diff options
author | Stephan Hoyer <shoyer@gmail.com> | 2017-04-21 09:35:45 -0700 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2017-04-27 13:37:51 -0600 |
commit | 02600d38f3b2e70c3cd07770f93c3bac5255c8a6 (patch) | |
tree | 36cf7474c136258dd69ce3bd54dc67c54ff105cf /numpy/lib | |
parent | 1e460b74bac7da0d9029b1fd414213f00bb66c9f (diff) | |
download | numpy-02600d38f3b2e70c3cd07770f93c3bac5255c8a6.tar.gz |
ENH: Add NDArrayOperatorsMixin mixin class.
This mixin class provides an easy way to implement arithmetic operators
that defer to __array_ufunc__ like numpy.ndarray in non-ndarray
subclasses.
Diffstat (limited to 'numpy/lib')
-rw-r--r-- | numpy/lib/__init__.py | 2 | ||||
-rw-r--r-- | numpy/lib/mixins.py | 167 | ||||
-rw-r--r-- | numpy/lib/tests/test_mixins.py | 189 |
3 files changed, 358 insertions, 0 deletions
diff --git a/numpy/lib/__init__.py b/numpy/lib/__init__.py index 1d65db55e..4cdb76b20 100644 --- a/numpy/lib/__init__.py +++ b/numpy/lib/__init__.py @@ -8,6 +8,7 @@ from numpy.version import version as __version__ from .type_check import * from .index_tricks import * from .function_base import * +from .mixins import * from .nanfunctions import * from .shape_base import * from .stride_tricks import * @@ -29,6 +30,7 @@ __all__ = ['emath', 'math'] __all__ += type_check.__all__ __all__ += index_tricks.__all__ __all__ += function_base.__all__ +__all__ += mixins.__all__ __all__ += shape_base.__all__ __all__ += stride_tricks.__all__ __all__ += twodim_base.__all__ diff --git a/numpy/lib/mixins.py b/numpy/lib/mixins.py new file mode 100644 index 000000000..877a11039 --- /dev/null +++ b/numpy/lib/mixins.py @@ -0,0 +1,167 @@ +"""Mixin classes for custom array types that don't inherit from ndarray.""" +from __future__ import division, absolute_import, print_function + +import sys + +from numpy.core import umath as um + +# None of this module should be exposed in top-level NumPy module. +__all__ = [] + + +def _binary_method(ufunc): + def func(self, other): + try: + if other.__array_ufunc__ is None: + return NotImplemented + except AttributeError: + pass + return self.__array_ufunc__(ufunc, '__call__', self, other) + return func + + +def _reflected_binary_method(ufunc): + def func(self, other): + try: + if other.__array_ufunc__ is None: + return NotImplemented + except AttributeError: + pass + return self.__array_ufunc__(ufunc, '__call__', other, self) + return func + + +def _inplace_binary_method(ufunc): + def func(self, other): + result = self.__array_ufunc__( + ufunc, '__call__', self, other, out=(self,)) + if result is NotImplemented: + raise TypeError('unsupported operand types for in-place ' + 'arithmetic: %s and %s' + % (type(self).__name__, type(other).__name__)) + return result + return func + + +def _numeric_methods(ufunc): + return (_binary_method(ufunc), + _reflected_binary_method(ufunc), + _inplace_binary_method(ufunc)) + + +def _unary_method(ufunc): + def func(self): + return self.__array_ufunc__(ufunc, '__call__', self) + return func + + +class NDArrayOperatorsMixin(object): + """Mixin defining all operator special methods using __array_ufunc__. + + This class implements the special methods for almost all of Python's + builtin operators defined in the `operator` module, including comparisons + (``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by + deferring to the ``__array_ufunc__`` method, which subclasses must + implement. + + This class does not yet implement the special operators corresponding + to ``divmod``, unary ``+`` or ``matmul`` (``@``), because these operation + do not yet have corresponding NumPy ufuncs. + + It is useful for writing classes that do not inherit from `numpy.ndarray`, + but that should support arithmetic and numpy universal functions like + arrays as described in :ref:`A Mechanism for Overriding Ufuncs + <neps.ufunc-overrides>`. + + As an trivial example, consider this implementation of an ``ArrayLike`` + class that simply wraps a NumPy array and ensures that the result of any + arithmetic operation is also an ``ArrayLike`` object:: + + class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): + def __init__(self, value): + self.value = np.asarray(value) + + # One