summaryrefslogtreecommitdiff
path: root/numpy/ma/tests
diff options
context:
space:
mode:
authorStefan van der Walt <stefan@sun.ac.za>2007-12-15 02:43:35 +0000
committerStefan van der Walt <stefan@sun.ac.za>2007-12-15 02:43:35 +0000
commitbe2d0cacfcf64c25a1dd76e9817ad0cf024d0576 (patch)
treee6c11e1835a55af426d2d9ea35e2910181bab612 /numpy/ma/tests
parentfc1506199914b4fcdd2dfb930d9ddc0ee2ee9569 (diff)
downloadnumpy-be2d0cacfcf64c25a1dd76e9817ad0cf024d0576.tar.gz
Pull in old tests.
Diffstat (limited to 'numpy/ma/tests')
-rw-r--r--numpy/ma/tests/test_core.py2
-rw-r--r--numpy/ma/tests/test_old_ma.py873
2 files changed, 875 insertions, 0 deletions
diff --git a/numpy/ma/tests/test_core.py b/numpy/ma/tests/test_core.py
index b70c40996..0eb75d224 100644
--- a/numpy/ma/tests/test_core.py
+++ b/numpy/ma/tests/test_core.py
@@ -27,6 +27,8 @@ from numpy.ma.core import *
pi = numpy.pi
+from test_old_ma import *
+
#..............................................................................
class TestMA(NumpyTestCase):
"Base test class for MaskedArrays."
diff --git a/numpy/ma/tests/test_old_ma.py b/numpy/ma/tests/test_old_ma.py
new file mode 100644
index 000000000..5f383c67c
--- /dev/null
+++ b/numpy/ma/tests/test_old_ma.py
@@ -0,0 +1,873 @@
+import numpy
+import types, time
+from numpy.ma import *
+from numpy.core.numerictypes import float32
+from numpy.testing import NumpyTestCase, NumpyTest
+pi = numpy.pi
+def eq(v,w, msg=''):
+ result = allclose(v,w)
+ if not result:
+ print """Not eq:%s
+%s
+----
+%s"""% (msg, str(v), str(w))
+ return result
+
+class TestMa(NumpyTestCase):
+ def __init__(self, *args, **kwds):
+ NumpyTestCase.__init__(self, *args, **kwds)
+ self.setUp()
+
+ def setUp (self):
+ x=numpy.array([1.,1.,1.,-2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.])
+ y=numpy.array([5.,0.,3., 2., -1., -4., 0., -10., 10., 1., 0., 3.])
+ a10 = 10.
+ m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+ m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0 ,0, 1]
+ xm = array(x, mask=m1)
+ ym = array(y, mask=m2)
+ z = numpy.array([-.5, 0., .5, .8])
+ zm = array(z, mask=[0,1,0,0])
+ xf = numpy.where(m1, 1.e+20, x)
+ s = x.shape
+ xm.set_fill_value(1.e+20)
+ self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s)
+
+ def check_testBasic1d(self):
+ "Test of basic array creation and properties in 1 dimension."
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ self.failIf(isMaskedArray(x))
+ self.failUnless(isMaskedArray(xm))
+ self.assertEqual(shape(xm), s)
+ self.assertEqual(xm.shape, s)
+ self.assertEqual(xm.dtype, x.dtype)
+ self.assertEqual( xm.size , reduce(lambda x,y:x*y, s))
+ self.assertEqual(count(xm) , len(m1) - reduce(lambda x,y:x+y, m1))
+ self.failUnless(eq(xm, xf))
+ self.failUnless(eq(filled(xm, 1.e20), xf))
+ self.failUnless(eq(x, xm))
+
+ def check_testBasic2d(self):
+ "Test of basic array creation and properties in 2 dimensions."
+ for s in [(4,3), (6,2)]:
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ x.shape = s
+ y.shape = s
+ xm.shape = s
+ ym.shape = s
+ xf.shape = s
+
+ self.failIf(isMaskedArray(x))
+ self.failUnless(isMaskedArray(xm))
+ self.assertEqual(shape(xm), s)
+ self.assertEqual(xm.shape, s)
+ self.assertEqual( xm.size , reduce(lambda x,y:x*y, s))
+ self.assertEqual( count(xm) , len(m1) - reduce(lambda x,y:x+y, m1))
+ self.failUnless(eq(xm, xf))
+ self.failUnless(eq(filled(xm, 1.e20), xf))
+ self.failUnless(eq(x, xm))
+ self.setUp()
+
+ def check_testArithmetic (self):
+ "Test of basic arithmetic."
