9,2,9,3,9])
+ # assert_equal(insert(a, np.array([True]*4), 9), [9, 1, 9, 2, 9, 3, 9])
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', FutureWarning)
assert_equal(
@@ -294,15 +294,15 @@ class TestInsert(TestCase):
insert(a, 1, a[:, 2,:], axis=1))
# invalid axis value
- assert_raises(IndexError, insert, a, 1, a[:, 2,:], axis=3)
- assert_raises(IndexError, insert, a, 1, a[:, 2,:], axis=-4)
+ assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=3)
+ assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=-4)
# negative axis value
a = np.arange(24).reshape((2, 3, 4))
- assert_equal(insert(a, 1, a[:,:, 3], axis=-1),
- insert(a, 1, a[:,:, 3], axis=2))
- assert_equal(insert(a, 1, a[:, 2,:], axis=-2),
- insert(a, 1, a[:, 2,:], axis=1))
+ assert_equal(insert(a, 1, a[:, :, 3], axis=-1),
+ insert(a, 1, a[:, :, 3], axis=2))
+ assert_equal(insert(a, 1, a[:, 2, :], axis=-2),
+ insert(a, 1, a[:, 2, :], axis=1))
def test_0d(self):
# This is an error in the future
@@ -368,13 +368,13 @@ class TestAmin(TestCase):
class TestPtp(TestCase):
def test_basic(self):
- a = [3, 4, 5, 10, -3, -5, 6.0]
- assert_equal(np.ptp(a, axis=0), 15.0)
- b = [[3, 6.0, 9.0],
- [4, 10.0, 5.0],
- [8, 3.0, 2.0]]
- assert_equal(np.ptp(b, axis=0), [5.0, 7.0, 7.0])
- assert_equal(np.ptp(b, axis=-1), [6.0, 6.0, 6.0])
+ a = np.array([3, 4, 5, 10, -3, -5, 6.0])
+ assert_equal(a.ptp(axis=0), 15.0)
+ b = np.array([[3, 6.0, 9.0],
+ [4, 10.0, 5.0],
+ [8, 3.0, 2.0]])
+ assert_equal(b.ptp(axis=0), [5.0, 7.0, 7.0])
+ assert_equal(b.ptp(axis=-1), [6.0, 6.0, 6.0])
class TestCumsum(TestCase):
@@ -411,12 +411,11 @@ class TestProd(TestCase):
if ctype in ['1', 'b']:
self.assertRaises(ArithmeticError, np.prod, a)
self.assertRaises(ArithmeticError, np.prod, a2, 1)
- self.assertRaises(ArithmeticError, np.prod, a)
else:
- assert_equal(np.prod(a, axis=0), 26400)
- assert_array_equal(np.prod(a2, axis=0),
+ assert_equal(a.prod(axis=0), 26400)
+ assert_array_equal(a2.prod(axis=0),
np.array([50, 36, 84, 180], ctype))
- assert_array_equal(np.prod(a2, axis=-1),
+ assert_array_equal(a2.prod(axis=-1),
np.array([24, 1890, 600], ctype))
@@ -460,10 +459,10 @@ class TestDiff(TestCase):
def test_nd(self):
x = 20 * rand(10, 20, 30)
- out1 = x[:,:, 1:] - x[:,:, :-1]
- out2 = out1[:,:, 1:] - out1[:,:, :-1]
- out3 = x[1:,:,:] - x[:-1,:,:]
- out4 = out3[1:,:,:] - out3[:-1,:,:]
+ out1 = x[:, :, 1:] - x[:, :, :-1]
+ out2 = out1[:, :, 1:] - out1[:, :, :-1]
+ out3 = x[1:, :, :] - x[:-1, :, :]
+ out4 = out3[1:, :, :] - out3[:-1, :, :]
assert_array_equal(diff(x), out1)
assert_array_equal(diff(x, n=2), out2)
assert_array_equal(diff(x, axis=0), out3)
@@ -610,7 +609,7 @@ class TestGradient(TestCase):
assert_array_equal(gradient(x, axis=0), dx[0])
assert_array_equal(gradient(x, axis=1), dx[1])
assert_array_equal(gradient(x, axis=-1), dx[1])
- assert_array_equal(gradient(x, axis=(1,0)), [dx[1], dx[0]])
+ assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]])
# test axis=None which means all axes
assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]])
@@ -618,7 +617,7 @@ class TestGradient(TestCase):
assert_almost_equal(gradient(x, axis=None), gradient(x))
# test vararg order
- assert_array_equal(gradient(x, 2, 3, axis=(1,0)), [dx[1]/2.0, dx[0]/3.0])
+ assert_array_equal(gradient(x, 2, 3, axis=(1, 0)), [dx[1]/2.0, dx[0]/3.0])
# test maximal number of varargs
assert_raises(SyntaxError, gradient, x, 1, 2, axis=1)
@@ -1018,8 +1017,8 @@ class TestTrapz(TestCase):
q = x[:, None, None] + y[None,:, None] + z[None, None,:]
qx = (q * wx[:, None, None]).sum(axis=0)
- qy = (q * wy[None,:, None]).sum(axis=1)
- qz = (q * wz[None, None,:]).sum(axis=2)
+ qy = (q * wy[None, :, None]).sum(axis=1)
+ qz = (q * wz[None, None, :]).sum(axis=2)
# n-d `x`
r = trapz(q, x=x[:, None, None], axis=0)
@@ -1501,14 +1500,12 @@ class TestHistogramdd(TestCase):
assert_(hist[1] == 0.0)
def test_finite_range(self):
- vals = np.random.random((100,3))
- histogramdd(vals, range=[[0.0,1.0],[0.25,0.75],[0.25,0.5]])
+ vals = np.random.random((100, 3))
+ histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]])
assert_raises(ValueError, histogramdd, vals,
- range=[[0.0,1.0],[0.25,0.75],[0.25,np.inf]])
+ range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]])
assert_raises(ValueError, histogramdd, vals,
- range=[[0.0,1.0],[np.nan,0.75],[0.25,0.5]])
-
-
+ range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]])
class TestUnique(TestCase):