might also consider adding the built-in list type to this + # list, to support operations like np.add(array_like, list) + _HANDLED_TYPES = (np.ndarray, numbers.Number) + + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + out = kwargs.get('out', ()) + for x in inputs + out: + # Only support operations with instances of _HANDLED_TYPES + # and superclass instances of this type + if not (isinstance(x, self._HANDLED_TYPES) or + isinstance(self, type(x))): + return NotImplemented + + # Defer to the implementation of the ufunc on unwrapped values + inputs = tuple(x.value if isinstance(self, type(x)) else x + for x in inputs) + if out: + kwargs['out'] = tuple( + x.value if isinstance(self, type(x)) else x + for x in out) + result = getattr(ufunc, method)(*inputs, **kwargs) + + if type(result) is tuple: + # multiple return values + return tuple(type(self)(x) for x in result) + elif method == 'at': + # no return value + return None + else: + # one return value + return type(self)(result) + + def __repr__(self): + return '%s(%r)' % (type(self).__name__, self.value) + + In interactions between ``ArrayLike`` objects and numbers or numpy arrays, + the result is always another ``ArrayLike``: + + >>> x = ArrayLike([1, 2, 3]) + >>> x - 1 + ArrayLike(array([0, 1, 2])) + >>> 1 - x + ArrayLike(array([ 0, -1, -2])) + >>> np.arange(3) - x + ArrayLike(array([-1, -1, -1])) + >>> x - np.arange(3) + ArrayLike(array([1, 1, 1])) + + Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations + with arbitrary, unrecognized types. This ensures that interactions with + ArrayLike preserve a well-defined casting hierarchy. + """ + + # comparisons don't have reflected and in-place versions + __lt__ = _binary_method(um.less) + __le__ = _binary_method(um.less_equal) + __eq__ = _binary_method(um.equal) + __ne__ = _binary_method(um.not_equal) + __gt__ = _binary_method(um.greater) + __ge__ = _binary_method(um.greater_equal) + + # numeric methods + __add__, __radd__, __iadd__ = _numeric_methods(um.add) + __sub__, __rsub__, __isub__ = _numeric_methods(um.subtract) + __mul__, __rmul__, __imul__ = _numeric_methods(um.multiply) + if sys.version_info.major < 3: + # Python 3 uses only __truediv__ and __floordiv__ + __div__, __rdiv__, __idiv__ = _numeric_methods(um.divide) + __truediv__, __rtruediv__, __itruediv__ = _numeric_methods(um.true_divide) + __floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods( + um.floor_divide) + __mod__, __rmod__, __imod__ = _numeric_methods(um.mod) + # TODO: handle the optional third argument for __pow__? + __pow__, __rpow__, __ipow__ = _numeric_methods(um.power) + __lshift__, __rlshift__, __ilshift__ = _numeric_methods(um.left_shift) + __rshift__, __rrshift__, __irshift__ = _numeric_methods(um.right_shift) + __and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and) + __xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor) + __or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or) + + # unary methods + __neg__ = _unary_method(um.negative) + __abs__ = _unary_method(um.absolute) + __invert__ = _unary_method(um.invert) diff --git a/numpy/lib/tests/test_mixins.py b/numpy/lib/tests/test_mixins.py new file mode 100644 index 000000000..f45a3c661 --- /dev/null +++ b/numpy/lib/tests/test_mixins.py @@ -0,0 +1,189 @@ +from __future__ import division, absolute_import, print_function + +import numbers +import operator +import sys + +import numpy as np +from numpy.testing import ( + TestCase, run_module_suite, assert_, assert_equal, assert_raises) + + +PY2 = sys.version_info.major < 3 + + +# NOTE: This class should be kept as an exact copy of the example from the +# docstring for NDArrayOperatorsMixin. + +class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): + def __init__(self, value): + self.value = np.asarray(value) + + # One might also consider adding the built-in list type to this + # list, to support operations like np.add(array_like, list) + _HANDLED_TYPES = (np.ndarray, numbers.Number) + + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + out = kwargs.get('out', ()) + for x in inputs + out: + # Only support operations with instances of _HANDLED_TYPES + # and superclass instances