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ a2d = array([[1,2],[0,4]])
+ a2dm = masked_array(a2d, [[0,0],[1,0]])
+ self.failUnless(eq (a2d * a2d, a2d * a2dm))
+ self.failUnless(eq (a2d + a2d, a2d + a2dm))
+ self.failUnless(eq (a2d - a2d, a2d - a2dm))
+ for s in [(12,), (4,3), (2,6)]:
+ x = x.reshape(s)
+ y = y.reshape(s)
+ xm = xm.reshape(s)
+ ym = ym.reshape(s)
+ xf = xf.reshape(s)
+ self.failUnless(eq(-x, -xm))
+ self.failUnless(eq(x + y, xm + ym))
+ self.failUnless(eq(x - y, xm - ym))
+ self.failUnless(eq(x * y, xm * ym))
+ olderr = numpy.seterr(divide='ignore', invalid='ignore')
+ self.failUnless(eq(x / y, xm / ym))
+ numpy.seterr(**olderr)
+ self.failUnless(eq(a10 + y, a10 + ym))
+ self.failUnless(eq(a10 - y, a10 - ym))
+ self.failUnless(eq(a10 * y, a10 * ym))
+ olderr = numpy.seterr(divide='ignore', invalid='ignore')
+ self.failUnless(eq(a10 / y, a10 / ym))
+ numpy.seterr(**olderr)
+ self.failUnless(eq(x + a10, xm + a10))
+ self.failUnless(eq(x - a10, xm - a10))
+ self.failUnless(eq(x * a10, xm * a10))
+ self.failUnless(eq(x / a10, xm / a10))
+ self.failUnless(eq(x**2, xm**2))
+ self.failUnless(eq(abs(x)**2.5, abs(xm) **2.5))
+ self.failUnless(eq(x**y, xm**ym))
+ self.failUnless(eq(numpy.add(x,y), add(xm, ym)))
+ self.failUnless(eq(numpy.subtract(x,y), subtract(xm, ym)))
+ self.failUnless(eq(numpy.multiply(x,y), multiply(xm, ym)))
+ olderr = numpy.seterr(divide='ignore', invalid='ignore')
+ self.failUnless(eq(numpy.divide(x,y), divide(xm, ym)))
+ numpy.seterr(**olderr)
+
+
+ def check_testMixedArithmetic(self):
+ na = numpy.array([1])
+ ma = array([1])
+ self.failUnless(isinstance(na + ma, MaskedArray))
+ self.failUnless(isinstance(ma + na, MaskedArray))
+
+ def check_testUfuncs1 (self):
+ "Test various functions such as sin, cos."
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ self.failUnless (eq(numpy.cos(x), cos(xm)))
+ self.failUnless (eq(numpy.cosh(x), cosh(xm)))
+ self.failUnless (eq(numpy.sin(x), sin(xm)))
+ self.failUnless (eq(numpy.sinh(x), sinh(xm)))
+ self.failUnless (eq(numpy.tan(x), tan(xm)))
+ self.failUnless (eq(numpy.tanh(x), tanh(xm)))
+ olderr = numpy.seterr(divide='ignore', invalid='ignore')
+ self.failUnless (eq(numpy.sqrt(abs(x)), sqrt(xm)))
+ self.failUnless (eq(numpy.log(abs(x)), log(xm)))
+ self.failUnless (eq(numpy.log10(abs(x)), log10(xm)))
+ numpy.seterr(**olderr)
+ self.failUnless (eq(numpy.exp(x), exp(xm)))
+ self.failUnless (eq(numpy.arcsin(z), arcsin(zm)))
+ self.failUnless (eq(numpy.arccos(z), arccos(zm)))
+ self.failUnless (eq(numpy.arctan(z), arctan(zm)))
+ self.failUnless (eq(numpy.arctan2(x, y), arctan2(xm, ym)))
+ self.failUnless (eq(numpy.absolute(x), absolute(xm)))
+ self.failUnless (eq(numpy.equal(x,y), equal(xm, ym)))
+ self.failUnless (eq(numpy.not_equal(x,y), not_equal(xm, ym)))
+ self.failUnless (eq(numpy.less(x,y), less(xm, ym)))
+ self.failUnless (eq(numpy.greater(x,y), greater(xm, ym)))
+ self.failUnless (eq(numpy.less_equal(x,y), less_equal(xm, ym)))
+ self.failUnless (eq(numpy.greater_equal(x,y), greater_equal(xm, ym)))
+ self.failUnless (eq(numpy.conjugate(x), conjugate(xm)))
+ self.failUnless (eq(numpy.concatenate((x,y)), concatenate((xm,ym))))
+ self.failUnless (eq(numpy.concatenate((x,y)), concatenate((x,y))))
+ self.failUnless (eq(numpy.concatenate((x,y)), concatenate((xm,y))))
+ self.failUnless (eq(numpy.concatenate((x,y,x)), concatenate((x,ym,x))))
+
+ def check_xtestCount (self):
+ "Test count"
+ ott = array([0.,1.,2.,3.], mask=[1,0,0,0])
+ self.failUnless( isinstance(count(ott), types.IntType))
+ self.assertEqual(3, count(ott))
+ self.assertEqual(1, count(1))
+ self.failUnless (eq(0, array(1,mask=[1])))
+ ott=ott.reshape((2,2))
+ assert isMaskedArray(count(ott,0))
+ assert isinstance(count(ott), types.IntType)
+ self.failUnless (eq(3, count(ott)))
+ assert getmask(count(ott,0)) is nomask
+ self.failUnless (eq([1,2],count(ott,0)))
+
+ def check_testMinMax (self):
+ "Test minimum and maximum."
