summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
authorStephan Hoyer <shoyer@gmail.com>2017-04-21 09:35:45 -0700
committerCharles Harris <charlesr.harris@gmail.com>2017-04-27 13:37:51 -0600
commit02600d38f3b2e70c3cd07770f93c3bac5255c8a6 (patch)
tree36cf7474c136258dd69ce3bd54dc67c54ff105cf /numpy/lib
parent1e460b74bac7da0d9029b1fd414213f00bb66c9f (diff)
downloadnumpy-02600d38f3b2e70c3cd07770f93c3bac5255c8a6.tar.gz
ENH: Add NDArrayOperatorsMixin mixin class.
This mixin class provides an easy way to implement arithmetic operators that defer to __array_ufunc__ like numpy.ndarray in non-ndarray subclasses.
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/__init__.py2
-rw-r--r--numpy/lib/mixins.py167
-rw-r--r--numpy/lib/tests/test_mixins.py189
3 files changed, 358 insertions, 0 deletions
diff --git a/numpy/lib/__init__.py b/numpy/lib/__init__.py
index 1d65db55e..4cdb76b20 100644
--- a/numpy/lib/__init__.py
+++ b/numpy/lib/__init__.py
@@ -8,6 +8,7 @@ from numpy.version import version as __version__
from .type_check import *
from .index_tricks import *
from .function_base import *
+from .mixins import *
from .nanfunctions import *
from .shape_base import *
from .stride_tricks import *
@@ -29,6 +30,7 @@ __all__ = ['emath', 'math']
__all__ += type_check.__all__
__all__ += index_tricks.__all__
__all__ += function_base.__all__
+__all__ += mixins.__all__
__all__ += shape_base.__all__
__all__ += stride_tricks.__all__
__all__ += twodim_base.__all__
diff --git a/numpy/lib/mixins.py b/numpy/lib/mixins.py
new file mode 100644
index 000000000..877a11039
--- /dev/null
+++ b/numpy/lib/mixins.py
@@ -0,0 +1,167 @@
+"""Mixin classes for custom array types that don't inherit from ndarray."""
+from __future__ import division, absolute_import, print_function
+
+import sys
+
+from numpy.core import umath as um
+
+# None of this module should be exposed in top-level NumPy module.
+__all__ = []
+
+
+def _binary_method(ufunc):
+ def func(self, other):
+ try:
+ if other.__array_ufunc__ is None:
+ return NotImplemented
+ except AttributeError:
+ pass
+ return self.__array_ufunc__(ufunc, '__call__', self, other)
+ return func
+
+
+def _reflected_binary_method(ufunc):
+ def func(self, other):
+ try:
+ if other.__array_ufunc__ is None:
+ return NotImplemented
+ except AttributeError:
+ pass
+ return self.__array_ufunc__(ufunc, '__call__', other, self)
+ return func
+
+
+def _inplace_binary_method(ufunc):
+ def func(self, other):
+ result = self.__array_ufunc__(
+ ufunc, '__call__', self, other, out=(self,))
+ if result is NotImplemented:
+ raise TypeError('unsupported operand types for in-place '
+ 'arithmetic: %s and %s'
+ % (type(self).__name__, type(other).__name__))
+ return result
+ return func
+
+
+def _numeric_methods(ufunc):
+ return (_binary_method(ufunc),
+ _reflected_binary_method(ufunc),
+ _inplace_binary_method(ufunc))
+
+
+def _unary_method(ufunc):
+ def func(self):
+ return self.__array_ufunc__(ufunc, '__call__', self)
+ return func
+
+
+class NDArrayOperatorsMixin(object):
+ """Mixin defining all operator special methods using __array_ufunc__.
+
+ This class implements the special methods for almost all of Python's
+ builtin operators defined in the `operator` module, including comparisons
+ (``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by
+ deferring to the ``__array_ufunc__`` method, which subclasses must
+ implement.
+
+ This class does not yet implement the special operators corresponding
+ to ``divmod``, unary ``+`` or ``matmul`` (``@``), because these operation
+ do not yet have corresponding NumPy ufuncs.
+
+ It is useful for writing classes that do not inherit from `numpy.ndarray`,
+ but that should support arithmetic and numpy universal functions like
+ arrays as described in :ref:`A Mechanism for Overriding Ufuncs
+ <neps.ufunc-overrides>`.