of this type + if not (isinstance(x, self._HANDLED_TYPES) or + isinstance(self, type(x))): + return NotImplemented + + # Defer to the implementation of the ufunc on unwrapped values + inputs = tuple(x.value if isinstance(self, type(x)) else x + for x in inputs) + if out: + kwargs['out'] = tuple( + x.value if isinstance(self, type(x)) else x + for x in out) + result = getattr(ufunc, method)(*inputs, **kwargs) + + if type(result) is tuple: + # multiple return values + return tuple(type(self)(x) for x in result) + elif method == 'at': + # no return value + return None + else: + # one return value + return type(self)(result) + + def __repr__(self): + return '%s(%r)' % (type(self).__name__, self.value) + + +def _assert_equal_type_and_value(result, expected, err_msg=None): + assert_equal(type(result), type(expected), err_msg=err_msg) + assert_equal(result.value, expected.value, err_msg=err_msg) + assert_equal(getattr(result.value, 'dtype', None), + getattr(expected.value, 'dtype', None), err_msg=err_msg) + + +class TestNDArrayOperatorsMixin(TestCase): + + def test_array_like_add(self): + + def check(result): + _assert_equal_type_and_value(result, ArrayLike(0)) + + check(ArrayLike(0) + 0) + check(0 + ArrayLike(0)) + + check(ArrayLike(0) + np.array(0)) + check(np.array(0) + ArrayLike(0)) + + check(ArrayLike(np.array(0)) + 0) + check(0 + ArrayLike(np.array(0))) + + check(ArrayLike(np.array(0)) + np.array(0)) + check(np.array(0) + ArrayLike(np.array(0))) + + def test_inplace(self): + array_like = ArrayLike(np.array([0])) + array_like += 1 + _assert_equal_type_and_value(array_like, ArrayLike(np.array([1]))) + + array = np.array([0]) + array += ArrayLike(1) + _assert_equal_type_and_value(array, ArrayLike(np.array([1]))) + + def test_opt_out(self): + + class OptOut(object): + """Object that opts out of __array_ufunc__.""" + __array_ufunc__ = None + + def __add__(self, other): + return self + + def __radd__(self, other): + return self + + array_like = ArrayLike(1) + opt_out = OptOut() + + # supported operations + assert_(array_like + opt_out is opt_out) + assert_(opt_out + array_like is opt_out) + + # not supported + with assert_raises(TypeError): + # don't use the Python default, array_like = array_like + opt_out + array_like += opt_out + with assert_raises(TypeError): + array_like - opt_out + with assert_raises(TypeError): + opt_out - array_like + + def test_subclass(self): + + class SubArrayLike(ArrayLike): + """Should take precedence over ArrayLike.""" + + x = ArrayLike(0) + y = SubArrayLike(1) + _assert_equal_type_and_value(x + y, y) + _assert_equal_type_and_value(y + x, y) + + def test_unary_methods(self): + array = np.array([-1, 0, 1, 2]) + array_like = ArrayLike(array) + for op in [operator.neg, + # pos is not yet implemented + abs, + operator.invert]: + _assert_equal_type_and_value(op(array_like), ArrayLike(op(array))) + + def test_binary_methods(self): + array = np.array([-1, 0, 1, 2]) + array_like = ArrayLike(array) + operators = [ + operator.lt, + operator.le, + operator.eq, + operator.ne, + operator.gt, + operator.ge, + operator.add, + operator.sub, + operator.mul, + operator.truediv, + operator.floordiv, + # TODO: test div on Python 2, only + operator.mod, + # divmod is not yet implemented + pow, + operator.lshift, + operator.rshift, + operator.and_, + operator.xor, + operator.or_, + ] + for op in operators: + expected = ArrayLike(op(array, 1)) + actual = op(array_like, 1) + err_msg = 'failed for operator {}'.format(op) + _assert_equal_type_and_value(expected, actual, err_msg=err_msg) + + def test_ufunc_at(self): + array = ArrayLike(np.array([1, 2, 3, 4])) + assert_(np.negative.at(array, np.array([0, 1])) is None) + _assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4])) + + def test_ufunc_two_outputs(self): + def check(result): + assert_(type(result) is tuple) + assert_equal(len(result), 2) + mantissa, exponent = np.frexp(2 ** -3) + _assert_equal_type_and_value(result[0], ArrayLike(mantissa)) + _assert_equal_type_and_value(result[1], ArrayLike(exponent)) + + check(np.frexp(ArrayLike(2 ** -3))) + check(np.frexp(ArrayLike(np.array(2 ** -3)))) + + +if __name__ == "__main__": + run_module_suite() |