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ xr = numpy.ravel(x) #max doesn't work if shaped
+ xmr = ravel(xm)
+ self.failUnless (eq(max(xr), maximum(xmr))) #true because of careful selection of data
+ self.failUnless (eq(min(xr), minimum(xmr))) #true because of careful selection of data
+
+ def check_testAddSumProd (self):
+ "Test add, sum, product."
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ self.failUnless (eq(numpy.add.reduce(x), add.reduce(x)))
+ self.failUnless (eq(numpy.add.accumulate(x), add.accumulate(x)))
+ self.failUnless (eq(4, sum(array(4),axis=0)))
+ self.failUnless (eq(4, sum(array(4), axis=0)))
+ self.failUnless (eq(numpy.sum(x,axis=0), sum(x,axis=0)))
+ self.failUnless (eq(numpy.sum(filled(xm,0),axis=0), sum(xm,axis=0)))
+ self.failUnless (eq(numpy.sum(x,0), sum(x,0)))
+ self.failUnless (eq(numpy.product(x,axis=0), product(x,axis=0)))
+ self.failUnless (eq(numpy.product(x,0), product(x,0)))
+ self.failUnless (eq(numpy.product(filled(xm,1),axis=0), product(xm,axis=0)))
+ if len(s) > 1:
+ self.failUnless (eq(numpy.concatenate((x,y),1), concatenate((xm,ym),1)))
+ self.failUnless (eq(numpy.add.reduce(x,1), add.reduce(x,1)))
+ self.failUnless (eq(numpy.sum(x,1), sum(x,1)))
+ self.failUnless (eq(numpy.product(x,1), product(x,1)))
+
+
+ def check_testCI(self):
+ "Test of conversions and indexing"
+ x1 = numpy.array([1,2,4,3])
+ x2 = array(x1, mask = [1,0,0,0])
+ x3 = array(x1, mask = [0,1,0,1])
+ x4 = array(x1)
+ # test conversion to strings
+ junk, garbage = str(x2), repr(x2)
+ assert eq(numpy.sort(x1),sort(x2, fill_value=0))
+ # tests of indexing
+ assert type(x2[1]) is type(x1[1])
+ assert x1[1] == x2[1]
+ assert x2[0] is masked
+ assert eq(x1[2],x2[2])
+ assert eq(x1[2:5],x2[2:5])
+ assert eq(x1[:],x2[:])
+ assert eq(x1[1:], x3[1:])
+ x1[2]=9
+ x2[2]=9
+ assert eq(x1,x2)
+ x1[1:3] = 99
+ x2[1:3] = 99
+ assert eq(x1,x2)
+ x2[1] = masked
+ assert eq(x1,x2)
+ x2[1:3]=masked
+ assert eq(x1,x2)
+ x2[:] = x1
+ x2[1] = masked
+ assert allequal(getmask(x2),array([0,1,0,0]))
+ x3[:] = masked_array([1,2,3,4],[0,1,1,0])
+ assert allequal(getmask(x3), array([0,1,1,0]))
+ x4[:] = masked_array([1,2,3,4],[0,1,1,0])
+ assert allequal(getmask(x4), array([0,1,1,0]))
+ assert allequal(x4, array([1,2,3,4]))
+ x1 = numpy.arange(5)*1.0
+ x2 = masked_values(x1, 3.0)
+ assert eq(x1,x2)
+ assert allequal(array([0,0,0,1,0],MaskType), x2.mask)
+ assert eq(3.0, x2.fill_value())
+ x1 = array([1,'hello',2,3],object)
+ x2 = numpy.array([1,'hello',2,3],object)
+ s1 = x1[1]
+ s2 = x2[1]
+ self.assertEqual(type(s2), str)
+ self.assertEqual(type(s1), str)
+ self.assertEqual(s1, s2)
+ assert x1[1:1].shape == (0,)
+
+ def check_testCopySize(self):
+ "Tests of some subtle points of copying and sizing."
