diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2017-08-05 12:09:23 -0500 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-08-05 12:09:23 -0500 |
commit | bfe43b26969231cfe8196868280c07f0c0aa8f50 (patch) | |
tree | 88ad7478e033ce5980a365a479e22b78ba1cecaa /numpy/lib | |
parent | 5ab02b15de72fa00d785f49c62466fe048264cc4 (diff) | |
parent | 2b781f8967488dc007f8f0a1e6a7f49208788d12 (diff) | |
download | numpy-bfe43b26969231cfe8196868280c07f0c0aa8f50.tar.gz |
Merge pull request #9517 from charris/rebase-9508
MAINT/DOC: Use builtin when np.{x} is builtins.{x}.
Diffstat (limited to 'numpy/lib')
-rw-r--r-- | numpy/lib/arraysetops.py | 4 | ||||
-rw-r--r-- | numpy/lib/function_base.py | 18 | ||||
-rw-r--r-- | numpy/lib/index_tricks.py | 2 | ||||
-rw-r--r-- | numpy/lib/npyio.py | 14 | ||||
-rw-r--r-- | numpy/lib/tests/test__iotools.py | 2 | ||||
-rw-r--r-- | numpy/lib/tests/test_function_base.py | 8 | ||||
-rw-r--r-- | numpy/lib/tests/test_io.py | 40 | ||||
-rw-r--r-- | numpy/lib/tests/test_regression.py | 18 | ||||
-rw-r--r-- | numpy/lib/tests/test_type_check.py | 4 | ||||
-rw-r--r-- | numpy/lib/type_check.py | 4 |
10 files changed, 57 insertions, 57 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py index aa3a05e12..ededb9dd0 100644 --- a/numpy/lib/arraysetops.py +++ b/numpy/lib/arraysetops.py @@ -451,11 +451,11 @@ def in1d(ar1, ar2, assume_unique=False, invert=False): # This code is significantly faster when the condition is satisfied. if len(ar2) < 10 * len(ar1) ** 0.145: if invert: - mask = np.ones(len(ar1), dtype=np.bool) + mask = np.ones(len(ar1), dtype=bool) for a in ar2: mask &= (ar1 != a) else: - mask = np.zeros(len(ar1), dtype=np.bool) + mask = np.zeros(len(ar1), dtype=bool) for a in ar2: mask |= (ar1 == a) return mask diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index f5e9ff2a5..c185f9639 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -717,7 +717,7 @@ def histogram(a, bins=10, range=None, normed=False, weights=None, # At this point, if the weights are not integer, floating point, or # complex, we have to use the slow algorithm. if weights is not None and not (np.can_cast(weights.dtype, np.double) or - np.can_cast(weights.dtype, np.complex)): + np.can_cast(weights.dtype, complex)): bins = linspace(mn, mx, bins + 1, endpoint=True) if not iterable(bins): @@ -1541,7 +1541,7 @@ def gradient(f, *varargs, **kwargs): Examples -------- - >>> f = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) + >>> f = np.array([1, 2, 4, 7, 11, 16], dtype=float) >>> np.gradient(f) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> np.gradient(f, 2) @@ -1557,7 +1557,7 @@ def gradient(f, *varargs, **kwargs): Or a non uniform one: - >>> x = np.array([0., 1., 1.5, 3.5, 4., 6.], dtype=np.float) + >>> x = np.array([0., 1., 1.5, 3.5, 4., 6.], dtype=float) >>> np.gradient(f, x) array([ 1. , 3. , 3.5, 6.7, 6.9, 2.5]) @@ -1565,7 +1565,7 @@ def gradient(f, *varargs, **kwargs): axis. In this example the first array stands for the gradient in rows and the second one in columns direction: - >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])] @@ -1575,7 +1575,7 @@ def gradient(f, *varargs, **kwargs): >>> dx = 2. >>> y = [1., 1.5, 3.5] - >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float), dx, y) + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), dx, y) [array([[ 1. , 1. , -0.5], [ 1. , 1. , -0.5]]), array([[ 2. , 2. , 2. ], [ 2. , 1.7, 0.5]])] @@ -1592,7 +1592,7 @@ def gradient(f, *varargs, **kwargs): The `axis` keyword can be used to specify a subset of axes of which the gradient is calculated - >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float), axis=0) + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), axis=0) array([[ 2., 2., -1.], [ 2., 2., -1.]]) @@ -2600,7 +2600,7 @@ class vectorize(object): >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.int32'> - >>> vfunc = np.vectorize(myfunc, otypes=[np.float]) + >>> vfunc = np.vectorize(myfunc, otypes=[float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.float64'> @@ -3029,7 +3029,7 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, # Get the product of frequencies and weights w = None if fweights is not None: - fweights = np.asarray(fweights, dtype=np.float) + fweights = np.asarray(fweights, dtype=float) if not np.all(fweights == np.around(fweights)): raise TypeError( "fweights must be integer") @@ -3044,7 +3044,7 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, "fweights cannot be negative") w = fweights if aweights is not None: - aweights = np.asarray(aweights, dtype=np.float) + aweights = np.asarray(aweights, dtype=float) if aweights.ndim > 1: raise RuntimeError( "cannot handle multidimensional aweights") diff --git a/numpy/lib/index_tricks.py b/numpy/lib/index_tricks.py index 950f77175..650b37f25 100644 --- a/numpy/lib/index_tricks.py +++ b/numpy/lib/index_tricks.py @@ -842,7 +842,7 @@ def diag_indices(n, ndim=2): And use it to set the diagonal of an array of zeros to 1: - >>> a = np.zeros((2, 2, 2), dtype=np.int) + >>> a = np.zeros((2, 2, 2), dtype=int) >>> a[d3] = 1 >>> a array([[[1, 0], diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py index 187a6722a..17b585ee5 100644 --- a/numpy/lib/npyio.py +++ b/numpy/lib/npyio.py @@ -737,7 +737,7 @@ def _getconv(dtype): return np.longdouble elif issubclass(typ, np.floating): return floatconv - elif issubclass(typ, np.complex): + elif issubclass(typ, complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return asbytes @@ -1902,16 +1902,16 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None, # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: - (ddtype, mdtype) = (list(base)[0], np.bool) + (ddtype, mdtype) = (list(base)[0], bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: - mdtype = [(defaultfmt % i, np.bool) + mdtype = [(defaultfmt % i, bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) - mdtype = list(zip(names, [np.bool] * len(column_types))) + mdtype = list(zip(names, [bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) @@ -1937,7 +1937,7 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None, # Now, process the rowmasks the same way if usemask: rowmasks = np.array( - masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) + masks, dtype=np.dtype([('', bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) @@ -1968,9 +1968,9 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None, output = np.array(data, dtype) if usemask: if dtype.names: - mdtype = [(_, np.bool) for _ in dtype.names] + mdtype = [(_, bool) for _ in dtype.names] else: - mdtype = np.bool + mdtype = bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names diff --git a/numpy/lib/tests/test__iotools.py b/numpy/lib/tests/test__iotools.py index a7ee9cbff..03192896c 100644 --- a/numpy/lib/tests/test__iotools.py +++ b/numpy/lib/tests/test__iotools.py @@ -257,7 +257,7 @@ class TestMiscFunctions(object): def test_has_nested_dtype(self): "Test has_nested_dtype" - ndtype = np.dtype(np.float) + ndtype = np.dtype(float) assert_equal(has_nested_fields(ndtype), False) ndtype = np.dtype([('A', '|S3'), ('B', float)]) assert_equal(has_nested_fields(ndtype), False) diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py index 4ecb02821..ad840f8ef 100644 --- a/numpy/lib/tests/test_function_base.py +++ b/numpy/lib/tests/test_function_base.py @@ -2663,28 +2663,28 @@ class TestInterp(object): incres = interp(incpts, xp, yp) decres = interp(decpts, xp, yp) - inctgt = np.array([1, 1, 1, 1], dtype=np.float) + inctgt = np.array([1, 1, 1, 1], dtype=float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) incres = interp(incpts, xp, yp, left=0) decres = interp(decpts, xp, yp, left=0) - inctgt = np.array([0, 1, 1, 1], dtype=np.float) + inctgt = np.array([0, 1, 1, 1], dtype=float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) incres = interp(incpts, xp, yp, right=2) decres = interp(decpts, xp, yp, right=2) - inctgt = np.array([1, 1, 1, 2], dtype=np.float) + inctgt = np.array([1, 1, 1, 2], dtype=float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) incres = interp(incpts, xp, yp, left=0, right=2) decres = interp(decpts, xp, yp, left=0, right=2) - inctgt = np.array([0, 1, 1, 2], dtype=np.float) + inctgt = np.array([0, 1, 1, 2], dtype=float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) diff --git a/numpy/lib/tests/test_io.py b/numpy/lib/tests/test_io.py index 