summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_nanfunctions.py
diff options
context:
space:
mode:
authorDavid Freese <dfreese@stanford.edu>2014-05-21 16:54:07 -0700
committerDavid Freese <dfreese@stanford.edu>2014-05-22 15:04:55 -0700
commit19aa50901e96a8428950da062d0d60c760232395 (patch)
tree63b3dbe753be7dc6b3cfcc2287fdb669e3354c88 /numpy/lib/tests/test_nanfunctions.py
parent9dd46ee2ed9fc55942d9ec13532d817c3b36d322 (diff)
downloadnumpy-19aa50901e96a8428950da062d0d60c760232395.tar.gz
ENH: added functionality nanpercentile to numpy
Implemented a nanpercentile and associated tests as an extension of np.percentile to complement the other nanfunctions.
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r--numpy/lib/tests/test_nanfunctions.py90
1 files changed, 90 insertions, 0 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index 74a50edf4..7f5217221 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -615,6 +615,96 @@ class TestNanFunctions_Median(TestCase):
(1, 1, 7, 1))
+class TestNanFunctions_Percentile(TestCase):
+
+ def test_mutation(self):
+ # Check that passed array is not modified.
+ ndat = _ndat.copy()
+ np.nanpercentile(ndat, 30)
+ assert_equal(ndat, _ndat)
+
+ def test_keepdims(self):
+ mat = np.eye(3)
+ for axis in [None, 0, 1]:
+ tgt = np.percentile(mat, 70, axis=axis, out=None, overwrite_input=False)
+ res = np.percentile(mat, 70, axis=axis, out=None, overwrite_input=False)
+ assert_(res.ndim == tgt.ndim)
+
+ def test_out(self):
+ mat = np.random.rand(3,3)
+ resout = np.zeros(3)
+ tgt = np.percentile(mat, 42, axis=1)
+ res = np.nanpercentile(mat, 42, axis=1, out=resout)
+ assert_almost_equal(res, resout)
+ assert_almost_equal(res, tgt)
+
+ def test_result_values(self):
+ tgt = [np.percentile(d, 28) for d in _rdat]
+ res = np.nanpercentile(_ndat, 28, axis=1)
+ assert_almost_equal(res, tgt)
+ tgt = [np.percentile(d, (28,98)) for d in _rdat]
+ res = np.nanpercentile(_ndat, (28,98), axis=1)
+ assert_almost_equal(res, tgt)
+
+ def test_allnans(self):
+ mat = np.array([np.nan]*9).reshape(3, 3)
+ for axis in [None, 0, 1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(np.nanpercentile(mat, 60, axis=axis)).all())
+ if axis is None:
+ assert_(len(w) == 1)
+ else:
+ assert_(len(w) == 3)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ # Check scalar
+ assert_(np.isnan(np.nanpercentile(np.nan, 60)))
+ if axis is None:
+ assert_(len(w) == 2)
+ else:
+ assert_(len(w) == 4)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+
+ def test_empty(self):
+ mat = np.zeros((0, 3))
+ for axis in [0, None]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all())
+ assert_(len(w) == 1)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ for axis in [1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([]))
+ assert_(len(w) == 0)
+
+ def test_scalar(self):
+ assert_(np.nanpercentile(0., 100) == 0.)
+
+ def test_extended_axis_invalid(self):
+ d = np.ones((3, 5, 7, 11))
+ assert_raises(IndexError, np.nanpercentile, d, q=5, axis=-5)
+ assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, -5))
+ assert_raises(IndexError, np.nanpercentile, d, q=5, axis=4)
+ assert_raises(IndexError, np.nanpercentile, d, q=5, axis=(0, 4))
+ assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))
+
+ def test_keepdims(self):
+ d = np.ones((3, 5, 7, 11))
+ assert_equal(np.nanpercentile(d, 90, axis=None, keepdims=True).shape,
+ (1, 1, 1, 1))
+ assert_equal(np.nanpercentile(d, 90, axis=(0, 1), keepdims=True).shape,
+ (1, 1, 7, 11))
+ assert_equal(np.nanpercentile(d, 90, axis=(0, 3), keepdims=True).shape,
+ (1, 5, 7, 1))
+ assert_equal(np.nanpercentile(d, 90, axis=(1,), keepdims=True).shape,
+ (3, 1, 7, 11))
+ assert_equal(np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True).shape,
+ (1, 1, 1, 1))
+ assert_equal(np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True).shape,
+ (1, 1, 7, 1))
+
if __name__ == "__main__":