+ n = [0,0,1,0,0]
+ m = make_mask(n)
+ m2 = make_mask(m)
+ self.failUnless(m is m2)
+ m3 = make_mask(m, copy=1)
+ self.failUnless(m is not m3)
+
+ x1 = numpy.arange(5)
+ y1 = array(x1, mask=m)
+ self.failUnless( y1.data is not x1)
+ self.failUnless( allequal(x1,y1.data))
+ self.failUnless( y1.mask is m)
+
+ y1a = array(y1, copy=0)
+ self.failUnless( y1a.data is y1.data)
+ self.failUnless( y1a.mask is y1.mask)
+
+ y2 = array(x1, mask=m, copy=0)
+ self.failUnless( y2.data is x1)
+ self.failUnless( y2.mask is m)
+ self.failUnless( y2[2] is masked)
+ y2[2]=9
+ self.failUnless( y2[2] is not masked)
+ self.failUnless( y2.mask is not m)
+ self.failUnless( allequal(y2.mask, 0))
+
+ y3 = array(x1*1.0, mask=m)
+ self.failUnless(filled(y3).dtype is (x1*1.0).dtype)
+
+ x4 = arange(4)
+ x4[2] = masked
+ y4 = resize(x4, (8,))
+ self.failUnless( eq(concatenate([x4,x4]), y4))
+ self.failUnless( eq(getmask(y4),[0,0,1,0,0,0,1,0]))
+ y5 = repeat(x4, (2,2,2,2), axis=0)
+ self.failUnless( eq(y5, [0,0,1,1,2,2,3,3]))
+ y6 = repeat(x4, 2, axis=0)
+ self.failUnless( eq(y5, y6))
+
+ def check_testPut(self):
+ "Test of put"
+ d = arange(5)
+ n = [0,0,0,1,1]
+ m = make_mask(n)
+ x = array(d, mask = m)
+ self.failUnless( x[3] is masked)
+ self.failUnless( x[4] is masked)
+ x[[1,4]] = [10,40]
+ self.failUnless( x.mask is not m)
+ self.failUnless( x[3] is masked)
+ self.failUnless( x[4] is not masked)
+ self.failUnless( eq(x, [0,10,2,-1,40]))
+
+ x = array(d, mask = m)
+ x.put([-1,100,200])
+ self.failUnless( eq(x, [-1,100,200,0,0]))
+ self.failUnless( x[3] is masked)
+ self.failUnless( x[4] is masked)
+
+ x = array(d, mask = m)
+ x.putmask([30,40])
+ self.failUnless( eq(x, [0,1,2,30,40]))
+ self.failUnless( x.mask is nomask)
+
+ x = array(d, mask = m)
+ y = x.compressed()
+ z = array(x, mask = m)
+ z.put(y)
+ assert eq (x, z)
+
+ def check_testMaPut(self):
+ (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d
+ m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]
+ i = numpy.nonzero(m)[0]
+ putmask(xm, m, z)
+ assert take(xm, i,axis=0) == z
+ put(ym, i, zm)
+ assert take(ym, i,axis=0) == zm
+
+ def check_testOddFeatures(self):
+ "Test of other odd features"
+ x = arange(20); x=x.reshape(4,5)
+ x.flat[5] = 12
+ assert x[1,0] == 12
+ z = x + 10j * x
+ assert eq(z.real, x)
+ assert eq(z.imag, 10*x)
+ assert eq((z*conjugate(z)).real, 101*x*x)
+ z.imag[...] = 0.0
+
+ x = arange(10)
+ x[3] = masked
+ assert str(x[3]) == str(masked)
+ c = x >= 8
+ assert count(where(c,masked,masked)) == 0
+ assert shape(where(c,masked,masked)) == c.shape
+ z = where(c , x, masked)
+ assert z.dtype is x.dtype
+ assert z[3] is masked
+ assert z[4] is masked
+ assert z[7] is masked
+ assert z[8] is not masked
+ assert z[9] is not masked
+ assert eq(x,z)
+ z = where(c , masked, x)
+ assert z.dtype is x.dtype
+ assert z[3] is masked
+ assert z[4] is not masked
+ assert z[7] is not masked
+ assert z[8] is masked
+ assert z[9] is masked
+ z = masked_where(c, x)
+ assert z.dtype is x.dtype
+ assert z[3] is masked
+ assert z[4] is not masked
+ assert z[7] is not masked
+ assert z[8] is masked
+ assert z[9] is masked
+ assert eq(x,z)
+ x = array([1.,2.,3.,4.,5.])