4bc2a1b1b..f2fd37230 100644 --- a/numpy/lib/tests/test_io.py +++ b/numpy/lib/tests/test_io.py @@ -373,7 +373,7 @@ class TestSaveTxt(object): # Test the functionality of the header and footer keyword argument. c = BytesIO() - a = np.array([(1, 2), (3, 4)], dtype=np.int) + a = np.array([(1, 2), (3, 4)], dtype=int) test_header_footer = 'Test header / footer' # Test the header keyword argument np.savetxt(c, a, fmt='%1d', header=test_header_footer) @@ -485,7 +485,7 @@ class TestLoadTxt(object): c.write('1 2\n3 4') c.seek(0) - x = np.loadtxt(c, dtype=np.int) + x = np.loadtxt(c, dtype=int) a = np.array([[1, 2], [3, 4]], int) assert_array_equal(x, a) @@ -721,7 +721,7 @@ class TestLoadTxt(object): # Test using an explicit dtype with an object data = """ 1; 2001-01-01 2; 2002-01-31 """ - ndtype = [('idx', int), ('code', np.object)] + ndtype = [('idx', int), ('code', object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.loadtxt(TextIO(data), delimiter=";", dtype=ndtype, @@ -751,11 +751,11 @@ class TestLoadTxt(object): # IEEE doubles and floats only, otherwise the float32 # conversion may fail. tgt = np.logspace(-10, 10, 5).astype(np.float32) - tgt = np.hstack((tgt, -tgt)).astype(np.float) + tgt = np.hstack((tgt, -tgt)).astype(float) inp = '\n'.join(map(float.hex, tgt)) c = TextIO() c.write(inp) - for dt in [np.float, np.float32]: + for dt in [float, np.float32]: c.seek(0) res = np.loadtxt(c, dtype=dt) assert_equal(res, tgt, err_msg="%s" % dt) @@ -765,7 +765,7 @@ class TestLoadTxt(object): c = TextIO() c.write("%s %s" % tgt) c.seek(0) - res = np.loadtxt(c, dtype=np.complex) + res = np.loadtxt(c, dtype=complex) assert_equal(res, tgt) def test_universal_newline(self): @@ -1190,7 +1190,7 @@ M 33 21.99 # Test using an explicit dtype with an object data = """ 1; 2001-01-01 2; 2002-01-31 """ - ndtype = [('idx', int), ('code', np.object)] + ndtype = [('idx', int), ('code', object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, @@ -1200,7 +1200,7 @@ M 33 21.99 dtype=ndtype) assert_equal(test, control) - ndtype = [('nest', [('idx', int), ('code', np.object)])] + ndtype = [('nest', [('idx', int), ('code', object)])] try: test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) @@ -1337,7 +1337,7 @@ M 33 21.99 test = np.mafromtxt(data, dtype=None, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], - dtype=[('A', np.int), ('B', np.int)]) + dtype=[('A', int), ('B', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) # @@ -1345,7 +1345,7 @@ M 33 21.99 test = np.mafromtxt(data, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], - dtype=[('A', np.float), ('B', np.float)]) + dtype=[('A', float), ('B', float)]) assert_equal(test, control) assert_equal(test.mask, control.mask) @@ -1414,7 +1414,7 @@ M 33 21.99 missing_values='-999.0', names=True,) control = ma.array([(0, 1.5), (2, -1.)], mask=[(False, False), (False, True)], - dtype=[('A', np.int), ('B', np.float)]) + dtype=[('A', int), ('B', float)]) assert_equal(test, control) assert_equal(test.mask, control.mask) @@ -1682,7 +1682,7 @@ M 33 21.99 kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.recfromtxt(data, **kwargs) control = np.array([(0, 1), (2, 3)], - dtype=[('A', np.int), ('B', np.int)]) + dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # @@ -1690,7 +1690,7 @@ M 33 21.99 test = np.recfromtxt(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], - dtype=[('A', np.int), ('B', np.int)]) + dtype=[('A', int), ('B', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2]) @@ -1701,7 +1701,7 @@ M 33 21.99 kwargs = dict(missing_values="N/A", names=True, case_sensitive=True) test = np.recfromcsv(data, dtype=None, **kwargs) control = np.array([(0, 1), (2, 3)], - dtype=[('A', np.int), ('B', np.int)]) + dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # @@ -1709,7 +1709,7 @@ M 33 21.99 test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs) control = ma.array([(0, 1), (2, -1)], mask=[(False, False), (False, True)], - dtype=[('A', np.int), ('B', np.int)]) + dtype=[('A', int), ('B', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(test.A, [0, 2]) @@ -1717,12 +1717,12 @@ M 33 21.99 data = TextIO('A,B\n0,1\n2,3') test = np.recfromcsv(data, missing_values='N/A',) control = np.array([(0, 1), (2, 3)], - dtype=[('a', np.int), ('b', np.int)]) + dtype=[('a', int), ('b', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) # data = TextIO('A,B\n0,1\n2,3') - dtype = [('a', np.int), ('b', np.float)] + dtype = [('a', int), ('b', float)] test = np.recfromcsv(data, missing_values='N/A', dtype=dtype) control = np.array([(0, 1), (2, 3)], dtype=dtype) @@ -1827,7 +1827,7 @@ M 33 21.99 assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) - assert_(test.dtype['f0'] == np.float) + assert_(test.dtype['f0'] == float) assert_(test.dtype['f1'] == np.int64) assert_(test.dtype['f2'] == np.integer) @@ -1919,7 +1919,7 @@ class TestPathUsage(object): kwargs = dict(delimiter=",", missing_values="N/A", names=True) test = np.recfromtxt(path, **kwargs) control = np.array([(0, 1), (2, 3)], - dtype=[('A', np.int), ('B', np.int)]) + dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) @@ -1933,7 +1933,7 @@ class TestPathUsage(object): kwargs = dict(missing_values="N/A", names=True, case_sensitive=True) test = np.recfromcsv(path, dtype=None, **kwargs) control = np.array([(0, 1), (2, 3)], - dtype=[('A', np.int), ('B', np.int)]) + dtype=[('A', int), ('B', int)]) assert_(isinstance(test, np.recarray)) assert_equal(test, control) diff --git a/numpy/lib/tests/test_regression.py b/numpy/lib/tests/test_regression.py index 1567219d6..74c47df7c 100644 --- a/numpy/lib/tests/test_regression.py +++ b/numpy/lib/tests/test_regression.py @@ -108,13 +108,13 @@ class TestRegression(object): def test_polydiv_type(self): # Make polydiv work for complex types msg = "Wrong type, should be complex" - x = np.ones(3, dtype=np.complex) + x = np.ones(3, dtype=complex) q, r = np.polydiv(x, x) - assert_(q.dtype == np.complex, msg) + assert_(q.dtype == complex, msg) msg = "Wrong type, should be float" - x = np.ones(3, dtype=np.int) + x = np.ones(3, dtype=int) q, r = np.polydiv(x, x) - assert_(q.dtype == np.float, msg) + assert_(q.dtype == float, msg) def test_histogramdd_too_many_bins(self): # Ticket 928. @@ -123,11 +123,11 @@ class TestRegression(object): def test_polyint_type(self): # Ticket #944 msg = "Wrong type, should be complex" - x = np.ones(3, dtype=np.complex) - assert_(np.polyint(x).dtype == np.complex, msg) + x = np.ones(3, dtype=complex) + assert_(np.polyint(x).dtype == complex, msg) msg = "Wrong type, should be float" - x = np.ones(3, dtype=np.int) - assert_(np.polyint(x).dtype == np.float, msg) + x = np.ones(3, dtype=int) + assert_(np.polyint(x).dtype == float, msg) def test_ndenumerate_crash(self): # Ticket 1140 @@ -234,7 +234,7 @@ class TestRegression(object): def test_nansum_with_boolean(self): # gh-2978 - a = np.zeros(2, dtype=np.bool) + a = np.zeros(2, dtype=bool) try: np.nansum(a) except Exception: diff --git a/numpy/lib/tests/test_type_check.py b/numpy/lib/tests/test_type_check.py index 259fcd4e5..d863e5924 100644 --- a/numpy/lib/tests/test_type_check.py +++ b/numpy/lib/tests/test_type_check.py @@ -374,7 +374,7 @@ class TestNanToNum(object): vals = nan_to_num(1) assert_all(vals == 1) vals = nan_to_num([1]) - assert_array_equal(vals, np.array([1], np.int)) + assert_array_equal(vals, np.array([1], int)) def test_complex_good(self): vals = nan_to_num(1+1j) @@ -420,7 +420,7 @@ class TestArrayConversion(object): def test_asfarray(self): a = asfarray(np.array([1, 2, 3])) assert_equal(a.__class__, np.ndarray) - assert_(np.issubdtype(a.dtype, np.float)) + assert_(np.issubdtype(a.dtype, float)) if __name__ == "__main__": run_module_suite() diff --git a/numpy/lib/type_check.py b/numpy/lib/type_check.py index 9d369aa9f..b2de153d3 100644 --- a/numpy/lib/type_check.py +++ b/numpy/lib/type_check.py @@ -433,12 +433,12 @@ def real_if_close(a,tol=100): ----- Machine epsilon varies from machine to machine and between data types but Python floats on most platforms have a machine epsilon equal to - 2.2204460492503131e-16. You can use 'np.finfo(np.float).eps' to print + 2.2204460492503131e-16. You can use 'np.finfo(float).eps' to print out the machine epsilon for floats. Examples -------- - >>> np.finfo(np.float).eps + >>> np.finfo(float).eps 2.2204460492503131e-16 >>> np.real_if_close([2.1 + 4e-14j], tol=1000) |