diff options
author | Stefan van der Walt <stefan@sun.ac.za> | 2007-12-15 01:15:26 +0000 |
---|---|---|
committer | Stefan van der Walt <stefan@sun.ac.za> | 2007-12-15 01:15:26 +0000 |
commit | 703e8d6323b19cbfeb96772c1e35f1cd68629336 (patch) | |
tree | 34bd23200d97ff43369d7d23d37c9c08c3d3a3b4 /numpy/ma/tests | |
parent | 61f9f6d0fb169cadefe35ea2bdd783848aa771f5 (diff) | |
download | numpy-703e8d6323b19cbfeb96772c1e35f1cd68629336.tar.gz |
Move ma to numpy root. Fix unit tests. Remove references to numpy.core.ma.
Diffstat (limited to 'numpy/ma/tests')
-rw-r--r-- | numpy/ma/tests/test_core.py | 1305 | ||||
-rw-r--r-- | numpy/ma/tests/test_extras.py | 331 | ||||
-rw-r--r-- | numpy/ma/tests/test_morestats.py | 114 | ||||
-rw-r--r-- | numpy/ma/tests/test_mrecords.py | 181 | ||||
-rw-r--r-- | numpy/ma/tests/test_mstats.py | 174 | ||||
-rw-r--r-- | numpy/ma/tests/test_subclassing.py | 183 |
6 files changed, 2288 insertions, 0 deletions
diff --git a/numpy/ma/tests/test_core.py b/numpy/ma/tests/test_core.py new file mode 100644 index 000000000..0849be135 --- /dev/null +++ b/numpy/ma/tests/test_core.py @@ -0,0 +1,1305 @@ +# pylint: disable-msg=W0611, W0612, W0511,R0201 +"""Tests suite for MaskedArray & subclassing. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu +:version: $Id: test_core.py 3473 2007-10-29 15:18:13Z jarrod.millman $ +""" +__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)" +__version__ = '1.0' +__revision__ = "$Revision: 3473 $" +__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $' + +import types + +import numpy +import numpy.core.fromnumeric as fromnumeric +from numpy.testing import NumpyTest, NumpyTestCase +from numpy.testing.utils import build_err_msg +from numpy import array as narray + +import numpy.ma.testutils +from numpy.ma.testutils import * + +import numpy.ma.core as coremodule +from numpy.ma.core import * + +pi = numpy.pi + +#.............................................................................. +class TestMA(NumpyTestCase): + "Base test class for MaskedArrays." + def __init__(self, *args, **kwds): + NumpyTestCase.__init__(self, *args, **kwds) + self.setUp() + + def setUp (self): + "Base data definition." + x = narray([1.,1.,1.,-2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) + y = narray([5.,0.,3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) + a10 = 10. + m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] + m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0 ,0, 1] + xm = masked_array(x, mask=m1) + ym = masked_array(y, mask=m2) + z = narray([-.5, 0., .5, .8]) + zm = masked_array(z, mask=[0,1,0,0]) + xf = numpy.where(m1, 1.e+20, x) + xm.set_fill_value(1.e+20) + self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) + #........................ + def check_basic1d(self): + "Test of basic array creation and properties in 1 dimension." + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + assert(not isMaskedArray(x)) + assert(isMaskedArray(xm)) + assert((xm-ym).filled(0).any()) + fail_if_equal(xm.mask.astype(int_), ym.mask.astype(int_)) + s = x.shape + assert_equal(numpy.shape(xm), s) + assert_equal(xm.shape, s) + assert_equal(xm.dtype, x.dtype) + assert_equal(zm.dtype, z.dtype) + assert_equal(xm.size , reduce(lambda x,y:x*y, s)) + assert_equal(count(xm) , len(m1) - reduce(lambda x,y:x+y, m1)) + assert_array_equal(xm, xf) + assert_array_equal(filled(xm, 1.e20), xf) + assert_array_equal(x, xm) + #........................ + def check_basic2d(self): + "Test of basic array creation and properties in 2 dimensions." + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + for s in [(4,3), (6,2)]: + x.shape = s + y.shape = s + xm.shape = s + ym.shape = s + xf.shape = s + + assert(not isMaskedArray(x)) + assert(isMaskedArray(xm)) + assert_equal(shape(xm), s) + assert_equal(xm.shape, s) + assert_equal( xm.size , reduce(lambda x,y:x*y, s)) + assert_equal( count(xm) , len(m1) - reduce(lambda x,y:x+y, m1)) + assert_equal(xm, xf) + assert_equal(filled(xm, 1.e20), xf) + assert_equal(x, xm) + #........................ + def check_basic_arithmetic (self): + "Test of basic arithmetic." + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + a2d = array([[1,2],[0,4]]) + a2dm = masked_array(a2d, [[0,0],[1,0]]) + assert_equal(a2d * a2d, a2d * a2dm) + assert_equal(a2d + a2d, a2d + a2dm) + assert_equal(a2d - a2d, a2d - a2dm) + for s in [(12,), (4,3), (2,6)]: + x = x.reshape(s) + y = y.reshape(s) + xm = xm.reshape(s) + ym = ym.reshape(s) + xf = xf.reshape(s) + assert_equal(-x, -xm) + assert_equal(x + y, xm + ym) + assert_equal(x - y, xm - ym) + assert_equal(x * y, xm * ym) + assert_equal(x / y, xm / ym) + assert_equal(a10 + y, a10 + ym) + assert_equal(a10 - y, a10 - ym) + assert_equal(a10 * y, a10 * ym) + assert_equal(a10 / y, a10 / ym) + assert_equal(x + a10, xm + a10) + assert_equal(x - a10, xm - a10) + assert_equal(x * a10, xm * a10) + assert_equal(x / a10, xm / a10) + assert_equal(x**2, xm**2) + assert_equal(abs(x)**2.5, abs(xm) **2.5) + assert_equal(x**y, xm**ym) + assert_equal(numpy.add(x,y), add(xm, ym)) + assert_equal(numpy.subtract(x,y), subtract(xm, ym)) + assert_equal(numpy.multiply(x,y), multiply(xm, ym)) + assert_equal(numpy.divide(x,y), divide(xm, ym)) + #........................ + def check_mixed_arithmetic(self): + "Tests mixed arithmetics." + na = narray([1]) + ma = array([1]) + self.failUnless(isinstance(na + ma, MaskedArray)) + self.failUnless(isinstance(ma + na, MaskedArray)) + #........................ + def check_inplace_arithmetic(self): + """Test of inplace operations and rich comparisons""" + # addition + x = arange(10) + y = arange(10) + xm = arange(10) + xm[2] = masked + x += 1 + assert_equal(x, y+1) + xm += 1 + assert_equal(xm, y+1) + # subtraction + x = arange(10) + xm = arange(10) + xm[2] = masked + x -= 1 + assert_equal(x, y-1) + xm -= 1 + assert_equal(xm, y-1) + # multiplication + x = arange(10)*1.0 + xm = arange(10)*1.0 + xm[2] = masked + x *= 2.0 + assert_equal(x, y*2) + xm *= 2.0 + assert_equal(xm, y*2) + # division + x = arange(10)*2 + xm = arange(10)*2 + xm[2] = masked + x /= 2 + assert_equal(x, y) + xm /= 2 + assert_equal(xm, y) + # division, pt 2 + x = arange(10)*1.0 + xm = arange(10)*1.0 + xm[2] = masked + x /= 2.0 + assert_equal(x, y/2.0) + xm /= arange(10) + assert_equal(xm, ones((10,))) + + x = arange(10).astype(float_) + xm = arange(10) + xm[2] = masked +# id1 = id(x.raw_data()) + id1 = x.raw_data().ctypes.data + x += 1. +# assert id1 == id(x.raw_data()) + assert (id1 == x.raw_data().ctypes.data) + assert_equal(x, y+1.) + # addition w/ array + x = arange(10, dtype=float_) + xm = arange(10, dtype=float_) + xm[2] = masked + m = xm.mask + a = arange(10, dtype=float_) + a[-1] = masked + x += a + xm += a + assert_equal(x,y+a) + assert_equal(xm,y+a) + assert_equal(xm.mask, mask_or(m,a.mask)) + # subtraction w/ array + x = arange(10, dtype=float_) + xm = arange(10, dtype=float_) + xm[2] = masked + m = xm.mask + a = arange(10, dtype=float_) + a[-1] = masked + x -= a + xm -= a + assert_equal(x,y-a) + assert_equal(xm,y-a) + assert_equal(xm.mask, mask_or(m,a.mask)) + # multiplication w/ array + x = arange(10, dtype=float_) + xm = arange(10, dtype=float_) + xm[2] = masked + m = xm.mask + a = arange(10, dtype=float_) + a[-1] = masked + x *= a + xm *= a + assert_equal(x,y*a) + assert_equal(xm,y*a) + assert_equal(xm.mask, mask_or(m,a.mask)) + # division w/ array + x = arange(10, dtype=float_) + xm = arange(10, dtype=float_) + xm[2] = masked + m = xm.mask + a = arange(10, dtype=float_) + a[-1] = masked + x /= a + xm /= a + assert_equal(x,y/a) + assert_equal(xm,y/a) + assert_equal(xm.mask, mask_or(mask_or(m,a.mask), (a==0))) + # + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + z = xm/ym + assert_equal(z._mask, [1,1,1,0,0,1,1,0,0,0,1,1]) + assert_equal(z._data, [0.2,1.,1./3.,-1.,-pi/2.,-1.,5.,1.,1.,1.,2.,1.]) + xm = xm.copy() + xm /= ym + assert_equal(xm._mask, [1,1,1,0,0,1,1,0,0,0,1,1]) + assert_equal(xm._data, [1/5.,1.,1./3.,-1.,-pi/2.,-1.,5.,1.,1.,1.,2.,1.]) + + + #.......................... + def check_scalararithmetic(self): + "Tests some scalar arithmetics on MaskedArrays." + xm = array(0, mask=1) + assert((1/array(0)).mask) + assert((1 + xm).mask) + assert((-xm).mask) + assert((-xm).mask) + assert(maximum(xm, xm).mask) + assert(minimum(xm, xm).mask) + assert(xm.filled().dtype is xm.data.dtype) + x = array(0, mask=0) + assert_equal(x.filled().ctypes.data, x.ctypes.data) + assert_equal(str(xm), str(masked_print_option)) + #......................... + def check_basic_ufuncs (self): + "Test various functions such as sin, cos." + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + assert_equal(numpy.cos(x), cos(xm)) + assert_equal(numpy.cosh(x), cosh(xm)) + assert_equal(numpy.sin(x), sin(xm)) + assert_equal(numpy.sinh(x), sinh(xm)) + assert_equal(numpy.tan(x), tan(xm)) + assert_equal(numpy.tanh(x), tanh(xm)) + assert_equal(numpy.sqrt(abs(x)), sqrt(xm)) + assert_equal(numpy.log(abs(x)), log(xm)) + assert_equal(numpy.log10(abs(x)), log10(xm)) + assert_equal(numpy.exp(x), exp(xm)) + assert_equal(numpy.arcsin(z), arcsin(zm)) + assert_equal(numpy.arccos(z), arccos(zm)) + assert_equal(numpy.arctan(z), arctan(zm)) + assert_equal(numpy.arctan2(x, y), arctan2(xm, ym)) + assert_equal(numpy.absolute(x), absolute(xm)) + assert_equal(numpy.equal(x,y), equal(xm, ym)) + assert_equal(numpy.not_equal(x,y), not_equal(xm, ym)) + assert_equal(numpy.less(x,y), less(xm, ym)) + assert_equal(numpy.greater(x,y), greater(xm, ym)) + assert_equal(numpy.less_equal(x,y), less_equal(xm, ym)) + assert_equal(numpy.greater_equal(x,y), greater_equal(xm, ym)) + assert_equal(numpy.conjugate(x), conjugate(xm)) + #........................ + def check_count_func (self): + "Tests count" + ott = array([0.,1.,2.,3.], mask=[1,0,0,0]) + assert( isinstance(count(ott), int)) + assert_equal(3, count(ott)) + assert_equal(1, count(1)) + assert_equal(0, array(1,mask=[1])) + ott = ott.reshape((2,2)) + assert isMaskedArray(count(ott,0)) + assert isinstance(count(ott), types.IntType) + assert_equal(3, count(ott)) + assert getmask(count(ott,0)) is nomask + assert_equal([1,2],count(ott,0)) + #........................ + def check_minmax_func (self): + "Tests minimum and maximum." + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + xr = numpy.ravel(x) #max doesn't work if shaped + xmr = ravel(xm) + assert_equal(max(xr), maximum(xmr)) #true because of careful selection of data + assert_equal(min(xr), minimum(xmr)) #true because of careful selection of data + # + assert_equal(minimum([1,2,3],[4,0,9]), [1,0,3]) + assert_equal(maximum([1,2,3],[4,0,9]), [4,2,9]) + x = arange(5) + y = arange(5) - 2 + x[3] = masked + y[0] = masked + assert_equal(minimum(x,y), where(less(x,y), x, y)) + assert_equal(maximum(x,y), where(greater(x,y), x, y)) + assert minimum(x) == 0 + assert maximum(x) == 4 + # + x = arange(4).reshape(2,2) + x[-1,-1] = masked + assert_equal(maximum(x), 2) + + def check_minmax_methods(self): + "Additional tests on max/min" + (_, _, _, _, _, xm, _, _, _, _) = self.d + xm.shape = (xm.size,) + assert_equal(xm.max(), 10) + assert(xm[0].max() is masked) + assert(xm[0].max(0) is masked) + assert(xm[0].max(-1) is masked) + assert_equal(xm.min(), -10.) + assert(xm[0].min() is masked) + assert(xm[0].min(0) is masked) + assert(xm[0].min(-1) is masked) + assert_equal(xm.ptp(), 20.) + assert(xm[0].ptp() is masked) + assert(xm[0].ptp(0) is masked) + assert(xm[0].ptp(-1) is masked) + #........................ + def check_addsumprod (self): + "Tests add, sum, product." + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + assert_equal(numpy.add.reduce(x), add.reduce(x)) + assert_equal(numpy.add.accumulate(x), add.accumulate(x)) + assert_equal(4, sum(array(4),axis=0)) + assert_equal(4, sum(array(4), axis=0)) + assert_equal(numpy.sum(x,axis=0), sum(x,axis=0)) + assert_equal(numpy.sum(filled(xm,0),axis=0), sum(xm,axis=0)) + assert_equal(numpy.sum(x,0), sum(x,0)) + assert_equal(numpy.product(x,axis=0), product(x,axis=0)) + assert_equal(numpy.product(x,0), product(x,0)) + assert_equal(numpy.product(filled(xm,1),axis=0), product(xm,axis=0)) + s = (3,4) + x.shape = y.shape = xm.shape = ym.shape = s + if len(s) > 1: + assert_equal(numpy.concatenate((x,y),1), concatenate((xm,ym),1)) + assert_equal(numpy.add.reduce(x,1), add.reduce(x,1)) + assert_equal(numpy.sum(x,1), sum(x,1)) + assert_equal(numpy.product(x,1), product(x,1)) + #......................... + def check_concat(self): + "Tests concatenations." + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + # basic concatenation + assert_equal(numpy.concatenate((x,y)), concatenate((xm,ym))) + assert_equal(numpy.concatenate((x,y)), concatenate((x,y))) + assert_equal(numpy.concatenate((x,y)), concatenate((xm,y))) + assert_equal(numpy.concatenate((x,y,x)), concatenate((x,ym,x))) + # Concatenation along an axis + s = (3,4) + x.shape = y.shape = xm.shape = ym.shape = s + assert_equal(xm.mask, numpy.reshape(m1, s)) + assert_equal(ym.mask, numpy.reshape(m2, s)) + xmym = concatenate((xm,ym),1) + assert_equal(numpy.concatenate((x,y),1), xmym) + assert_equal(numpy.concatenate((xm.mask,ym.mask),1), xmym._mask) + #........................ + def check_indexing(self): + "Tests conversions and indexing" + x1 = numpy.array([1,2,4,3]) + x2 = array(x1, mask=[1,0,0,0]) + x3 = array(x1, mask=[0,1,0,1]) + x4 = array(x1) + # test conversion to strings + junk, garbage = str(x2), repr(x2) + assert_equal(numpy.sort(x1),sort(x2,endwith=False)) + # tests of indexing + assert type(x2[1]) is type(x1[1]) + assert x1[1] == x2[1] + assert x2[0] is masked + assert_equal(x1[2],x2[2]) + assert_equal(x1[2:5],x2[2:5]) + assert_equal(x1[:],x2[:]) + assert_equal(x1[1:], x3[1:]) + x1[2] = 9 + x2[2] = 9 + assert_equal(x1,x2) + x1[1:3] = 99 + x2[1:3] = 99 + assert_equal(x1,x2) + x2[1] = masked + assert_equal(x1,x2) + x2[1:3] = masked + assert_equal(x1,x2) + x2[:] = x1 + x2[1] = masked + assert allequal(getmask(x2),array([0,1,0,0])) + x3[:] = masked_array([1,2,3,4],[0,1,1,0]) + assert allequal(getmask(x3), array([0,1,1,0])) + x4[:] = masked_array([1,2,3,4],[0,1,1,0]) + assert allequal(getmask(x4), array([0,1,1,0])) + assert allequal(x4, array([1,2,3,4])) + x1 = numpy.arange(5)*1.0 + x2 = masked_values(x1, 3.0) + assert_equal(x1,x2) + assert allequal(array([0,0,0,1,0],MaskType), x2.mask) +#FIXME: Well, eh, fill_value is now a property assert_equal(3.0, x2.fill_value()) + assert_equal(3.0, x2.fill_value) + x1 = array([1,'hello',2,3],object) + x2 = numpy.array([1,'hello',2,3],object) + s1 = x1[1] + s2 = x2[1] + assert_equal(type(s2), str) + assert_equal(type(s1), str) + assert_equal(s1, s2) + assert x1[1:1].shape == (0,) + #........................ + def check_copy(self): + "Tests of some subtle points of copying and sizing." + n = [0,0,1,0,0] + m = make_mask(n) + m2 = make_mask(m) + assert(m is m2) + m3 = make_mask(m, copy=1) + assert(m is not m3) + + x1 = numpy.arange(5) + y1 = array(x1, mask=m) + #assert( y1._data is x1) + assert_equal(y1._data.__array_interface__, x1.__array_interface__) + assert( allequal(x1,y1.raw_data())) + #assert( y1.mask is m) + assert_equal(y1._mask.__array_interface__, m.__array_interface__) + + y1a = array(y1) + #assert( y1a.raw_data() is y1.raw_data()) + assert( y1a._data.__array_interface__ == y1._data.__array_interface__) + assert( y1a.mask is y1.mask) + + y2 = array(x1, mask=m) + #assert( y2.raw_data() is x1) + assert (y2._data.__array_interface__ == x1.__array_interface__) + #assert( y2.mask is m) + assert (y2._mask.__array_interface__ == m.__array_interface__) + assert( y2[2] is masked) + y2[2] = 9 + assert( y2[2] is not masked) + #assert( y2.mask is not m) + assert (y2._mask.__array_interface__ != m.__array_interface__) + assert( allequal(y2.mask, 0)) + + y3 = array(x1*1.0, mask=m) + assert(filled(y3).dtype is (x1*1.0).dtype) + + x4 = arange(4) + x4[2] = masked + y4 = resize(x4, (8,)) + assert_equal(concatenate([x4,x4]), y4) + assert_equal(getmask(y4),[0,0,1,0,0,0,1,0]) + y5 = repeat(x4, (2,2,2,2), axis=0) + assert_equal(y5, [0,0,1,1,2,2,3,3]) + y6 = repeat(x4, 2, axis=0) + assert_equal(y5, y6) + y7 = x4.repeat((2,2,2,2), axis=0) + assert_equal(y5,y7) + y8 = x4.repeat(2,0) + assert_equal(y5,y8) + + y9 = x4.copy() + assert_equal(y9._data, x4._data) + assert_equal(y9._mask, x4._mask) + # + x = masked_array([1,2,3], mask=[0,1,0]) + # Copy is False by default + y = masked_array(x) +# assert_equal(id(y._data), id(x._data)) +# assert_equal(id(y._mask), id(x._mask)) + assert_equal(y._data.ctypes.data, x._data.ctypes.data) + assert_equal(y._mask.ctypes.data, x._mask.ctypes.data) + y = masked_array(x, copy=True) +# assert_not_equal(id(y._data), id(x._data)) +# assert_not_equal(id(y._mask), id(x._mask)) + assert_not_equal(y._data.ctypes.data, x._data.ctypes.data) + assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data) + #........................ + def check_where(self): + "Test the where function" + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + d = where(xm>2,xm,-9) + assert_equal(d, [-9.,-9.,-9.,-9., -9., 4., -9., -9., 10., -9., -9., 3.]) + assert_equal(d._mask, xm._mask) + d = where(xm>2,-9,ym) + assert_equal(d, [5.,0.,3., 2., -1.,-9.,-9., -10., -9., 1., 0., -9.]) + assert_equal(d._mask, [1,0,1,0,0,0,1,0,0,0,0,0]) + d = where(xm>2, xm, masked) + assert_equal(d, [-9.,-9.,-9.,-9., -9., 4., -9., -9., 10., -9., -9., 3.]) + tmp = xm._mask.copy() + tmp[(xm<=2).filled(True)] = True + assert_equal(d._mask, tmp) + # + ixm = xm.astype(int_) + d = where(ixm>2, ixm, masked) + assert_equal(d, [-9,-9,-9,-9, -9, 4, -9, -9, 10, -9, -9, 3]) + assert_equal(d.dtype, ixm.dtype) + # + x = arange(10) + x[3] = masked + c = x >= 8 + z = where(c , x, masked) + assert z.dtype is x.dtype + assert z[3] is masked + assert z[4] is masked + assert z[7] is masked + assert z[8] is not masked + assert z[9] is not masked + assert_equal(x,z) + # + z = where(c , masked, x) + assert z.dtype is x.dtype + assert z[3] is masked + assert z[4] is not masked + assert z[7] is not masked + assert z[8] is masked + assert z[9] is masked + + #........................ + def check_oddfeatures_1(self): + "Test of other odd features" + x = arange(20) + x = x.reshape(4,5) + x.flat[5] = 12 + assert x[1,0] == 12 + z = x + 10j * x + assert_equal(z.real, x) + assert_equal(z.imag, 10*x) + assert_equal((z*conjugate(z)).real, 101*x*x) + z.imag[...] = 0.0 + + x = arange(10) + x[3] = masked + assert str(x[3]) == str(masked) + c = x >= 8 + assert count(where(c,masked,masked)) == 0 + assert shape(where(c,masked,masked)) == c.shape + # + z = masked_where(c, x) + assert z.dtype is x.dtype + assert z[3] is masked + assert z[4] is not masked + assert z[7] is not masked + assert z[8] is masked + assert z[9] is masked + assert_equal(x,z) + # + #........................ + def check_oddfeatures_2(self): + "Tests some more features." + x = array([1.,2.,3.,4.,5.]) + c = array([1,1,1,0,0]) + x[2] = masked + z = where(c, x, -x) + assert_equal(z, [1.,2.,0., -4., -5]) + c[0] = masked + z = where(c, x, -x) + assert_equal(z, [1.,2.,0., -4., -5]) + assert z[0] is masked + assert z[1] is not masked + assert z[2] is masked + # + x = arange(6) + x[5] = masked + y = arange(6)*10 + y[2] = masked + c = array([1,1,1,0,0,0], mask=[1,0,0,0,0,0]) + cm = c.filled(1) + z = where(c,x,y) + zm = where(cm,x,y) + assert_equal(z, zm) + assert getmask(zm) is nomask + assert_equal(zm, [0,1,2,30,40,50]) + z = where(c, masked, 1) + assert_equal(z, [99,99,99,1,1,1]) + z = where(c, 1, masked) + assert_equal(z, [99, 1, 1, 99, 99, 99]) + #........................ + def check_oddfeatures_3(self): + """Tests some generic features.""" + atest = ones((10,10,10), dtype=float_) + btest = zeros(atest.shape, MaskType) + ctest = masked_where(btest,atest) + assert_equal(atest,ctest) + #........................ + def check_maskingfunctions(self): + "Tests masking functions." + x = array([1.,2.,3.,4.,5.]) + x[2] = masked + assert_equal(masked_where(greater(x, 2), x), masked_greater(x,2)) + assert_equal(masked_where(greater_equal(x, 2), x), masked_greater_equal(x,2)) + assert_equal(masked_where(less(x, 2), x), masked_less(x,2)) + assert_equal(masked_where(less_equal(x, 2), x), masked_less_equal(x,2)) + assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x,2)) + assert_equal(masked_where(equal(x, 2), x), masked_equal(x,2)) + assert_equal(masked_where(not_equal(x,2), x), masked_not_equal(x,2)) + assert_equal(masked_inside(range(5), 1, 3), [0, 199, 199, 199, 4]) + assert_equal(masked_outside(range(5), 1, 3),[199,1,2,3,199]) + assert_equal(masked_inside(array(range(5), mask=[1,0,0,0,0]), 1, 3).mask, [1,1,1,1,0]) + assert_equal(masked_outside(array(range(5), mask=[0,1,0,0,0]), 1, 3).mask, [1,1,0,0,1]) + assert_equal(masked_equal(array(range(5), mask=[1,0,0,0,0]), 2).mask, [1,0,1,0,0]) + assert_equal(masked_not_equal(array([2,2,1,2,1], mask=[1,0,0,0,0]), 2).mask, [1,0,1,0,1]) + assert_equal(masked_where([1,1,0,0,0], [1,2,3,4,5]), [99,99,3,4,5]) + #........................ + def check_TakeTransposeInnerOuter(self): + "Test of take, transpose, inner, outer products" + x = arange(24) + y = numpy.arange(24) + x[5:6] = masked + x = x.reshape(2,3,4) + y = y.reshape(2,3,4) + assert_equal(numpy.transpose(y,(2,0,1)), transpose(x,(2,0,1))) + assert_equal(numpy.take(y, (2,0,1), 1), take(x, (2,0,1), 1)) + assert_equal(numpy.inner(filled(x,0),filled(y,0)), + inner(x, y)) + assert_equal(numpy.outer(filled(x,0),filled(y,0)), + outer(x, y)) + y = array(['abc', 1, 'def', 2, 3], object) + y[2] = masked + t = take(y,[0,3,4]) + assert t[0] == 'abc' + assert t[1] == 2 + assert t[2] == 3 + #....................... + def check_maskedelement(self): + "Test of masked element" + x = arange(6) + x[1] = masked + assert(str(masked) == '--') + assert(x[1] is masked) + assert_equal(filled(x[1], 0), 0) + # don't know why these should raise an exception... + #self.failUnlessRaises(Exception, lambda x,y: x+y, masked, masked) + #self.failUnlessRaises(Exception, lambda x,y: x+y, masked, 2) + #self.failUnlessRaises(Exception, lambda x,y: x+y, masked, xx) + #self.failUnlessRaises(Exception, lambda x,y: x+y, xx, masked) + #........................ + def check_scalar(self): + "Checks masking a scalar" + x = masked_array(0) + assert_equal(str(x), '0') + x = masked_array(0,mask=True) + assert_equal(str(x), str(masked_print_option)) + x = masked_array(0, mask=False) + assert_equal(str(x), '0') + #........................ + def check_usingmasked(self): + "Checks that there's no collapsing to masked" + x = masked_array([1,2]) + y = x * masked + assert_equal(y.shape, x.shape) + assert_equal(y._mask, [True, True]) + y = x[0] * masked + assert y is masked + y = x + masked + assert_equal(y.shape, x.shape) + assert_equal(y._mask, [True, True]) + + #........................ + def check_topython(self): + "Tests some communication issues with Python." + assert_equal(1, int(array(1))) + assert_equal(1.0, float(array(1))) + assert_equal(1, int(array([[[1]]]))) + assert_equal(1.0, float(array([[1]]))) + self.failUnlessRaises(ValueError, float, array([1,1])) + assert numpy.isnan(float(array([1],mask=[1]))) +#TODO: Check how bool works... +#TODO: self.failUnless(bool(array([0,1]))) +#TODO: self.failUnless(bool(array([0,0],mask=[0,1]))) +#TODO: self.failIf(bool(array([0,0]))) +#TODO: self.failIf(bool(array([0,0],mask=[0,0]))) + #........................ + def check_arraymethods(self): + "Tests some MaskedArray methods." + a = array([1,3,2]) + b = array([1,3,2], mask=[1,0,1]) + assert_equal(a.any(), a.data.any()) + assert_equal(a.all(), a.data.all()) + assert_equal(a.argmax(), a.data.argmax()) + assert_equal(a.argmin(), a.data.argmin()) + assert_equal(a.choose(0,1,2,3,4), a.data.choose(0,1,2,3,4)) + assert_equal(a.compress([1,0,1]), a.data.compress([1,0,1])) + assert_equal(a.conj(), a.data.conj()) + assert_equal(a.conjugate(), a.data.conjugate()) + # + m = array([[1,2],[3,4]]) + assert_equal(m.diagonal(), m.data.diagonal()) + assert_equal(a.sum(), a.data.sum()) + assert_equal(a.take([1,2]), a.data.take([1,2])) + assert_equal(m.transpose(), m.data.transpose()) + #........................ + def check_basicattributes(self): + "Tests some basic array attributes." + a = array([1,3,2]) + b = array([1,3,2], mask=[1,0,1]) + assert_equal(a.ndim, 1) + assert_equal(b.ndim, 1) + assert_equal(a.size, 3) + assert_equal(b.size, 3) + assert_equal(a.shape, (3,)) + assert_equal(b.shape, (3,)) + #........................ + def check_single_element_subscript(self): + "Tests single element subscripts of Maskedarrays." + a = array([1,3,2]) + b = array([1,3,2], mask=[1,0,1]) + assert_equal(a[0].shape, ()) + assert_equal(b[0].shape, ()) + assert_equal(b[1].shape, ()) + #........................ + def check_maskcreation(self): + "Tests how masks are initialized at the creation of Maskedarrays." + data = arange(24, dtype=float_) + data[[3,6,15]] = masked + dma_1 = MaskedArray(data) + assert_equal(dma_1.mask, data.mask) + dma_2 = MaskedArray(dma_1) + assert_equal(dma_2.mask, dma_1.mask) + dma_3 = MaskedArray(dma_1, mask=[1,0,0,0]*6) + fail_if_equal(dma_3.mask, dma_1.mask) + + def check_pickling(self): + "Tests pickling" + import cPickle + a = arange(10) + a[::3] = masked + a.fill_value = 999 + a_pickled = cPickle.loads(a.dumps()) + assert_equal(a_pickled._mask, a._mask) + assert_equal(a_pickled._data, a._data) + assert_equal(a_pickled.fill_value, 999) + # + a = array(numpy.matrix(range(10)), mask=[1,0,1,0,0]*2) + a_pickled = cPickle.loads(a.dumps()) + assert_equal(a_pickled._mask, a._mask) + assert_equal(a_pickled, a) + assert(isinstance(a_pickled._data,numpy.matrix)) + # + def check_fillvalue(self): + "Check that we don't lose the fill_value" + data = masked_array([1,2,3],fill_value=-999) + series = data[[0,2,1]] + assert_equal(series._fill_value, data._fill_value) + # + def check_asarray(self): + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + xmm = asarray(xm) + assert_equal(xmm._data, xm._data) + assert_equal(xmm._mask, xm._mask) + # + def check_fix_invalid(self): + "Checks fix_invalid." + data = masked_array(numpy.sqrt([-1., 0., 1.]), mask=[0,0,1]) + data_fixed = fix_invalid(data) + assert_equal(data_fixed._data, [data.fill_value, 0., 1.]) + assert_equal(data_fixed._mask, [1., 0., 1.]) + # + def check_imag_real(self): + xx = array([1+10j,20+2j], mask=[1,0]) + assert_equal(xx.imag,[10,2]) + assert_equal(xx.imag.filled(), [1e+20,2]) + assert_equal(xx.imag.dtype, xx._data.imag.dtype) + assert_equal(xx.real,[1,20]) + assert_equal(xx.real.filled(), [1e+20,20]) + assert_equal(xx.real.dtype, xx._data.real.dtype) + +#............................................................................... + +class TestUfuncs(NumpyTestCase): + "Test class for the application of ufuncs on MaskedArrays." + def setUp(self): + "Base data definition." + self.d = (array([1.0, 0, -1, pi/2]*2, mask=[0,1]+[0]*6), + array([1.0, 0, -1, pi/2]*2, mask=[1,0]+[0]*6),) + + def check_testUfuncRegression(self): + "Tests new ufuncs on MaskedArrays." + for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', + 'sin', 'cos', 'tan', + 'arcsin', 'arccos', 'arctan', + 'sinh', 'cosh', 'tanh', + 'arcsinh', + 'arccosh', + 'arctanh', + 'absolute', 'fabs', 'negative', + # 'nonzero', 'around', + 'floor', 'ceil', + # 'sometrue', 'alltrue', + 'logical_not', + 'add', 'subtract', 'multiply', + 'divide', 'true_divide', 'floor_divide', + 'remainder', 'fmod', 'hypot', 'arctan2', + 'equal', 'not_equal', 'less_equal', 'greater_equal', + 'less', 'greater', + 'logical_and', 'logical_or', 'logical_xor', + ]: + #print f + try: + uf = getattr(umath, f) + except AttributeError: + uf = getattr(fromnumeric, f) + mf = getattr(coremodule, f) + args = self.d[:uf.nin] + ur = uf(*args) + mr = mf(*args) + assert_equal(ur.filled(0), mr.filled(0), f) + assert_mask_equal(ur.mask, mr.mask) + #........................ + def test_reduce(self): + "Tests reduce on MaskedArrays." + a = self.d[0] + assert(not alltrue(a,axis=0)) + assert(sometrue(a,axis=0)) + assert_equal(sum(a[:3],axis=0), 0) + assert_equal(product(a,axis=0), 0) + assert_equal(add.reduce(a), pi) + #........................ + def test_minmax(self): + "Tests extrema on MaskedArrays." + a = arange(1,13).reshape(3,4) + amask = masked_where(a < 5,a) + assert_equal(amask.max(), a.max()) + assert_equal(amask.min(), 5) + assert_equal(amask.max(0), a.max(0)) + assert_equal(amask.min(0), [5,6,7,8]) + assert(amask.max(1)[0].mask) + assert(amask.min(1)[0].mask) + +#............................................................................... + +class TestArrayMethods(NumpyTestCase): + "Test class for miscellaneous MaskedArrays methods." + def setUp(self): + "Base data definition." + x = numpy.array([ 8.375, 7.545, 8.828, 8.5 , 1.757, 5.928, + 8.43 , 7.78 , 9.865, 5.878, 8.979, 4.732, + 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, + 6.04 , 9.63 , 7.712, 3.382, 4.489, 6.479, + 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, + 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) + X = x.reshape(6,6) + XX = x.reshape(3,2,2,3) + + m = numpy.array([0, 1, 0, 1, 0, 0, + 1, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 0, 0, + 0, 0, 1, 0, 1, 0]) + mx = array(data=x,mask=m) + mX = array(data=X,mask=m.reshape(X.shape)) + mXX = array(data=XX,mask=m.reshape(XX.shape)) + + m2 = numpy.array([1, 1, 0, 1, 0, 0, + 1, 1, 1, 1, 0, 1, + 0, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 1, 0, + 0, 0, 1, 0, 1, 1]) + m2x = array(data=x,mask=m2) + m2X = array(data=X,mask=m2.reshape(X.shape)) + m2XX = array(data=XX,mask=m2.reshape(XX.shape)) + self.d = (x,X,XX,m,mx,mX,mXX,m2x,m2X,m2XX) + + #------------------------------------------------------ + def check_trace(self): + "Tests trace on MaskedArrays." + (x,X,XX,m,mx,mX,mXX,m2x,m2X,m2XX) = self.d + mXdiag = mX.diagonal() + assert_equal(mX.trace(), mX.diagonal().compressed().sum()) + assert_almost_equal(mX.trace(), + X.trace() - sum(mXdiag.mask*X.diagonal(),axis=0)) + + def check_clip(self): + "Tests clip on MaskedArrays." + (x,X,XX,m,mx,mX,mXX,m2x,m2X,m2XX) = self.d + clipped = mx.clip(2,8) + assert_equal(clipped.mask,mx.mask) + assert_equal(clipped.data,x.clip(2,8)) + assert_equal(clipped.data,mx.data.clip(2,8)) + + def check_ptp(self): + "Tests ptp on MaskedArrays." + (x,X,XX,m,mx,mX,mXX,m2x,m2X,m2XX) = self.d + (n,m) = X.shape + assert_equal(mx.ptp(),mx.compressed().ptp()) + rows = numpy.zeros(n,numpy.float_) + cols = numpy.zeros(m,numpy.float_) + for k in range(m): + cols[k] = mX[:,k].compressed().ptp() + for k in range(n): + rows[k] = mX[k].compressed().ptp() + assert_equal(mX.ptp(0),cols) + assert_equal(mX.ptp(1),rows) + + def check_swapaxes(self): + "Tests swapaxes on MaskedArrays." + (x,X,XX,m,mx,mX,mXX,m2x,m2X,m2XX) = self.d + mXswapped = mX.swapaxes(0,1) + assert_equal(mXswapped[-1],mX[:,-1]) + mXXswapped = mXX.swapaxes(0,2) + assert_equal(mXXswapped.shape,(2,2,3,3)) + + def check_cumsumprod(self): + "Tests cumsum & cumprod on MaskedArrays." + (x,X,XX,m,mx,mX,mXX,m2x,m2X,m2XX) = self.d + mXcp = mX.cumsum(0) + assert_equal(mXcp.data,mX.filled(0).cumsum(0)) + mXcp = mX.cumsum(1) + assert_equal(mXcp.data,mX.filled(0).cumsum(1)) + # + mXcp = mX.cumprod(0) + assert_equal(mXcp.data,mX.filled(1).cumprod(0)) + mXcp = mX.cumprod(1) + assert_equal(mXcp.data,mX.filled(1).cumprod(1)) + + def check_varstd(self): + "Tests var & std on MaskedArrays." + (x,X,XX,m,mx,mX,mXX,m2x,m2X,m2XX) = self.d + assert_almost_equal(mX.var(axis=None),mX.compressed().var()) + assert_almost_equal(mX.std(axis=None),mX.compressed().std()) + assert_equal(mXX.var(axis=3).shape,XX.var(axis=3).shape) + assert_equal(mX.var().shape,X.var().shape) + (mXvar0,mXvar1) = (mX.var(axis=0), mX.var(axis=1)) + for k in range(6): + assert_almost_equal(mXvar1[k],mX[k].compressed().var()) + assert_almost_equal(mXvar0[k],mX[:,k].compressed().var()) + assert_almost_equal(numpy.sqrt(mXvar0[k]), mX[:,k].compressed().std()) + + def check_argmin(self): + "Tests argmin & argmax on MaskedArrays." + (x,X,XX,m,mx,mX,mXX,m2x,m2X,m2XX) = self.d + # + assert_equal(mx.argmin(),35) + assert_equal(mX.argmin(),35) + assert_equal(m2x.argmin(),4) + assert_equal(m2X.argmin(),4) + assert_equal(mx.argmax(),28) + assert_equal(mX.argmax(),28) + assert_equal(m2x.argmax(),31) + assert_equal(m2X.argmax(),31) + # + assert_equal(mX.argmin(0), [2,2,2,5,0,5]) + assert_equal(m2X.argmin(0), [2,2,4,5,0,4]) + assert_equal(mX.argmax(0), [0,5,0,5,4,0]) + assert_equal(m2X.argmax(0), [5,5,0,5,1,0]) + # + assert_equal(mX.argmin(1), [4,1,0,0,5,5,]) + assert_equal(m2X.argmin(1), [4,4,0,0,5,3]) + assert_equal(mX.argmax(1), [2,4,1,1,4,1]) + assert_equal(m2X.argmax(1), [2,4,1,1,1,1]) + + def check_put(self): + "Tests put." + d = arange(5) + n = [0,0,0,1,1] + m = make_mask(n) + x = array(d, mask = m) + assert( x[3] is masked) + assert( x[4] is masked) + x[[1,4]] = [10,40] +# assert( x.mask is not m) + assert( x[3] is masked) + assert( x[4] is not masked) + assert_equal(x, [0,10,2,-1,40]) + # + x = masked_array(arange(10), mask=[1,0,0,0,0]*2) + i = [0,2,4,6] + x.put(i, [6,4,2,0]) + assert_equal(x, asarray([6,1,4,3,2,5,0,7,8,9,])) + assert_equal(x.mask, [0,0,0,0,0,1,0,0,0,0]) + x.put(i, masked_array([0,2,4,6],[1,0,1,0])) + assert_array_equal(x, [0,1,2,3,4,5,6,7,8,9,]) + assert_equal(x.mask, [1,0,0,0,1,1,0,0,0,0]) + # + x = masked_array(arange(10), mask=[1,0,0,0,0]*2) + put(x, i, [6,4,2,0]) + assert_equal(x, asarray([6,1,4,3,2,5,0,7,8,9,])) + assert_equal(x.mask, [0,0,0,0,0,1,0,0,0,0]) + put(x, i, masked_array([0,2,4,6],[1,0,1,0])) + assert_array_equal(x, [0,1,2,3,4,5,6,7,8,9,]) + assert_equal(x.mask, [1,0,0,0,1,1,0,0,0,0]) + + def check_put_hardmask(self): + "Tests put on hardmask" + d = arange(5) + n = [0,0,0,1,1] + m = make_mask(n) + xh = array(d+1, mask = m, hard_mask=True, copy=True) + xh.put([4,2,0,1,3],[1,2,3,4,5]) + assert_equal(xh._data, [3,4,2,4,5]) + + def check_take(self): + "Tests take" + x = masked_array([10,20,30,40],[0,1,0,1]) + assert_equal(x.take([0,0,3]), masked_array([10, 10, 40], [0,0,1]) ) + assert_equal(x.take([0,0,3]), x[[0,0,3]]) + assert_equal(x.take([[0,1],[0,1]]), + masked_array([[10,20],[10,20]], [[0,1],[0,1]]) ) + # + x = array([[10,20,30],[40,50,60]], mask=[[0,0,1],[1,0,0,]]) + assert_equal(x.take([0,2], axis=1), + array([[10,30],[40,60]], mask=[[0,1],[1,0]])) + assert_equal(take(x, [0,2], axis=1), + array([[10,30],[40,60]], mask=[[0,1],[1,0]])) + #........................ + def check_anyall(self): + """Checks the any/all methods/functions.""" + x = numpy.array([[ 0.13, 0.26, 0.90], + [ 0.28, 0.33, 0.63], + [ 0.31, 0.87, 0.70]]) + m = numpy.array([[ True, False, False], + [False, False, False], + [True, True, False]], dtype=numpy.bool_) + mx = masked_array(x, mask=m) + xbig = numpy.array([[False, False, True], + [False, False, True], + [False, True, True]], dtype=numpy.bool_) + mxbig = (mx > 0.5) + mxsmall = (mx < 0.5) + # + assert (mxbig.all()==False) + assert (mxbig.any()==True) + assert_equal(mxbig.all(0),[False, False, True]) + assert_equal(mxbig.all(1), [False, False, True]) + assert_equal(mxbig.any(0),[False, False, True]) + assert_equal(mxbig.any(1), [True, True, True]) + # + assert (mxsmall.all()==False) + assert (mxsmall.any()==True) + assert_equal(mxsmall.all(0), [True, True, False]) + assert_equal(mxsmall.all(1), [False, False, False]) + assert_equal(mxsmall.any(0), [True, True, False]) + assert_equal(mxsmall.any(1), [True, True, False]) + # + X = numpy.matrix(x) + mX = masked_array(X, mask=m) + mXbig = (mX > 0.5) + mXsmall = (mX < 0.5) + # + assert (mXbig.all()==False) + assert (mXbig.any()==True) + assert_equal(mXbig.all(0), numpy.matrix([False, False, True])) + assert_equal(mXbig.all(1), numpy.matrix([False, False, True]).T) + assert_equal(mXbig.any(0), numpy.matrix([False, False, True])) + assert_equal(mXbig.any(1), numpy.matrix([ True, True, True]).T) + # + assert (mXsmall.all()==False) + assert (mXsmall.any()==True) + assert_equal(mXsmall.all(0), numpy.matrix([True, True, False])) + assert_equal(mXsmall.all(1), numpy.matrix([False, False, False]).T) + assert_equal(mXsmall.any(0), numpy.matrix([True, True, False])) + assert_equal(mXsmall.any(1), numpy.matrix([True, True, False]).T) + + def check_keepmask(self): + "Tests the keep mask flag" + x = masked_array([1,2,3], mask=[1,0,0]) + mx = masked_array(x) + assert_equal(mx.mask, x.mask) + mx = masked_array(x, mask=[0,1,0], keep_mask=False) + assert_equal(mx.mask, [0,1,0]) + mx = masked_array(x, mask=[0,1,0], keep_mask=True) + assert_equal(mx.mask, [1,1,0]) + # We default to true + mx = masked_array(x, mask=[0,1,0]) + assert_equal(mx.mask, [1,1,0]) + + def check_hardmask(self): + "Test hard_mask" + d = arange(5) + n = [0,0,0,1,1] + m = make_mask(n) + xh = array(d, mask = m, hard_mask=True) + # We need to copy, to avoid updating d in xh! + xs = array(d, mask = m, hard_mask=False, copy=True) + xh[[1,4]] = [10,40] + xs[[1,4]] = [10,40] + assert_equal(xh._data, [0,10,2,3,4]) + assert_equal(xs._data, [0,10,2,3,40]) + #assert_equal(xh.mask.ctypes.data, m.ctypes.data) + assert_equal(xs.mask, [0,0,0,1,0]) + assert(xh._hardmask) + assert(not xs._hardmask) + xh[1:4] = [10,20,30] + xs[1:4] = [10,20,30] + assert_equal(xh._data, [0,10,20,3,4]) + assert_equal(xs._data, [0,10,20,30,40]) + #assert_equal(xh.mask.ctypes.data, m.ctypes.data) + assert_equal(xs.mask, nomask) + xh[0] = masked + xs[0] = masked + assert_equal(xh.mask, [1,0,0,1,1]) + assert_equal(xs.mask, [1,0,0,0,0]) + xh[:] = 1 + xs[:] = 1 + assert_equal(xh._data, [0,1,1,3,4]) + assert_equal(xs._data, [1,1,1,1,1]) + assert_equal(xh.mask, [1,0,0,1,1]) + assert_equal(xs.mask, nomask) + # Switch to soft mask + xh.soften_mask() + xh[:] = arange(5) + assert_equal(xh._data, [0,1,2,3,4]) + assert_equal(xh.mask, nomask) + # Switch back to hard mask + xh.harden_mask() + xh[xh<3] = masked + assert_equal(xh._data, [0,1,2,3,4]) + assert_equal(xh._mask, [1,1,1,0,0]) + xh[filled(xh>1,False)] = 5 + assert_equal(xh._data, [0,1,2,5,5]) + assert_equal(xh._mask, [1,1,1,0,0]) + # + xh = array([[1,2],[3,4]], mask = [[1,0],[0,0]], hard_mask=True) + xh[0] = 0 + assert_equal(xh._data, [[1,0],[3,4]]) + assert_equal(xh._mask, [[1,0],[0,0]]) + xh[-1,-1] = 5 + assert_equal(xh._data, [[1,0],[3,5]]) + assert_equal(xh._mask, [[1,0],[0,0]]) + xh[filled(xh<5,False)] = 2 + assert_equal(xh._data, [[1,2],[2,5]]) + assert_equal(xh._mask, [[1,0],[0,0]]) + # + "Another test of hardmask" + d = arange(5) + n = [0,0,0,1,1] + m = make_mask(n) + xh = array(d, mask = m, hard_mask=True) + xh[4:5] = 999 + #assert_equal(xh.mask.ctypes.data, m.ctypes.data) + xh[0:1] = 999 + assert_equal(xh._data,[999,1,2,3,4]) + + def check_smallmask(self): + "Checks the behaviour of _smallmask" + a = arange(10) + a[1] = masked + a[1] = 1 + assert_equal(a._mask, nomask) + a = arange(10) + a._smallmask = False + a[1] = masked + a[1] = 1 + assert_equal(a._mask, zeros(10)) + + + def check_sort(self): + "Test sort" + x = array([1,4,2,3],mask=[0,1,0,0],dtype=numpy.uint8) + # + sortedx = sort(x) + assert_equal(sortedx._data,[1,2,3,4]) + assert_equal(sortedx._mask,[0,0,0,1]) + # + sortedx = sort(x, endwith=False) + assert_equal(sortedx._data, [4,1,2,3]) + assert_equal(sortedx._mask, [1,0,0,0]) + # + x.sort() + assert_equal(x._data,[1,2,3,4]) + assert_equal(x._mask,[0,0,0,1]) + # + x = array([1,4,2,3],mask=[0,1,0,0],dtype=numpy.uint8) + x.sort(endwith=False) + assert_equal(x._data, [4,1,2,3]) + assert_equal(x._mask, [1,0,0,0]) + # + x = [1,4,2,3] + sortedx = sort(x) + assert(not isinstance(sorted, MaskedArray)) + # + x = array([0,1,-1,-2,2], mask=nomask, dtype=numpy.int8) + sortedx = sort(x, endwith=False) + assert_equal(sortedx._data, [-2,-1,0,1,2]) + x = array([0,1,-1,-2,2], mask=[0,1,0,0,1], dtype=numpy.int8) + sortedx = sort(x, endwith=False) + assert_equal(sortedx._data, [1,2,-2,-1,0]) + assert_equal(sortedx._mask, [1,1,0,0,0]) + + def check_sort_2d(self): + "Check sort of 2D array." + # 2D array w/o mask + a = masked_array([[8,4,1],[2,0,9]]) + a.sort(0) + assert_equal(a, [[2,0,1],[8,4,9]]) + a = masked_array([[8,4,1],[2,0,9]]) + a.sort(1) + assert_equal(a, [[1,4,8],[0,2,9]]) + # 2D array w/mask + a = masked_array([[8,4,1],[2,0,9]], mask=[[1,0,0],[0,0,1]]) + a.sort(0) + assert_equal(a, [[2,0,1],[8,4,9]]) + assert_equal(a._mask, [[0,0,0],[1,0,1]]) + a = masked_array([[8,4,1],[2,0,9]], mask=[[1,0,0],[0,0,1]]) + a.sort(1) + assert_equal(a, [[1,4,8],[0,2,9]]) + assert_equal(a._mask, [[0,0,1],[0,0,1]]) + # 3D + a = masked_array([[[7, 8, 9],[4, 5, 6],[1, 2, 3]], + [[1, 2, 3],[7, 8, 9],[4, 5, 6]], + [[7, 8, 9],[1, 2, 3],[4, 5, 6]], + [[4, 5, 6],[1, 2, 3],[7, 8, 9]]]) + a[a%4==0] = masked + am = a.copy() + an = a.filled(99) + am.sort(0) + an.sort(0) + assert_equal(am, an) + am = a.copy() + an = a.filled(99) + am.sort(1) + an.sort(1) + assert_equal(am, an) + am = a.copy() + an = a.filled(99) + am.sort(2) + an.sort(2) + assert_equal(am, an) + + + def check_ravel(self): + "Tests ravel" + a = array([[1,2,3,4,5]], mask=[[0,1,0,0,0]]) + aravel = a.ravel() + assert_equal(a._mask.shape, a.shape) + a = array([0,0], mask=[1,1]) + aravel = a.ravel() + assert_equal(a._mask.shape, a.shape) + a = array(numpy.matrix([1,2,3,4,5]), mask=[[0,1,0,0,0]]) + aravel = a.ravel() + assert_equal(a.shape,(1,5)) + assert_equal(a._mask.shape, a.shape) + # Checs that small_mask is preserved + a = array([1,2,3,4],mask=[0,0,0,0],shrink=False) + assert_equal(a.ravel()._mask, [0,0,0,0]) + + def check_reshape(self): + "Tests reshape" + x = arange(4) + x[0] = masked + y = x.reshape(2,2) + assert_equal(y.shape, (2,2,)) + assert_equal(y._mask.shape, (2,2,)) + assert_equal(x.shape, (4,)) + assert_equal(x._mask.shape, (4,)) + + def check_compressed(self): + "Tests compressed" + a = array([1,2,3,4],mask=[0,0,0,0]) + b = a.compressed() + assert_equal(b, a) + assert_equal(b._mask, nomask) + a[0] = masked + b = a.compressed() + assert_equal(b._data, [2,3,4]) + assert_equal(b._mask, nomask) + + def check_tolist(self): + "Tests to list" + x = array(numpy.arange(12)) + x[[1,-2]] = masked + xlist = x.tolist() + assert(xlist[1] is None) + assert(xlist[-2] is None) + # + x.shape = (3,4) + xlist = x.tolist() + # + assert_equal(xlist[0],[0,None,2,3]) + assert_equal(xlist[1],[4,5,6,7]) + assert_equal(xlist[2],[8,9,None,11]) + + def check_squeeze(self): + "Check squeeze" + data = masked_array([[1,2,3]]) + assert_equal(data.squeeze(), [1,2,3]) + data = masked_array([[1,2,3]], mask=[[1,1,1]]) + assert_equal(data.squeeze(), [1,2,3]) + assert_equal(data.squeeze()._mask, [1,1,1]) + data = masked_array([[1]], mask=True) + assert(data.squeeze() is masked) + +#.............................................................................. + +############################################################################### +#------------------------------------------------------------------------------ +if __name__ == "__main__": + NumpyTest().run() diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py new file mode 100644 index 000000000..5a52aeeee --- /dev/null +++ b/numpy/ma/tests/test_extras.py @@ -0,0 +1,331 @@ +# pylint: disable-msg=W0611, W0612, W0511 +"""Tests suite for MaskedArray. +Adapted from the original test_ma by Pierre Gerard-Marchant + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu +:version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $ +""" +__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)" +__version__ = '1.0' +__revision__ = "$Revision: 3473 $" +__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $' + +import numpy as N +from numpy.testing import NumpyTest, NumpyTestCase +from numpy.testing.utils import build_err_msg + +import numpy.ma.testutils +from numpy.ma.testutils import * + +import numpy.ma.core +from numpy.ma.core import * +import numpy.ma.extras +from numpy.ma.extras import * + +class TestAverage(NumpyTestCase): + "Several tests of average. Why so many ? Good point..." + def check_testAverage1(self): + "Test of average." + ott = array([0.,1.,2.,3.], mask=[1,0,0,0]) + assert_equal(2.0, average(ott,axis=0)) + assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.])) + result, wts = average(ott, weights=[1.,1.,2.,1.], returned=1) + assert_equal(2.0, result) + assert(wts == 4.0) + ott[:] = masked + assert_equal(average(ott,axis=0).mask, [True]) + ott = array([0.,1.,2.,3.], mask=[1,0,0,0]) + ott = ott.reshape(2,2) + ott[:,1] = masked + assert_equal(average(ott,axis=0), [2.0, 0.0]) + assert_equal(average(ott,axis=1).mask[0], [True]) + assert_equal([2.,0.], average(ott, axis=0)) + result, wts = average(ott, axis=0, returned=1) + assert_equal(wts, [1., 0.]) + + def check_testAverage2(self): + "More tests of average." + w1 = [0,1,1,1,1,0] + w2 = [[0,1,1,1,1,0],[1,0,0,0,0,1]] + x = arange(6, dtype=float_) + assert_equal(average(x, axis=0), 2.5) + assert_equal(average(x, axis=0, weights=w1), 2.5) + y = array([arange(6, dtype=float_), 2.0*arange(6)]) + assert_equal(average(y, None), N.add.reduce(N.arange(6))*3./12.) + assert_equal(average(y, axis=0), N.arange(6) * 3./2.) + assert_equal(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0]) + assert_equal(average(y, None, weights=w2), 20./6.) + assert_equal(average(y, axis=0, weights=w2), [0.,1.,2.,3.,4.,10.]) + assert_equal(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0]) + m1 = zeros(6) + m2 = [0,0,1,1,0,0] + m3 = [[0,0,1,1,0,0],[0,1,1,1,1,0]] + m4 = ones(6) + m5 = [0, 1, 1, 1, 1, 1] + assert_equal(average(masked_array(x, m1),axis=0), 2.5) + assert_equal(average(masked_array(x, m2),axis=0), 2.5) + assert_equal(average(masked_array(x, m4),axis=0).mask, [True]) + assert_equal(average(masked_array(x, m5),axis=0), 0.0) + assert_equal(count(average(masked_array(x, m4),axis=0)), 0) + z = masked_array(y, m3) + assert_equal(average(z, None), 20./6.) + assert_equal(average(z, axis=0), [0.,1.,99.,99.,4.0, 7.5]) + assert_equal(average(z, axis=1), [2.5, 5.0]) + assert_equal(average(z,axis=0, weights=w2), [0.,1., 99., 99., 4.0, 10.0]) + + def check_testAverage3(self): + "Yet more tests of average!" + a = arange(6) + b = arange(6) * 3 + r1, w1 = average([[a,b],[b,a]], axis=1, returned=1) + assert_equal(shape(r1) , shape(w1)) + assert_equal(r1.shape , w1.shape) + r2, w2 = average(ones((2,2,3)), axis=0, weights=[3,1], returned=1) + assert_equal(shape(w2) , shape(r2)) + r2, w2 = average(ones((2,2,3)), returned=1) + assert_equal(shape(w2) , shape(r2)) + r2, w2 = average(ones((2,2,3)), weights=ones((2,2,3)), returned=1) + assert_equal(shape(w2), shape(r2)) + a2d = array([[1,2],[0,4]], float) + a2dm = masked_array(a2d, [[0,0],[1,0]]) + a2da = average(a2d, axis=0) + assert_equal(a2da, [0.5, 3.0]) + a2dma = average(a2dm, axis=0) + assert_equal(a2dma, [1.0, 3.0]) + a2dma = average(a2dm, axis=None) + assert_equal(a2dma, 7./3.) + a2dma = average(a2dm, axis=1) + assert_equal(a2dma, [1.5, 4.0]) + +class TestConcatenator(NumpyTestCase): + "Tests for mr_, the equivalent of r_ for masked arrays." + def check_1d(self): + "Tests mr_ on 1D arrays." + assert_array_equal(mr_[1,2,3,4,5,6],array([1,2,3,4,5,6])) + b = ones(5) + m = [1,0,0,0,0] + d = masked_array(b,mask=m) + c = mr_[d,0,0,d] + assert(isinstance(c,MaskedArray) or isinstance(c,core.MaskedArray)) + assert_array_equal(c,[1,1,1,1,1,0,0,1,1,1,1,1]) + assert_array_equal(c.mask, mr_[m,0,0,m]) + + def check_2d(self): + "Tests mr_ on 2D arrays." + a_1 = rand(5,5) + a_2 = rand(5,5) + m_1 = N.round_(rand(5,5),0) + m_2 = N.round_(rand(5,5),0) + b_1 = masked_array(a_1,mask=m_1) + b_2 = masked_array(a_2,mask=m_2) + d = mr_['1',b_1,b_2] # append columns + assert(d.shape == (5,10)) + assert_array_equal(d[:,:5],b_1) + assert_array_equal(d[:,5:],b_2) + assert_array_equal(d.mask, N.r_['1',m_1,m_2]) + d = mr_[b_1,b_2] + assert(d.shape == (10,5)) + assert_array_equal(d[:5,:],b_1) + assert_array_equal(d[5:,:],b_2) + assert_array_equal(d.mask, N.r_[m_1,m_2]) + +class TestNotMasked(NumpyTestCase): + "Tests notmasked_edges and notmasked_contiguous." + def check_edges(self): + "Tests unmasked_edges" + a = masked_array(N.arange(24).reshape(3,8), + mask=[[0,0,0,0,1,1,1,0], + [1,1,1,1,1,1,1,1], + [0,0,0,0,0,0,1,0],]) + # + assert_equal(notmasked_edges(a, None), [0,23]) + # + tmp = notmasked_edges(a, 0) + assert_equal(tmp[0], (array([0,0,0,0,2,2,0]), array([0,1,2,3,4,5,7]))) + assert_equal(tmp[1], (array([2,2,2,2,2,2,2]), array([0,1,2,3,4,5,7]))) + # + tmp = notmasked_edges(a, 1) + assert_equal(tmp[0], (array([0,2,]), array([0,0]))) + assert_equal(tmp[1], (array([0,2,]), array([7,7]))) + + def check_contiguous(self): + "Tests notmasked_contiguous" + a = masked_array(N.arange(24).reshape(3,8), + mask=[[0,0,0,0,1,1,1,1], + [1,1,1,1,1,1,1,1], + [0,0,0,0,0,0,1,0],]) + tmp = notmasked_contiguous(a, None) + assert_equal(tmp[-1], slice(23,23,None)) + assert_equal(tmp[-2], slice(16,21,None)) + assert_equal(tmp[-3], slice(0,3,None)) + # + tmp = notmasked_contiguous(a, 0) + assert(len(tmp[-1]) == 1) + assert(tmp[-2] is None) + assert_equal(tmp[-3],tmp[-1]) + assert(len(tmp[0]) == 2) + # + tmp = notmasked_contiguous(a, 1) + assert_equal(tmp[0][-1], slice(0,3,None)) + assert(tmp[1] is None) + assert_equal(tmp[2][-1], slice(7,7,None)) + assert_equal(tmp[2][-2], slice(0,5,None)) + +class Test2DFunctions(NumpyTestCase): + "Tests 2D functions" + def check_compress2d(self): + "Tests compress2d" + x = array(N.