+ c = array([1,1,1,0,0])
+ x[2] = masked
+ z = where(c, x, -x)
+ assert eq(z, [1.,2.,0., -4., -5])
+ c[0] = masked
+ z = where(c, x, -x)
+ assert eq(z, [1.,2.,0., -4., -5])
+ assert z[0] is masked
+ assert z[1] is not masked
+ assert z[2] is masked
+ assert eq(masked_where(greater(x, 2), x), masked_greater(x,2))
+ assert eq(masked_where(greater_equal(x, 2), x), masked_greater_equal(x,2))
+ assert eq(masked_where(less(x, 2), x), masked_less(x,2))
+ assert eq(masked_where(less_equal(x, 2), x), masked_less_equal(x,2))
+ assert eq(masked_where(not_equal(x, 2), x), masked_not_equal(x,2))
+ assert eq(masked_where(equal(x, 2), x), masked_equal(x,2))
+ assert eq(masked_where(not_equal(x,2), x), masked_not_equal(x,2))
+ assert eq(masked_inside(range(5), 1, 3), [0, 199, 199, 199, 4])
+ assert eq(masked_outside(range(5), 1, 3),[199,1,2,3,199])
+ assert eq(masked_inside(array(range(5), mask=[1,0,0,0,0]), 1, 3).mask, [1,1,1,1,0])
+ assert eq(masked_outside(array(range(5), mask=[0,1,0,0,0]), 1, 3).mask, [1,1,0,0,1])
+ assert eq(masked_equal(array(range(5), mask=[1,0,0,0,0]), 2).mask, [1,0,1,0,0])
+ assert eq(masked_not_equal(array([2,2,1,2,1], mask=[1,0,0,0,0]), 2).mask, [1,0,1,0,1])
+ assert eq(masked_where([1,1,0,0,0], [1,2,3,4,5]), [99,99,3,4,5])
+ atest = ones((10,10,10), dtype=float32)
+ btest = zeros(atest.shape, MaskType)
+ ctest = masked_where(btest,atest)
+ assert eq(atest,ctest)
+ z = choose(c, (-x, x))
+ assert eq(z, [1.,2.,0., -4., -5])
+ assert z[0] is masked
+ assert z[1] is not masked
+ assert z[2] is masked
+ x = arange(6)
+ x[5] = masked
+ y = arange(6)*10
+ y[2]= masked
+ c = array([1,1,1,0,0,0], mask=[1,0,0,0,0,0])
+ cm = c.filled(1)
+ z = where(c,x,y)
+ zm = where(cm,x,y)
+ assert eq(z, zm)
+ assert getmask(zm) is nomask
+ assert eq(zm, [0,1,2,30,40,50])
+ z = where(c, masked, 1)
+ assert eq(z, [99,99,99,1,1,1])
+ z = where(c, 1, masked)
+ assert eq(z, [99, 1, 1, 99, 99, 99])
+
+ def check_testMinMax(self):
+ "Test of minumum, maximum."
