diff options
author | Roy Smart <roytsmart@gmail.com> | 2022-12-02 16:09:33 -0700 |
---|---|---|
committer | Roy Smart <roytsmart@gmail.com> | 2022-12-05 15:53:32 -0700 |
commit | 91432a36a3611c2374ea9e2d45592f0ac5e71adb (patch) | |
tree | c8f5686e420e3365bc7af432476c353ef289218c /numpy/lib/tests/test_nanfunctions.py | |
parent | f74b3720ca6148574da40ed96d4712e221ee84bd (diff) | |
download | numpy-91432a36a3611c2374ea9e2d45592f0ac5e71adb.tar.gz |
BUG: `keepdims=True` is ignored if `out` is not `None` in `numpy.median()`, `numpy.percentile()`, and `numpy.quantile()`.
Closes #22714, #22544.
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r-- | numpy/lib/tests/test_nanfunctions.py | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py index 733a077ea..64464edcc 100644 --- a/numpy/lib/tests/test_nanfunctions.py +++ b/numpy/lib/tests/test_nanfunctions.py @@ -3,6 +3,7 @@ import pytest import inspect import numpy as np +from numpy.core.numeric import normalize_axis_tuple from numpy.lib.nanfunctions import _nan_mask, _replace_nan from numpy.testing import ( assert_, assert_equal, assert_almost_equal, assert_raises, @@ -807,6 +808,33 @@ class TestNanFunctions_Median: res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True) assert_equal(res.shape, (1, 1, 7, 1)) + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1, ), + (0, 1), + (-3, -1), + ] + ) + def test_keepdims_out(self, axis): + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + out = np.empty(shape_out) + result = np.nanmedian(d, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + def test_out(self): mat = np.random.rand(3, 3) nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) @@ -982,6 +1010,36 @@ class TestNanFunctions_Percentile: res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True) assert_equal(res.shape, (1, 1, 7, 1)) + @pytest.mark.parametrize('q', [7, [1, 7]]) + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1,), + (0, 1), + (-3, -1), + ] + ) + def test_keepdims_out(self, q, axis): + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + shape_out = np.shape(q) + shape_out + + out = np.empty(shape_out) + result = np.nanpercentile(d, q, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + def test_out(self): mat = np.random.rand(3, 3) nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) |