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]]) + assert_equal(compress_rowcols(x), [[4,5],[7,8]] ) + assert_equal(compress_rowcols(x,0), [[3,4,5],[6,7,8]] ) + assert_equal(compress_rowcols(x,1), [[1,2],[4,5],[7,8]] ) + x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]]) + assert_equal(compress_rowcols(x), [[0,2],[6,8]] ) + assert_equal(compress_rowcols(x,0), [[0,1,2],[6,7,8]] ) + assert_equal(compress_rowcols(x,1), [[0,2],[3,5],[6,8]] ) + x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]]) + assert_equal(compress_rowcols(x), [[8]] ) + assert_equal(compress_rowcols(x,0), [[6,7,8]] ) + assert_equal(compress_rowcols(x,1,), [[2],[5],[8]] ) + x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]]) + assert_equal(compress_rowcols(x).size, 0 ) + assert_equal(compress_rowcols(x,0).size, 0 ) + assert_equal(compress_rowcols(x,1).size, 0 ) + # + def check_mask_rowcols(self): + "Tests mask_rowcols." + x = array(N.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]]) + assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,0,0],[1,0,0]] ) + assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[0,0,0],[0,0,0]] ) + assert_equal(mask_rowcols(x,1).mask, [[1,0,0],[1,0,0],[1,0,0]] ) + x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]]) + assert_equal(mask_rowcols(x).mask, [[0,1,0],[1,1,1],[0,1,0]] ) + assert_equal(mask_rowcols(x,0).mask, [[0,0,0],[1,1,1],[0,0,0]] ) + assert_equal(mask_rowcols(x,1).mask, [[0,1,0],[0,1,0],[0,1,0]] ) + x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]]) + assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,1,1],[1,1,0]] ) + assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[1,1,1],[0,0,0]] ) + assert_equal(mask_rowcols(x,1,).mask, [[1,1,0],[1,1,0],[1,1,0]] ) + x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]]) + assert(mask_rowcols(x).all()) + assert(mask_rowcols(x,0).all()) + assert(mask_rowcols(x,1).all()) + # + def test_dot(self): + "Tests dot product" + n = N.arange(1,7) + # + m = [1,0,0,0,0,0] + a = masked_array(n, mask=m).reshape(2,3) + b = masked_array(n, mask=m).reshape(3,2) + c = dot(a,b,True) + assert_equal(c.mask, [[1,1],[1,0]]) + c = dot(b,a,True) + assert_equal(c.mask, [[1,1,1],[1,0,0],[1,0,0]]) + c = dot(a,b,False) + assert_equal(c, N.dot(a.filled(0), b.filled(0))) + c = dot(b,a,False) + assert_equal(c, N.dot(b.filled(0), a.filled(0))) + # + m = [0,0,0,0,0,1] + a = masked_array(n, mask=m).reshape(2,3) + b = masked_array(n, mask=m).reshape(3,2) + c = dot(a,b,True) + assert_equal(c.mask,[[0,1],[1,1]]) + c = dot(b,a,True) + assert_equal(c.mask, [[0,0,1],[0,0,1],[1,1,1]]) + c = dot(a,b,False) + assert_equal(c, N.dot(a.filled(0), b.filled(0))) + assert_equal(c, dot(a,b)) + c = dot(b,a,False) + assert_equal(c, N.dot(b.filled(0), a.filled(0))) + # + m = [0,0,0,0,0,0] + a = masked_array(n, mask=m).reshape(2,3) + b = masked_array(n, mask=m).reshape(3,2) + c = dot(a,b) + assert_equal(c.mask,nomask) + c = dot(b,a) + assert_equal(c.mask,nomask) + # + a = masked_array(n, mask=[1,0,0,0,0,0]).reshape(2,3) + b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2) + c = dot(a,b,True) + assert_equal(c.mask,[[1,1],[0,0]]) + c = dot(a,b,False) + assert_equal(c, N.dot(a.filled(0),b.filled(0))) + c = dot(b,a,True) + assert_equal(c.mask,[[1,0,0],[1,0,0],[1,0,0]]) + c = dot(b,a,False) + assert_equal(c, N.dot(b.filled(0),a.filled(0))) + # + a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3) + b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2) + c = dot(a,b,True) + assert_equal(c.mask,[[0,0],[1,1]]) + c = dot(a,b) + assert_equal(c, N.dot(a.filled(0),b.filled(0))) + c = dot(b,a,True) + assert_equal(c.mask,[[0,0,1],[0,0,1],[0,0,1]]) + c = dot(b,a,False) + assert_equal(c, N.dot(b.filled(0), a.filled(0))) + # + a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3) + b = masked_array(n, mask=[0,0,1,0,0,0]).reshape(3,2) + c = dot(a,b,True) + assert_equal(c.mask,[[1,0],[1,1]]) + c = dot(a,b,False) + assert_equal(c, N.dot(a.filled(0),b.filled(0))) + c = dot(b,a,True) + assert_equal(c.mask,[[0,0,1],[1,1,1],[0,0,1]]) + c = dot(b,a,False) + assert_equal(c, N.dot(b.filled(0),a.filled(0))) + + def test_mediff1d(self): + "Tests mediff1d" + x = masked_array(N.arange(5), mask=[1,0,0,0,1]) + difx_d = (x._data[1:]-x._data[:-1]) + difx_m = (x._mask[1:]-x._mask[:-1]) + dx = mediff1d(x) + assert_equal(dx._data, difx_d) + assert_equal(dx._mask, difx_m) + # + dx = mediff1d(x, to_begin=masked) + assert_equal(dx._data, N.r_[0,difx_d]) + assert_equal(dx._mask, N.r_[1,difx_m]) + dx = mediff1d(x, to_begin=[1,2,3]) + assert_equal(dx._data, N.r_[[1,2,3],difx_d]) + assert_equal(dx._mask, N.r_[[0,0,0],difx_m]) + # + dx = mediff1d(x, to_end=masked) + assert_equal(dx._data, N.r_[difx_d,0]) + assert_equal(dx._mask, N.r_[difx_m,1]) + dx = mediff1d(x, to_end=[1,2,3]) + assert_equal(dx._data, N.r_[difx_d,[1,2,3]]) + assert_equal(dx._mask, N.r_[difx_m,[0,0,0]]) + # + dx = mediff1d(x, to_end=masked, to_begin=masked) + assert_equal(dx._data, N.r_[0,difx_d,0]) + assert_equal(dx._mask, N.r_[1,difx_m,1]) + dx = mediff1d(x, to_end=[1,2,3], to_begin=masked) + assert_equal(dx._data, N.r_[0,difx_d,[1,2,3]]) + assert_equal(dx._mask, N.r_[1,difx_m,[0,0,0]]) + # + dx = mediff1d(x._data, to_end=masked, to_begin=masked) + assert_equal(dx._data, N.r_[0,difx_d,0]) + assert_equal(dx._mask, N.r_[1,0,0,0,0,1]) + +class TestApplyAlongAxis(NumpyTestCase): + "Tests 2D functions" + def check_3d(self): + a = arange(12.).reshape(2,2,3) + def myfunc(b): + return b[1] + xa = apply_along_axis(myfunc,2,a) + assert_equal(xa,[[1,4],[7,10]]) + +############################################################################### +#------------------------------------------------------------------------------ +if __name__ == "__main__": + NumpyTest().run() diff --git a/numpy/ma/tests/test_morestats.py b/numpy/ma/tests/test_morestats.py new file mode 100644 index 000000000..933e974da --- /dev/null +++ b/numpy/ma/tests/test_morestats.py @@ -0,0 +1,114 @@ +# pylint: disable-msg=W0611, W0612, W0511,R0201 +"""Tests suite for maskedArray statistics. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu +:version: $Id: test_morestats.py 317 2007-10-04 19:31:14Z backtopop $ +""" +__author__ = "Pierre GF Gerard-Marchant ($Author: backtopop $)" +__version__ = '1.0' +__revision__ = "$Revision: 317 $" +__date__ = '$Date: 2007-10-04 15:31:14 -0400 (Thu, 04 Oct 2007) $' + +import numpy + +import numpy.ma +from numpy.ma import masked, masked_array + +import numpy.ma.mstats +from numpy.ma.mstats import * +import numpy.ma.morestats +from numpy.ma.morestats import * + +import numpy.ma.testutils +from numpy.ma.testutils import * + + +class TestMisc(NumpyTestCase): + # + def __init__(self, *args, **kwargs): + NumpyTestCase.__init__(self, *args, **kwargs) + # + def test_mjci(self): + "Tests the Marits-Jarrett estimator" + data = masked_array([ 77, 87, 88,114,151,210,219,246,253,262, + 296,299,306,376,428,515,666,1310,2611]) + assert_almost_equal(mjci(data),[55.76819,45.84028,198.8788],5) + # + def test_trimmedmeanci(self): + "Tests the confidence intervals of the trimmed mean." + data = masked_array([545,555,558,572,575,576,578,580, + 594,605,635,651,653,661,666]) + assert_almost_equal(trimmed_mean(data,0.2), 596.2, 1) + assert_equal(numpy.round(trimmed_mean_ci(data,0.2),1), [561.8, 630.6]) + +#.............................................................................. +class TestRanking(NumpyTestCase): + # + def __init__(self, *args, **kwargs): + NumpyTestCase.__init__(self, *args, **kwargs) + # + def test_ranking(self): + x = masked_array([0,1,1,1,2,3,4,5,5,6,]) + assert_almost_equal(rank_data(x),[1,3,3,3,5,6,7,8.5,8.5,10]) + x[[3,4]] = masked + assert_almost_equal(rank_data(x),[1,2.5,2.5,0,0,4,5,6.5,6.5,8]) + assert_almost_equal(rank_data(x,use_missing=True), + [1,2.5,2.5,4.5,4.5,4,5,6.5,6.5,8]) + x = masked_array([0,1,5,1,2,4,3,5,1,6,]) + assert_almost_equal(rank_data(x),[1,3,8.5,3,5,7,6,8.5,3,10]) + x = masked_array([[0,1,1,1,2], [3,4,5,5,6,]]) + assert_almost_equal(rank_data(x),[[1,3,3,3,5],[6,7,8.5,8.5,10]]) + assert_almost_equal(rank_data(x,axis=1),[[1,3,3,3,5],[1,2,3.5,3.5,5]]) + assert_almost_equal(rank_data(x,axis=0),[[1,1,1,1,1],[2,2,2,2,2,]]) + +#.............................................................................. +class TestQuantiles(NumpyTestCase): + # + def __init__(self, *args, **kwargs): + NumpyTestCase.