+ assert eq(minimum([1,2,3],[4,0,9]), [1,0,3])
+ assert eq(maximum([1,2,3],[4,0,9]), [4,2,9])
+ x = arange(5)
+ y = arange(5) - 2
+ x[3] = masked
+ y[0] = masked
+ assert eq(minimum(x,y), where(less(x,y), x, y))
+ assert eq(maximum(x,y), where(greater(x,y), x, y))
+ assert minimum(x) == 0
+ assert maximum(x) == 4
+
+ def check_testTakeTransposeInnerOuter(self):
+ "Test of take, transpose, inner, outer products"
+ x = arange(24)
+ y = numpy.arange(24)
+ x[5:6] = masked
+ x=x.reshape(2,3,4)
+ y=y.reshape(2,3,4)
+ assert eq(numpy.transpose(y,(2,0,1)), transpose(x,(2,0,1)))
+ assert eq(numpy.take(y, (2,0,1), 1), take(x, (2,0,1), 1))
+ assert eq(numpy.inner(filled(x,0),filled(y,0)),
+ inner(x, y))
+ assert eq(numpy.outer(filled(x,0),filled(y,0)),
+ outer(x, y))
+ y = array(['abc', 1, 'def', 2, 3], object)
+ y[2] = masked
+ t = take(y,[0,3,4])
+ assert t[0] == 'abc'
+ assert t[1] == 2
+ assert t[2] == 3
+
+ def check_testInplace(self):
+ """Test of inplace operations and rich comparisons"""
+ y = arange(10)
+
+ x = arange(10)
+ xm = arange(10)
+ xm[2] = masked
+ x += 1
+ assert eq(x, y+1)
+ xm += 1
+ assert eq(x, y+1)
+
+ x = arange(10)
+ xm = arange(10)
+ xm[2] = masked
+ x -= 1
+ assert eq(x, y-1)
+ xm -= 1
+ assert eq(xm, y-1)
+
+ x = arange(10)*1.0
+ xm = arange(10)*1.0
+ xm[2] = masked
+ x *= 2.0
+ assert eq(x, y*2)
+ xm *= 2.0
+ assert eq(xm, y*2)
+
+ x = arange(10)*2
+ xm = arange(10)
+ xm[2] = masked
+ x /= 2
+ assert eq(x, y)
+ xm /= 2
+ assert eq(x, y)
+
+ x = arange(10)*1.0
+ xm = arange(10)*1.0
+ xm[2] = masked
+ x /= 2.0
+ assert eq(x, y/2.0)
+ xm /= arange(10)
+ assert eq(xm, ones((10,)))
+
+ x = arange(10).astype(float32)
+ xm = arange(10)
+ xm[2] = masked
+ id1 = id(x.data)
+ x += 1.
+ assert id1 == id(x.data)
+ assert eq(x, y+1.)
+
+ def check_testPickle(self):
+ "Test of pickling"
+ import pickle
+ x = arange(12)
+ x[4:10:2] = masked
+ x = x.reshape(4,3)
+ s = pickle.dumps(x)
+ y = pickle.loads(s)
+ assert eq(x,y)
+
+ def check_testMasked(self):
+ "Test of masked element"
+ xx=arange(6)
+ xx[1] = masked
+ self.failUnless(str(masked) == '--')
+ self.failUnless(xx[1] is masked)
+ self.failUnlessEqual(filled(xx[1], 0), 0)
+ # don't know why these should raise an exception...
+ #self.failUnlessRaises(Exception, lambda x,y: x+y, masked, masked)
+ #self.failUnlessRaises(Exception, lambda x,y: x+y, masked, 2)
+ #self.failUnlessRaises(Exception, lambda x,y: x+y, masked, xx)
+ #self.failUnlessRaises(Exception, lambda x,y: x+y, xx, masked)
+
+ def check_testAverage1(self):
+ "Test of average."
+ ott = array([0.,1.,2.,3.], mask=[1,0,0,0])
+ self.failUnless(eq(2.0, average(ott,axis=0)))
+ self.failUnless(eq(2.0, average(ott, weights=[1., 1., 2., 1.])))
+ result, wts = average(ott, weights=[1.,1.,2.,1.], returned=1)
+ self.failUnless(eq(2.0, result))
+ self.failUnless(wts == 4.0)
+ ott[:] = masked
+ self.failUnless(average(ott,axis=0) is masked)
+ ott = array([0.,1.,2.,3.], mask=[1,0,0,0])
+ ott=ott.reshape(2,2)
+ ott[:,1] = masked
+ self.failUnless(eq(average(ott,axis=0), [2.0, 0.0]))
+ self.failUnless(average(ott,axis=1)[0] is masked)
+ self.failUnless(eq([2.,0.], average(ott, axis=0)))
+ result, wts = average(ott, axis=0, returned=1)
+ self.failUnless(eq(wts, [1., 0.]))
+
+ def check_testAverage2(self):
+ "More tests of average."
+ w1 = [0,1,1,1,1,0]
+ w2 = [[0,1,1,1,1,0],[1,0,0,0,0,1]]
+ x=arange(6)
+ self.failUnless(allclose(average(x, axis=0), 2.5))
+ self.failUnless(allclose(average(x, axis=0, weights=w1), 2.5))
+ y=array([arange(6), 2.0*arange(6)])
+ self.failUnless(allclose(average(y, None), numpy.add.reduce(numpy.arange(6))*3./12.))
+ self.failUnless(allclose(average(y, axis=0), numpy.arange(6) * 3./2.))