+
+ As an trivial example, consider this implementation of an ``ArrayLike``
+ class that simply wraps a NumPy array and ensures that the result of any
+ arithmetic operation is also an ``ArrayLike`` object::
+
+ class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
+ def __init__(self, value):
+ self.value = np.asarray(value)
+
+ # One might also consider adding the built-in list type to this
+ # list, to support operations like np.add(array_like, list)
+ _HANDLED_TYPES = (np.ndarray, numbers.Number)
+
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ out = kwargs.get('out', ())
+ for x in inputs + out:
+ # Only support operations with instances of _HANDLED_TYPES
+ # and superclass instances of this type
+ if not (isinstance(x, self._HANDLED_TYPES) or
+ isinstance(self, type(x))):
+ return NotImplemented
+
+ # Defer to the implementation of the ufunc on unwrapped values
+ inputs = tuple(x.value if isinstance(self, type(x)) else x
+ for x in inputs)
+ if out:
+ kwargs['out'] = tuple(
+ x.value if isinstance(self, type(x)) else x
+ for x in out)
+ result = getattr(ufunc, method)(*inputs, **kwargs)
+
+ if type(result) is tuple:
+ # multiple return values
+ return tuple(type(self)(x) for x in result)
+ elif method == 'at':
+ # no return value
+ return None
+ else:
+ # one return value
+ return type(self)(result)
+
+ def __repr__(self):
+ return '%s(%r)' % (type(self).__name__, self.value)
+
+ In interactions between ``ArrayLike`` objects and numbers or numpy arrays,
+ the result is always another ``ArrayLike``:
+
+ >>> x = ArrayLike([1, 2, 3])
+ >>> x - 1
+ ArrayLike(array([0, 1, 2]))
+ >>> 1 - x
+ ArrayLike(array([ 0, -1, -2]))
+ >>> np.arange(3) - x
+ ArrayLike(array([-1, -1, -1]))
+ >>> x - np.arange(3)
+ ArrayLike(array([1, 1, 1]))
+
+ Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations
+ with arbitrary, unrecognized types. This ensures that interactions with
+ ArrayLike preserve a well-defined casting hierarchy.
+ """
+
+ # comparisons don't have reflected and in-place versions
+ __lt__ = _binary_method(um.less)
+ __le__ = _binary_method(um.less_equal)
+ __eq__ = _binary_method(um.equal)
+ __ne__ = _binary_method(um.not_equal)
+ __gt__ = _binary_method(um.greater)
+ __ge__ = _binary_method(um.greater_equal)
+
+ # numeric methods
+ __add__, __radd__, __iadd__ = _numeric_methods(um.add)
+ __sub__, __rsub__, __isub__ = _numeric_methods(um.subtract)
+ __mul__, __rmul__, __imul__ = _numeric_methods(um.multiply)
+ if sys.version_info.major < 3:
+ # Python 3 uses only __truediv__ and __floordiv__
+ __div__, __rdiv__, __idiv__ = _numeric_methods(um.divide)
+ __truediv__, __rtruediv__, __itruediv__ = _numeric_methods(um.true_divide)
+ __floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods(
+ um.floor_divide)
+ __mod__, __rmod__, __imod__ = _numeric_methods(um.mod)
+ # TODO: handle the optional third argument for __pow__?
+ __pow__, __rpow__, __ipow__ = _numeric_methods(um.power)
+ __lshift__, __rlshift__, __ilshift__ = _numeric_methods(um.left_shift)
+ __rshift__, __rrshift__, __irshift__ = _numeric_methods(um.right_shift)
+ __and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and)
+ __xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor)
+ __or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or)
+
+ # unary methods
+ __neg__ = _unary_method(um.negative)
+ __abs__ = _unary_method(um.absolute)
+ __invert__ = _unary_method(um.invert)
diff --git a/numpy/lib/tests/test_mixins.py b/numpy/lib/tests/test_mixins.py
new file mode 100644
index 000000000..f45a3c661
--- /dev/null
+++ b/numpy/lib/tests/test_mixins.py
@@ -0,0 +1,189 @@
+from __future__ import division, absolute_import, print_function
+
+import numbers
+import operator
+import sys
+
+import numpy as np
+from numpy.testing import (
+ TestCase, run_module_suite, assert_, assert_equal, assert_raises)
+
+
+PY2 = sys.version_info.major < 3
+
+
+# NOTE: This class should be kept as an exact copy of the example from the
+# docstring for NDArrayOperatorsMixin.