__init__(self, *args, **kwargs) + # + def test_hdquantiles(self): + data = [0.706560797,0.727229578,0.990399276,0.927065621,0.158953014, + 0.887764025,0.239407086,0.349638551,0.972791145,0.149789972, + 0.936947700,0.132359948,0.046041972,0.641675031,0.945530547, + 0.224218684,0.771450991,0.820257774,0.336458052,0.589113496, + 0.509736129,0.696838829,0.491323573,0.622767425,0.775189248, + 0.641461450,0.118455200,0.773029450,0.319280007,0.752229111, + 0.047841438,0.466295911,0.583850781,0.840581845,0.550086491, + 0.466470062,0.504765074,0.226855960,0.362641207,0.891620942, + 0.127898691,0.490094097,0.044882048,0.041441695,0.317976349, + 0.504135618,0.567353033,0.434617473,0.636243375,0.231803616, + 0.230154113,0.160011327,0.819464108,0.854706985,0.438809221, + 0.487427267,0.786907310,0.408367937,0.405534192,0.250444460, + 0.995309248,0.144389588,0.739947527,0.953543606,0.680051621, + 0.388382017,0.863530727,0.006514031,0.118007779,0.924024803, + 0.384236354,0.893687694,0.626534881,0.473051932,0.750134705, + 0.241843555,0.432947602,0.689538104,0.136934797,0.150206859, + 0.474335206,0.907775349,0.525869295,0.189184225,0.854284286, + 0.831089744,0.251637345,0.587038213,0.254475554,0.237781276, + 0.827928620,0.480283781,0.594514455,0.213641488,0.024194386, + 0.536668589,0.699497811,0.892804071,0.093835427,0.731107772] + # + assert_almost_equal(hdquantiles(data,[0., 1.]), + [0.006514031, 0.995309248]) + hdq = hdquantiles(data,[0.25, 0.5, 0.75]) + assert_almost_equal(hdq, [0.253210762, 0.512847491, 0.762232442,]) + hdq = hdquantiles_sd(data,[0.25, 0.5, 0.75]) + assert_almost_equal(hdq, [0.03786954, 0.03805389, 0.03800152,], 4) + # + data = numpy.array(data).reshape(10,10) + hdq = hdquantiles(data,[0.25,0.5,0.75],axis=0) + assert_almost_equal(hdq[:,0], hdquantiles(data[:,0],[0.25,0.5,0.75])) + assert_almost_equal(hdq[:,-1], hdquantiles(data[:,-1],[0.25,0.5,0.75])) + hdq = hdquantiles(data,[0.25,0.5,0.75],axis=0,var=True) + assert_almost_equal(hdq[...,0], + hdquantiles(data[:,0],[0.25,0.5,0.75],var=True)) + assert_almost_equal(hdq[...,-1], + hdquantiles(data[:,-1],[0.25,0.5,0.75], var=True)) + + +############################################################################### +#------------------------------------------------------------------------------ +if __name__ == "__main__": + NumpyTest().run() diff --git a/numpy/ma/tests/test_mrecords.py b/numpy/ma/tests/test_mrecords.py new file mode 100644 index 000000000..1d7d5a966 --- /dev/null +++ b/numpy/ma/tests/test_mrecords.py @@ -0,0 +1,181 @@ +# pylint: disable-msg=W0611, W0612, W0511,R0201 +"""Tests suite for mrecarray. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu +:version: $Id: test_mrecords.py 3473 2007-10-29 15:18:13Z jarrod.millman $ +""" +__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)" +__version__ = '1.0' +__revision__ = "$Revision: 3473 $" +__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $' + +import types + +import numpy as N +import numpy.core.fromnumeric as fromnumeric +from numpy.testing import NumpyTest, NumpyTestCase +from numpy.testing.utils import build_err_msg + +import numpy.ma.testutils +from numpy.ma.testutils import * + +import numpy.ma +from numpy.ma import masked_array, masked, nomask + +#import numpy.ma.mrecords +#from numpy.ma.mrecords import mrecarray, fromarrays, fromtextfile, fromrecords + +import numpy.ma.mrecords +from numpy.ma.mrecords import MaskedRecords, \ + fromarrays, fromtextfile, fromrecords, addfield + +#.............................................................................. +class TestMRecords(NumpyTestCase): + "Base test class for MaskedArrays." + def __init__(self, *args, **kwds): + NumpyTestCase.__init__(self, *args, **kwds) + self.setup() + + def setup(self): + "Generic setup" + d = N.arange(5) + m = numpy.ma.make_mask([1,0,0,1,1]) + base_d = N.r_[d,d[::-1]].reshape(2,-1).T + base_m = N.r_[[m, m[::-1]]].T + base = masked_array(base_d, mask=base_m) + mrecord = fromarrays(base.T, dtype=[('a',N.float_),('b',N.float_)]) + self.data = [d, m, mrecord] + + def test_get(self): + "Tests fields retrieval" + [d, m, mrec] = self.data + mrec = mrec.copy() + assert_equal(mrec.a, masked_array(d,mask=m)) + assert_equal(mrec.b, masked_array(d[::-1],mask=m[::-1])) + assert((mrec._fieldmask == N.core.records.fromarrays([m, m[::-1]], dtype=mrec._fieldmask.dtype)).all()) + assert_equal(mrec._mask, N.r_[[m,m[::-1]]].all(0)) + assert_equal(mrec.a[1], mrec[1].a) + # + assert(isinstance(mrec[:2], MaskedRecords)) + assert_equal(mrec[:2]['a'], d[:2]) + + def test_set(self): + "Tests setting fields/attributes." + [d, m, mrecord] = self.data + mrecord.a._data[:] = 5 + assert_equal(mrecord['a']._data, [5,5,5,5,5]) + mrecord.a = 1 + assert_equal(mrecord['a']._data, [1]*5) + assert_equal(getmaskarray(mrecord['a']), [0]*5) + mrecord.b = masked + assert_equal(mrecord.b.mask, [1]*5) + assert_equal(getmaskarray(mrecord['b']), [1]*5) + mrecord._mask = masked + assert_equal(getmaskarray(mrecord['b']), [1]*5) + assert_equal(mrecord['a']._mask, mrecord['b']._mask) + mrecord._mask = nomask + assert_equal(getmaskarray(mrecord['b']), [0]*5) + assert_equal(mrecord['a']._mask, mrecord['b']._mask) + # + def test_setfields(self): + "Tests setting fields." + [d, m, mrecord] = self.data + mrecord.a[3:] = 5 + assert_equal(mrecord.a, [0,1,2,5,5]) + assert_equal(mrecord.a._mask, [1,0,0,0,0]) + # + mrecord.b[3:] = masked + assert_equal(mrecord.b, [4,3,2,1,0]) + assert_equal(mrecord.b._mask, [1,1,0,1,1]) + + def test_setslices(self): + "Tests setting slices." + [d, m, mrec] = self.data + mrec[:2] = 5 + assert_equal(mrec.a._data, [5,5,2,3,4]) + assert_equal(mrec.b._data, [5,5,2,1,0]) + assert_equal(mrec.a._mask, [0,0,0,1,1]) + assert_equal(mrec.b._mask, [0,0,0,0,1]) + # + mrec[:2] = masked + assert_equal(mrec._mask, [1,1,0,0,1]) + mrec[-2] = masked + assert_equal(mrec._mask, [1,1,0,1,1]) + # + def test_setslices_hardmask(self): + "Tests setting slices w/ hardmask." + [d, m, mrec] = self.data + mrec.harden_mask() + mrec[-2:] = 5 + assert_equal(mrec.a._data, [0,1,2,3,4]) + assert_equal(mrec.b._data, [4,3,2,5,0]) + assert_equal(mrec.a._mask, [1,0,0,1,1]) + assert_equal(mrec.b._mask, [1,1,0,0,1]) + + def test_hardmask(self): + "Test hardmask" + [d, m, mrec] = self.data + mrec = mrec.copy() + mrec.harden_mask() + assert(mrec._hardmask) + mrec._mask = nomask + assert_equal(mrec._mask, N.r_[[m,m[::-1]]].all(0)) + mrec.soften_mask() + assert(not mrec._hardmask) + mrec._mask = nomask + assert(mrec['b']._mask is nomask) + assert_equal(mrec['a']._mask,mrec['b']._mask) + + def test_fromrecords(self): + "Test from recarray." + [d, m, mrec] = self.data + nrec = N.core.records.fromarrays(N.r_[[d,d[::-1]]], + dtype=[('a',N.float_),('b',N.float_)]) + #.................... + mrecfr = fromrecords(nrec) + assert_equal(mrecfr.a, mrec.a) + assert_equal(mrecfr.dtype, mrec.dtype) + #.................... + tmp = mrec[::-1] #.tolist() + mrecfr = fromrecords(tmp) + assert_equal(mrecfr.a, mrec.a[::-1]) + #.................... + mrecfr = fromrecords(nrec.tolist(), names=nrec.dtype.names) + assert_equal(mrecfr.a, mrec.a) + assert_equal(mrecfr.dtype, mrec.dtype) + + def test_fromtextfile(self): + "Tests reading from a text file." + fcontent = """# +'One (S)','Two (I)','Three (F)','Four (M)','Five (-)','Six (C)' +'strings',1,1.0,'mixed column',,1 +'with embedded "double quotes"',2,2.0,1.0,,1 +'strings',3,3.0E5,3,,1 +'strings',4,-1e-10,,,1 +""" + import os + from datetime import datetime + fname = 'tmp%s' % datetime.now().strftime("%y%m%d%H%M%S%s") + f = open(fname, 'w') + f.write(fcontent) + f.close() + mrectxt = fromtextfile(fname,delimitor=',',varnames='ABCDEFG') + os.unlink(fname) + # + assert(isinstance(mrectxt, MaskedRecords)) + assert_equal(mrectxt.F, [1,1,1,1]) + assert_equal(mrectxt.E._mask, [1,1,1,1]) + assert_equal(mrectxt.C, [1,2,3.e+5,-1e-10]) + + def test_addfield(self): + "Tests addfield" + [d, m, mrec] = self.data + mrec = addfield(mrec, masked_array(d+10, mask=m[::-1])) + assert_equal(mrec.f2, d+10) + assert_equal(mrec.f2._mask, m[::-1]) + +############################################################################### +#------------------------------------------------------------------------------ +if __name__ == "__main__": + NumpyTest().run() diff --git a/numpy/ma/tests/test_mstats.py b/numpy/ma/tests/test_mstats.py new file mode 100644 index 000000000..e4657a58f --- /dev/null +++ b/numpy/ma/tests/test_mstats.py @@ -0,0 +1,174 @@ +# pylint: disable-msg=W0611, W0612, W0511,R0201 +"""Tests suite for maskedArray statistics. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu +:version: $Id: test_mstats.py 3473 2007-10-29 15:18:13Z jarrod.millman $ +""" +__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)" +__version__ = '1.0' +__revision__ = "$Revision: 3473 $" +__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $' + +import numpy + +import numpy.ma +from numpy.ma import masked, masked_array + +import numpy.ma.testutils +from numpy.ma.testutils import * + +from numpy.ma.mstats import * + +#.............................................................................. +class TestQuantiles(NumpyTestCase): + "Base test class for MaskedArrays." + def __init__(self, *args, **kwds): + NumpyTestCase.