+ self.failUnless(allclose(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0]))
+ self.failUnless(allclose(average(y, None, weights=w2), 20./6.))
+ self.failUnless(allclose(average(y, axis=0, weights=w2), [0.,1.,2.,3.,4.,10.]))
+ self.failUnless(allclose(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0]))
+ m1 = zeros(6)
+ m2 = [0,0,1,1,0,0]
+ m3 = [[0,0,1,1,0,0],[0,1,1,1,1,0]]
+ m4 = ones(6)
+ m5 = [0, 1, 1, 1, 1, 1]
+ self.failUnless(allclose(average(masked_array(x, m1),axis=0), 2.5))
+ self.failUnless(allclose(average(masked_array(x, m2),axis=0), 2.5))
+ self.failUnless(average(masked_array(x, m4),axis=0) is masked)
+ self.assertEqual(average(masked_array(x, m5),axis=0), 0.0)
+ self.assertEqual(count(average(masked_array(x, m4),axis=0)), 0)
+ z = masked_array(y, m3)
+ self.failUnless(allclose(average(z, None), 20./6.))
+ self.failUnless(allclose(average(z, axis=0), [0.,1.,99.,99.,4.0, 7.5]))
+ self.failUnless(allclose(average(z, axis=1), [2.5, 5.0]))
+ self.failUnless(allclose( average(z,axis=0, weights=w2), [0.,1., 99., 99., 4.0, 10.0]))
+
+ a = arange(6)
+ b = arange(6) * 3
+ r1, w1 = average([[a,b],[b,a]], axis=1, returned=1)
+ self.assertEqual(shape(r1) , shape(w1))
+ self.assertEqual(r1.shape , w1.shape)
+ r2, w2 = average(ones((2,2,3)), axis=0, weights=[3,1], returned=1)
+ self.assertEqual(shape(w2) , shape(r2))
+ r2, w2 = average(ones((2,2,3)), returned=1)
+ self.assertEqual(shape(w2) , shape(r2))
+ r2, w2 = average(ones((2,2,3)), weights=ones((2,2,3)), returned=1)
+ self.failUnless(shape(w2) == shape(r2))
+ a2d = array([[1,2],[0,4]], float)
+ a2dm = masked_array(a2d, [[0,0],[1,0]])
+ a2da = average(a2d, axis=0)
+ self.failUnless(eq (a2da, [0.5, 3.0]))
+ a2dma = average(a2dm, axis=0)
+ self.failUnless(eq( a2dma, [1.0, 3.0]))
+ a2dma = average(a2dm, axis=None)
+ self.failUnless(eq(a2dma, 7./3.))
+ a2dma = average(a2dm, axis=1)
+ self.failUnless(eq(a2dma, [1.5, 4.0]))
+
+ def check_testToPython(self):
+ self.assertEqual(1, int(array(1)))
+ self.assertEqual(1.0, float(array(1)))
+ self.assertEqual(1, int(array([[[1]]])))
+ self.assertEqual(1.0, float(array([[1]])))
+ self.failUnlessRaises(ValueError, float, array([1,1]))
+ self.failUnlessRaises(MAError, float, array([1],mask=[1]))
+ self.failUnless(bool(array([0,1])))
+ self.failUnless(bool(array([0,0],mask=[0,1])))
+ self.failIf(bool(array([0,0])))
+ self.failIf(bool(array([0,0],mask=[0,0])))
+
+ def check_testScalarArithmetic(self):
+ xm = array(0, mask=1)
+ self.failUnless((1/array(0)).mask)
+ self.failUnless((1 + xm).mask)
+ self.failUnless((-xm).mask)
+ self.failUnless((-xm).mask)
+ self.failUnless(maximum(xm, xm).mask)
+ self.failUnless(minimum(xm, xm).mask)
+ self.failUnless(xm.filled().dtype is xm.data.dtype)
+ x = array(0, mask=0)
+ self.failUnless(x.filled() == x.data)
+ self.failUnlessEqual(str(xm), str(masked_print_option))
+
+ def check_testArrayMethods(self):
+ a = array([1,3,2])
+ b = array([1,3,2], mask=[1,0,1])
+ self.failUnless(eq(a.any(), a.data.any()))
+ self.failUnless(eq(a.all(), a.data.all()))
+ self.failUnless(eq(a.argmax(), a.data.argmax()))
+ self.failUnless(eq(a.argmin(), a.data.argmin()))