+
+class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
+ def __init__(self, value):
+ self.value = np.asarray(value)
+
+ # One might also consider adding the built-in list type to this
+ # list, to support operations like np.add(array_like, list)
+ _HANDLED_TYPES = (np.ndarray, numbers.Number)
+
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ out = kwargs.get('out', ())
+ for x in inputs + out:
+ # Only support operations with instances of _HANDLED_TYPES
+ # and superclass instances of this type
+ if not (isinstance(x, self._HANDLED_TYPES) or
+ isinstance(self, type(x))):
+ return NotImplemented
+
+ # Defer to the implementation of the ufunc on unwrapped values
+ inputs = tuple(x.value if isinstance(self, type(x)) else x
+ for x in inputs)
+ if out:
+ kwargs['out'] = tuple(
+ x.value if isinstance(self, type(x)) else x
+ for x in out)
+ result = getattr(ufunc, method)(*inputs, **kwargs)
+
+ if type(result) is tuple:
+ # multiple return values
+ return tuple(type(self)(x) for x in result)
+ elif method == 'at':
+ # no return value
+ return None
+ else:
+ # one return value
+ return type(self)(result)
+
+ def __repr__(self):
+ return '%s(%r)' % (type(self).__name__, self.value)
+
+
+def _assert_equal_type_and_value(result, expected, err_msg=None):
+ assert_equal(type(result), type(expected), err_msg=err_msg)
+ assert_equal(result.value, expected.value, err_msg=err_msg)
+ assert_equal(getattr(result.value, 'dtype', None),
+ getattr(expected.value, 'dtype', None), err_msg=err_msg)
+
+
+class TestNDArrayOperatorsMixin(TestCase):
+
+ def test_array_like_add(self):
+
+ def check(result):
+ _assert_equal_type_and_value(result, ArrayLike(0))
+
+ check(ArrayLike(0) + 0)
+ check(0 + ArrayLike(0))
+
+ check(ArrayLike(0) + np.array(0))
+ check(np.array(0) + ArrayLike(0))
+
+ check(ArrayLike(np.array(0)) + 0)
+ check(0 + ArrayLike(np.array(0)))
+
+ check(ArrayLike(np.array(0)) + np.array(0))
+ check(np.array(0) + ArrayLike(np.array(0)))
+
+ def test_inplace(self):
+ array_like = ArrayLike(np.array([0]))
+ array_like += 1
+ _assert_equal_type_and_value(array_like, ArrayLike(np.array([1])))
+
+ array = np.array([0])
+ array += ArrayLike(1)
+ _assert_equal_type_and_value(array, ArrayLike(np.array([1])))
+
+ def test_opt_out(self):
+
+ class OptOut(object):
+ """Object that opts out of __array_ufunc__."""
+ __array_ufunc__ = None
+
+ def __add__(self, other):
+ return self
+
+ def __radd__(self, other):
+ return self
+
+ array_like = ArrayLike(1)
+ opt_out = OptOut()
+
+ # supported operations
+ assert_(array_like + opt_out is opt_out)
+ assert_(opt_out + array_like is opt_out)
+
+ # not supported
+ with assert_raises(TypeError):
+ # don't use the Python default, array_like = array_like + opt_out
+ array_like += opt_out
+ with assert_raises(TypeError):
+ array_like - opt_out
+ with assert_raises(TypeError):
+ opt_out - array_like
+
+ def test_subclass(self):
+
+ class SubArrayLike(ArrayLike):
+ """Should take precedence over ArrayLike."""
+
+ x = ArrayLike(0)
+ y = SubArrayLike(1)
+ _assert_equal_type_and_value(x + y, y)
+ _assert_equal_type_and_value(y + x, y)
+
+ def test_unary_methods(self):
+ array = np.array([-1, 0, 1, 2])
+ array_like = ArrayLike(array)
+ for op in [operator.neg,
+ # pos is not yet implemented
+ abs,
+ operator.invert]:
+ _assert_equal_type_and_value(op(array_like), ArrayLike(op(array)))
+
+ def test_binary_methods(self):
+ array = np.array([-1, 0, 1, 2])
+ array_like = ArrayLike(array)
+ operators = [
+ operator.lt,
+ operator.le,
+ operator.eq,
+ operator.ne,
+ operator.gt,
+ operator.ge,
+ operator.add,
+ operator.sub,
+ operator.mul,
+ operator.truediv,
+ operator.floordiv,
+ # TODO: test div on Python 2, only
+ operator.mod,
+ # divmod is not yet implemented
+ pow,
+ operator.lshift,
+ operator.rshift,
+ operator.and_,
+ operator.xor,
+ operator.or_,
+ ]
+ for op in operators:
+ expected = ArrayLike(op(array, 1))
+ actual = op(array_like, 1)
+ err_msg = 'failed for operator {}'.format(op)
+ _assert_equal_type_and_value(expected, actual, err_msg=err_msg)
+
+ def test_ufunc_at(self):
+ array = ArrayLike(np.array([1, 2, 3, 4]))
+ assert_(np.negative.at(array, np.array([0, 1])) is None)
+ _assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4]))
+
+ def test_ufunc_two_outputs(self):
+ def check(result):
+ assert_(type(result) is tuple)
+ assert_equal(len(result), 2)
+ mantissa, exponent = np.frexp(2 ** -3)
+ _assert_equal_type_and_value(result[0], ArrayLike(mantissa))
+ _assert_equal_type_and_value(result[1], ArrayLike(exponent))
+
+ check(np.frexp(ArrayLike(2 ** -3)))
+ check(np.frexp(ArrayLike(np.array(2 ** -3))))
+
+
+if __name__ == "__main__":
+ run_module_suite()