diff options
author | Ralf Gommers <ralf.gommers@googlemail.com> | 2013-08-11 23:21:20 +0200 |
---|---|---|
committer | Ralf Gommers <ralf.gommers@googlemail.com> | 2013-08-11 23:21:20 +0200 |
commit | ed908c7bb01d73d072ae72421e3962836fce7f17 (patch) | |
tree | 99647b29a0aedb99a2a348801ad852028eb3f2a8 /numpy/lib/twodim_base.py | |
parent | f62522c610f334f86b1be2a586211d0e4dcdd934 (diff) | |
download | numpy-ed908c7bb01d73d072ae72421e3962836fce7f17.tar.gz |
DOC: fix some minor issues with histogram2d docstring formatting.
Diffstat (limited to 'numpy/lib/twodim_base.py')
-rw-r--r-- | numpy/lib/twodim_base.py | 28 |
1 files changed, 19 insertions, 9 deletions
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py index 4021a1b3c..a39f60220 100644 --- a/numpy/lib/twodim_base.py +++ b/numpy/lib/twodim_base.py @@ -585,39 +585,48 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): Examples -------- - 2D-histogram with variable bin width: - >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt - # First we define the bin edges + Construct a 2D-histogram with variable bin width. First define the bin + edges: + >>> xedges = [0, 1, 1.5, 3, 5] >>> yedges = [0, 2, 3, 4, 6] - # Next we create a histogram H with random bin content + Next we create a histogram H with random bin content: + >>> x = np.random.normal(3, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges)) - # Or we fill the histogram H with a determined bin content + Or we fill the histogram H with a determined bin content: + >>> H = np.ones((4, 4)).cumsum().reshape(4, 4) >>> print H[::-1] # This shows the bin content in the order as plotted + [[ 13. 14. 15. 16.] + [ 9. 10. 11. 12.] + [ 5. 6. 7. 8.] + [ 1. 2. 3. 4.]] + + Imshow can only do an equidistant representation of bins: >>> fig = plt.figure(figsize=(7, 3)) - # Imshow can only do an equidistant representation of bins >>> ax = fig.add_subplot(131) >>> ax.set_title('imshow:\nequidistant') >>> im = plt.imshow(H, interpolation='nearest', origin='low', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) - # pcolormesh can displaying exact bin edges + pcolormesh can displaying exact bin edges: + >>> ax = fig.add_subplot(132) >>> ax.set_title('pcolormesh:\nexact bin edges') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) >>> ax.set_aspect('equal') - - # NonUniformImage displays exact bin edges with interpolation + + NonUniformImage displays exact bin edges with interpolation: + >>> ax = fig.add_subplot(133) >>> ax.set_title('NonUniformImage:\ninterpolated') >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') @@ -629,6 +638,7 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): >>> ax.set_ylim(yedges[0], yedges[-1]) >>> ax.set_aspect('equal') >>> plt.show() + """ from numpy import histogramdd |