__init__(self, *args, **kwds) + self.a = numpy.ma.arange(1,101) + # + def test_1d_nomask(self): + "Test quantiles 1D - w/o mask." + a = self.a + assert_almost_equal(mquantiles(a, alphap=1., betap=1.), + [25.75, 50.5, 75.25]) + assert_almost_equal(mquantiles(a, alphap=0, betap=1.), + [25., 50., 75.]) + assert_almost_equal(mquantiles(a, alphap=0.5, betap=0.5), + [25.5, 50.5, 75.5]) + assert_almost_equal(mquantiles(a, alphap=0., betap=0.), + [25.25, 50.5, 75.75]) + assert_almost_equal(mquantiles(a, alphap=1./3, betap=1./3), + [25.41666667, 50.5, 75.5833333]) + assert_almost_equal(mquantiles(a, alphap=3./8, betap=3./8), + [25.4375, 50.5, 75.5625]) + assert_almost_equal(mquantiles(a), [25.45, 50.5, 75.55])# + # + def test_1d_mask(self): + "Test quantiles 1D - w/ mask." + a = self.a + a[1::2] = masked + assert_almost_equal(mquantiles(a, alphap=1., betap=1.), + [25.5, 50.0, 74.5]) + assert_almost_equal(mquantiles(a, alphap=0, betap=1.), + [24., 49., 74.]) + assert_almost_equal(mquantiles(a, alphap=0.5, betap=0.5), + [25., 50., 75.]) + assert_almost_equal(mquantiles(a, alphap=0., betap=0.), + [24.5, 50.0, 75.5]) + assert_almost_equal(mquantiles(a, alphap=1./3, betap=1./3), + [24.833333, 50.0, 75.166666]) + assert_almost_equal(mquantiles(a, alphap=3./8, betap=3./8), + [24.875, 50., 75.125]) + assert_almost_equal(mquantiles(a), [24.9, 50., 75.1]) + # + def test_2d_nomask(self): + "Test quantiles 2D - w/o mask." + a = self.a + b = numpy.ma.resize(a, (100,100)) + assert_almost_equal(mquantiles(b), [25.45, 50.5, 75.55]) + assert_almost_equal(mquantiles(b, axis=0), numpy.ma.resize(a,(3,100))) + assert_almost_equal(mquantiles(b, axis=1), + numpy.ma.resize([25.45, 50.5, 75.55], (100,3))) + # + def test_2d_mask(self): + "Test quantiles 2D - w/ mask." + a = self.a + a[1::2] = masked + b = numpy.ma.resize(a, (100,100)) + assert_almost_equal(mquantiles(b), [25., 50., 75.]) + assert_almost_equal(mquantiles(b, axis=0), numpy.ma.resize(a,(3,100))) + assert_almost_equal(mquantiles(b, axis=1), + numpy.ma.resize([24.9, 50., 75.1], (100,3))) + +class TestMedian(NumpyTestCase): + def __init__(self, *args, **kwds): + NumpyTestCase.__init__(self, *args, **kwds) + + def test_2d(self): + "Tests median w/ 2D" + (n,p) = (101,30) + x = masked_array(numpy.linspace(-1.,1.,n),) + x[:10] = x[-10:] = masked + z = masked_array(numpy.empty((n,p), dtype=numpy.float_)) + z[:,0] = x[:] + idx = numpy.arange(len(x)) + for i in range(1,p): + numpy.random.shuffle(idx) + z[:,i] = x[idx] + assert_equal(mmedian(z[:,0]), 0) + assert_equal(mmedian(z), numpy.zeros((p,))) + + def test_3d(self): + "Tests median w/ 3D" + x = numpy.ma.arange(24).reshape(3,4,2) + x[x%3==0] = masked + assert_equal(mmedian(x,0), [[12,9],[6,15],[12,9],[18,15]]) + x.shape = (4,3,2) + assert_equal(mmedian(x,0),[[99,10],[11,99],[13,14]]) + x = numpy.ma.arange(24).reshape(4,3,2) + x[x%5==0] = masked + assert_equal(mmedian(x,0), [[12,10],[8,9],[16,17]]) + +#.............................................................................. +class TestTrimming(NumpyTestCase): + # + def __init__(self, *args, **kwds): + NumpyTestCase.__init__(self, *args, **kwds) + # + def test_trim(self): + "Tests trimming." + x = numpy.ma.arange(100) + assert_equal(trim_both(x).count(), 60) + assert_equal(trim_tail(x,tail='r').count(), 80) + x[50:70] = masked + trimx = trim_both(x) + assert_equal(trimx.count(), 48) + assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16) + x._mask = nomask + x.shape = (10,10) + assert_equal(trim_both(x).count(), 60) + assert_equal(trim_tail(x).count(), 80) + # + def test_trimmedmean(self): + "Tests the trimmed mean." + data = masked_array([ 77, 87, 88,114,151,210,219,246,253,262, + 296,299,306,376,428,515,666,1310,2611]) + assert_almost_equal(trimmed_mean(data,0.1), 343, 0) + assert_almost_equal(trimmed_mean(data,0.2), 283, 0) + # + def test_trimmed_stde(self): + "Tests the trimmed mean standard error." + data = masked_array([ 77, 87, 88,114,151,210,219,246,253,262, + 296,299,306,376,428,515,666,1310,2611]) + assert_almost_equal(trimmed_stde(data,0.2), 56.1, 1) + # + def test_winsorization(self): + "Tests the Winsorization of the data." + data = masked_array([ 77, 87, 88,114,151,210,219,246,253,262, + 296,299,306,376,428,515,666,1310,2611]) + assert_almost_equal(winsorize(data).varu(), 21551.4, 1) + data[5] = masked + winsorized = winsorize(data) + assert_equal(winsorized.mask, data.mask) +#.............................................................................. + +class TestMisc(NumpyTestCase): + def __init__(self, *args, **kwds): + NumpyTestCase.__init__(self, *args, **kwds) + + def check_cov(self): + "Tests the cov function." + x = masked_array([[1,2,3],[4,5,6]], mask=[[1,0,0],[0,0,0]]) + c = cov(x[0]) + assert_equal(c, (x[0].anom()**2).sum()) + c = cov(x[1]) + assert_equal(c, (x[1].anom()**2).sum()/2.) + c = cov(x) + assert_equal(c[1,0], (x[0].anom()*x[1].anom()).sum()) + + +############################################################################### +#------------------------------------------------------------------------------ +if __name__ == "__main__": + NumpyTest().run() diff --git a/numpy/ma/tests/test_subclassing.py b/numpy/ma/tests/test_subclassing.py new file mode 100644 index 000000000..331ef887d --- /dev/null +++ b/numpy/ma/tests/test_subclassing.py @@ -0,0 +1,183 @@ +# pylint: disable-msg=W0611, W0612, W0511,R0201 +"""Tests suite for MaskedArray & subclassing. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu +:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $ +""" +__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)" +__version__ = '1.0' +__revision__ = "$Revision: 3473 $" +__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $' + +import numpy as N +import numpy.core.numeric as numeric + +from numpy.testing import NumpyTest, NumpyTestCase + +import numpy.ma.testutils +from numpy.ma.testutils import * + +import numpy.ma.core as coremodule +from numpy.ma.core import * + + +class SubArray(N.ndarray): + """Defines a generic N.ndarray subclass, that stores some metadata + in the dictionary `info`.""" + def __new__(cls,arr,info={}): + x = N.asanyarray(arr).view(cls) + x.info = info + return x + def __array_finalize__(self, obj): + self.info = getattr(obj,'info',{}) + return + def __add__(self, other): + result = N.ndarray.__add__(self, other) + result.info.update({'added':result.info.pop('added',0)+1}) + return result +subarray = SubArray + +class MSubArray(SubArray,MaskedArray): + def __new__(cls, data, info=None, mask=nomask): + subarr = SubArray(data, info) + _data = MaskedArray.__new__(cls, data=subarr, mask=mask) + _data.info = subarr.info + return _data + def __array_finalize__(self,obj): + MaskedArray.__array_finalize__(self,obj) + SubArray.__array_finalize__(self, obj) + return + def _get_series(self): + _view = self.view(MaskedArray) + _view._sharedmask = False + return _view + _series = property(fget=_get_series) +msubarray = MSubArray + +class MMatrix(MaskedArray, N.matrix,): + def __new__(cls, data, mask=nomask): + mat = N.matrix(data) + _data = MaskedArray.__new__(cls, data=mat, mask=mask) + return _data + def __array_finalize__(self,obj): + N.matrix.__array_finalize__(self, obj) + MaskedArray.__array_finalize__(self,obj) + return + def _get_series(self): + _view = self.view(MaskedArray) + _view._sharedmask = False + return _view + _series = property(fget=_get_series) +mmatrix = MMatrix + + + +class TestSubclassing(NumpyTestCase): + """Test suite for masked subclasses of ndarray.""" + + def check_data_subclassing(self): + "Tests whether the subclass is kept." + x = N.arange(5) + m = [0,0,1,0,0] + xsub = SubArray(x) + xmsub = masked_array(xsub, mask=m) + assert isinstance(xmsub, MaskedArray) + assert_equal(xmsub._data, xsub) + assert isinstance(xmsub._data, SubArray) + + def check_maskedarray_subclassing(self): + "Tests subclassing MaskedArray" + x = N.arange(5) + mx = mmatrix(x,mask=[0,1,0,0,0]) + assert isinstance(mx._data, N.matrix) + "Tests masked_unary_operation" + assert isinstance(add(mx,mx), mmatrix) + assert isinstance(add(mx,x), mmatrix) + assert_equal(add(mx,x), mx+x) + assert isinstance(add(mx,mx)._data, N.matrix) + assert isinstance(add.outer(mx,mx), mmatrix) + "Tests masked_binary_operation" + assert isinstance(hypot(mx,mx), mmatrix) + assert isinstance(hypot(mx,x), mmatrix) + + def check_attributepropagation(self): + x = array(arange(5), mask=[0]+[1]*4) + my = masked_array(subarray(x)) + ym = msubarray(x) + # + z = (my+1) + assert isinstance(z,MaskedArray) + assert not isinstance(z, MSubArray) + assert isinstance(z._data, SubArray) + assert_equal(z._data.info, {}) + # + z = (ym+1) + assert isinstance(z, MaskedArray) + assert isinstance(z, MSubArray) + assert isinstance(z._data, SubArray) + assert z._data.info['added'] > 0 + # + ym._set_mask([1,0,0,0,1]) + assert_equal(ym._mask, [1,0,0,0,1]) + ym._series._set_mask([0,0,0,0,1]) + assert_equal(ym._mask, [0,0,0,0,1]) + # + xsub = subarray(x, info={'name':'x'}) + mxsub = masked_array(xsub) + assert hasattr(mxsub, 'info') + assert_equal(mxsub.info, xsub.info) + + def check_subclasspreservation(self): + "Checks that masked_array(...,subok=True) preserves the class." + x = N.arange(5) + m = [0,0,1,0,0] + xinfo = [(i,j) for (i,j) in zip(x,m)] + xsub = MSubArray(x, mask=m, info={'xsub':xinfo}) + # + mxsub = masked_array(xsub, subok=False) + assert not isinstance(mxsub, MSubArray) + assert isinstance(mxsub, MaskedArray) + assert_equal(mxsub._mask, m) + # + mxsub = asarray(xsub) + assert not isinstance(mxsub, MSubArray) + assert isinstance(mxsub, MaskedArray) + assert_equal(mxsub._mask, m) + # + mxsub = masked_array(xsub, subok=True) + assert isinstance(mxsub, MSubArray) + assert_equal(mxsub.info, xsub.info) + assert_equal(mxsub._mask, xsub._mask) + # + mxsub = asanyarray(xsub) + assert isinstance(mxsub, MSubArray) + assert_equal(mxsub.info, xsub.info) + assert_equal(mxsub._mask, m) + + +################################################################################ +if __name__ == '__main__': + NumpyTest().run() + # + if 0: + x = array(arange(5), mask=[0]+[1]*4) + my = masked_array(subarray(x)) + ym = msubarray(x) + # + z = (my+1) + assert isinstance(z,MaskedArray) + assert not isinstance(z, MSubArray) + assert isinstance(z._data, SubArray) + assert_equal(z._data.info, {}) + # + z = (ym+1) + assert isinstance(z, MaskedArray) + assert isinstance(z, MSubArray) + assert isinstance(z._data, SubArray) + assert z._data.info['added'] > 0 + # + ym._set_mask([1,0,0,0,1]) + assert_equal(ym._mask, [1,0,0,0,1]) + ym._series._set_mask([0,0,0,0,1]) + assert_equal(ym._mask, [0,0,0,0,1]) |