summaryrefslogtreecommitdiff
path: root/numpy/lib/twodim_base.py
diff options
context:
space:
mode:
authorRalf Gommers <ralf.gommers@googlemail.com>2013-08-11 23:21:20 +0200
committerRalf Gommers <ralf.gommers@googlemail.com>2013-08-11 23:21:20 +0200
commited908c7bb01d73d072ae72421e3962836fce7f17 (patch)
tree99647b29a0aedb99a2a348801ad852028eb3f2a8 /numpy/lib/twodim_base.py
parentf62522c610f334f86b1be2a586211d0e4dcdd934 (diff)
downloadnumpy-ed908c7bb01d73d072ae72421e3962836fce7f17.tar.gz
DOC: fix some minor issues with histogram2d docstring formatting.
Diffstat (limited to 'numpy/lib/twodim_base.py')
-rw-r--r--numpy/lib/twodim_base.py28
1 files changed, 19 insertions, 9 deletions
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py
index 4021a1b3c..a39f60220 100644
--- a/numpy/lib/twodim_base.py
+++ b/numpy/lib/twodim_base.py
@@ -585,39 +585,48 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None):
Examples
--------
- 2D-histogram with variable bin width:
-
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt
- # First we define the bin edges
+ Construct a 2D-histogram with variable bin width. First define the bin
+ edges:
+
>>> xedges = [0, 1, 1.5, 3, 5]
>>> yedges = [0, 2, 3, 4, 6]
- # Next we create a histogram H with random bin content
+ Next we create a histogram H with random bin content:
+
>>> x = np.random.normal(3, 1, 100)
>>> y = np.random.normal(1, 1, 100)
>>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges))
- # Or we fill the histogram H with a determined bin content
+ Or we fill the histogram H with a determined bin content:
+
>>> H = np.ones((4, 4)).cumsum().reshape(4, 4)
>>> print H[::-1] # This shows the bin content in the order as plotted
+ [[ 13. 14. 15. 16.]
+ [ 9. 10. 11. 12.]
+ [ 5. 6. 7. 8.]
+ [ 1. 2. 3. 4.]]
+
+ Imshow can only do an equidistant representation of bins:
>>> fig = plt.figure(figsize=(7, 3))
- # Imshow can only do an equidistant representation of bins
>>> ax = fig.add_subplot(131)
>>> ax.set_title('imshow:\nequidistant')
>>> im = plt.imshow(H, interpolation='nearest', origin='low',
extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
- # pcolormesh can displaying exact bin edges
+ pcolormesh can displaying exact bin edges:
+
>>> ax = fig.add_subplot(132)
>>> ax.set_title('pcolormesh:\nexact bin edges')
>>> X, Y = np.meshgrid(xedges, yedges)
>>> ax.pcolormesh(X, Y, H)
>>> ax.set_aspect('equal')
-
- # NonUniformImage displays exact bin edges with interpolation
+
+ NonUniformImage displays exact bin edges with interpolation:
+
>>> ax = fig.add_subplot(133)
>>> ax.set_title('NonUniformImage:\ninterpolated')
>>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear')
@@ -629,6 +638,7 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None):
>>> ax.set_ylim(yedges[0], yedges[-1])
>>> ax.set_aspect('equal')
>>> plt.show()
+
"""
from numpy import histogramdd