diff options
author | Sebastian Berg <sebastian@sipsolutions.net> | 2016-06-19 14:01:47 +0200 |
---|---|---|
committer | Sebastian Berg <sebastian@sipsolutions.net> | 2016-09-02 10:10:55 +0200 |
commit | c1ddf841f6a48248b946a990ae750505b8b91686 (patch) | |
tree | 8eb8ee586515c9a2df78f241fe01b9e1ba2bfc3f /numpy/lib/tests/test_nanfunctions.py | |
parent | 78d7cc4f3422826954b067a5b030f0807f85f294 (diff) | |
download | numpy-c1ddf841f6a48248b946a990ae750505b8b91686.tar.gz |
ENH: Remove warning ignoring from nanfuncs
Comment mentions a speedup, but it seems unsure why it should
be there. Instead use an error state in divide_by_count.
Some extra complex warnings had to be ignored (but those seemed correct)
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r-- | numpy/lib/tests/test_nanfunctions.py | 62 |
1 files changed, 32 insertions, 30 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py index 03f9beff6..e062bc032 100644 --- a/numpy/lib/tests/test_nanfunctions.py +++ b/numpy/lib/tests/test_nanfunctions.py @@ -5,7 +5,7 @@ import warnings import numpy as np from numpy.testing import ( run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal, - assert_warns, assert_no_warnings, assert_raises, assert_array_equal + assert_no_warnings, assert_raises, assert_array_equal, suppress_warnings ) @@ -317,26 +317,30 @@ class SharedNanFunctionsTestsMixin(object): codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: - tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type - res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type - assert_(res is tgt) - # scalar case - tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type - res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type - assert_(res is tgt) + with suppress_warnings() as sup: + sup.filter(np.ComplexWarning) + tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type + res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type + assert_(res is tgt) + # scalar case + tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type + res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type + assert_(res is tgt) def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: - tgt = rf(mat, dtype=c, axis=1).dtype.type - res = nf(mat, dtype=c, axis=1).dtype.type - assert_(res is tgt) - # scalar case - tgt = rf(mat, dtype=c, axis=None).dtype.type - res = nf(mat, dtype=c, axis=None).dtype.type - assert_(res is tgt) + with suppress_warnings() as sup: + sup.filter(np.ComplexWarning) + tgt = rf(mat, dtype=c, axis=1).dtype.type + res = nf(mat, dtype=c, axis=1).dtype.type + assert_(res is tgt) + # scalar case + tgt = rf(mat, dtype=c, axis=None).dtype.type + res = nf(mat, dtype=c, axis=None).dtype.type + assert_(res is tgt) def test_dtype_from_input(self): codes = 'efdgFDG' @@ -524,16 +528,16 @@ class TestNanFunctions_MeanVarStd(TestCase, SharedNanFunctionsTestsMixin): dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): - with warnings.catch_warnings(record=True) as w: - warnings.simplefilter('always') + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + sup.filter(np.ComplexWarning) tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): - assert_(len(w) == 1) - assert_(issubclass(w[0].category, RuntimeWarning)) + assert_(len(sup.log) == 1) else: - assert_(len(w) == 0) + assert_(len(sup.log) == 0) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) @@ -642,22 +646,20 @@ class TestNanFunctions_Median(TestCase): def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for axis in [None, 0, 1]: - with warnings.catch_warnings(record=True) as w: - warnings.simplefilter('always') - warnings.simplefilter('ignore', FutureWarning) + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) if axis is None: - assert_(len(w) == 1) + assert_(len(sup.log) == 1) else: - assert_(len(w) == 3) - assert_(issubclass(w[0].category, RuntimeWarning)) + assert_(len(sup.log) == 3) # Check scalar assert_(np.isnan(np.nanmedian(np.nan))) if axis is None: - assert_(len(w) == 2) + assert_(len(sup.log) == 2) else: - assert_(len(w) == 4) - assert_(issubclass(w[0].category, RuntimeWarning)) + assert_(len(sup.log) == 4) def test_empty(self): mat = np.zeros((0, 3)) @@ -686,7 +688,7 @@ class TestNanFunctions_Median(TestCase): def test_float_special(self): with warnings.catch_warnings(record=True): - warnings.simplefilter('ignore', RuntimeWarning) + warnings.simplefilter('always', RuntimeWarning) a = np.array([[np.inf, np.nan], [np.nan, np.nan]]) assert_equal(np.nanmedian(a, axis=0), [np.inf, np.nan]) assert_equal(np.nanmedian(a, axis=1), [np.inf, np.nan]) |