+ self.failUnless(eq(a.choose(0,1,2,3,4), a.data.choose(0,1,2,3,4)))
+ self.failUnless(eq(a.compress([1,0,1]), a.data.compress([1,0,1])))
+ self.failUnless(eq(a.conj(), a.data.conj()))
+ self.failUnless(eq(a.conjugate(), a.data.conjugate()))
+ m = array([[1,2],[3,4]])
+ self.failUnless(eq(m.diagonal(), m.data.diagonal()))
+ self.failUnless(eq(a.sum(), a.data.sum()))
+ self.failUnless(eq(a.take([1,2]), a.data.take([1,2])))
+ self.failUnless(eq(m.transpose(), m.data.transpose()))
+
+ def check_testArrayAttributes(self):
+ a = array([1,3,2])
+ b = array([1,3,2], mask=[1,0,1])
+ self.failUnlessEqual(a.ndim, 1)
+
+ def check_testAPI(self):
+ self.failIf([m for m in dir(numpy.ndarray)
+ if m not in dir(array) and not m.startswith('_')])
+
+ def check_testSingleElementSubscript(self):
+ a = array([1,3,2])
+ b = array([1,3,2], mask=[1,0,1])
+ self.failUnlessEqual(a[0].shape, ())
+ self.failUnlessEqual(b[0].shape, ())
+ self.failUnlessEqual(b[1].shape, ())
+
+class TestUfuncs(NumpyTestCase):
+ def setUp(self):
+ self.d = (array([1.0, 0, -1, pi/2]*2, mask=[0,1]+[0]*6),
+ array([1.0, 0, -1, pi/2]*2, mask=[1,0]+[0]*6),)
+
+
+ def check_testUfuncRegression(self):
+ for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate',
+ 'sin', 'cos', 'tan',
+ 'arcsin', 'arccos', 'arctan',
+ 'sinh', 'cosh', 'tanh',
+ 'arcsinh',
+ 'arccosh',
+ 'arctanh',
+ 'absolute', 'fabs', 'negative',
+ # 'nonzero', 'around',
+ 'floor', 'ceil',
+ # 'sometrue', 'alltrue',
+ 'logical_not',
+ 'add', 'subtract', 'multiply',
+ 'divide', 'true_divide', 'floor_divide',
+ 'remainder', 'fmod', 'hypot', 'arctan2',
+ 'equal', 'not_equal', 'less_equal', 'greater_equal',
+ 'less', 'greater',
+ 'logical_and', 'logical_or', 'logical_xor',
+ ]:
+ try:
+ uf = getattr(umath, f)
+ except AttributeError:
+ uf = getattr(fromnumeric, f)
+ mf = getattr(numpy.ma, f)
+ args = self.d[:uf.nin]
+ olderr = numpy.geterr()
+ if f in ['sqrt', 'arctanh', 'arcsin', 'arccos', 'arccosh', 'arctanh', 'log',
+ 'log10','divide','true_divide', 'floor_divide', 'remainder', 'fmod']:
+ numpy.seterr(invalid='ignore')
+ if f in ['arctanh', 'log', 'log10']:
+ numpy.seterr(divide='ignore')
+ ur = uf(*args)
+ mr = mf(*args)
+ numpy.seterr(**olderr)
+ self.failUnless(eq(ur.filled(0), mr.filled(0), f))
+ self.failUnless(eqmask(ur.mask, mr.mask))
+
+ def test_reduce(self):
+ a = self.d[0]
+ self.failIf(alltrue(a,axis=0))
+ self.failUnless(sometrue(a,axis=0))
+ self.failUnlessEqual(sum(a[:3],axis=0), 0)
+ self.failUnlessEqual(product(a,axis=0), 0)
+
+ def test_minmax(self):
+ a = arange(1,13).reshape(3,4)
+ amask = masked_where(a < 5,a)
+ self.failUnlessEqual(amask.max(), a.max())
+ self.failUnlessEqual(amask.min(), 5)
+ self.failUnless((amask.max(0) == a.max(0)).all())
+ self.failUnless((amask.min(0) == [5,6,7,8]).all())
+ self.failUnless(amask.max(1)[0].mask)
+ self.failUnless(amask.min(1)[0].mask)
+
+ def test_nonzero(self):
+ for t in "?bhilqpBHILQPfdgFDGO":
+ x = array([1,0,2,0], mask=[0,0,1,1])
+ self.failUnless(eq(nonzero(x), [0]))
+
+
+class TestArrayMethods(NumpyTestCase):
+
+ def setUp(self):
+ x = numpy.array([ 8.375, 7.545, 8.828, 8.5 , 1.757, 5.928,
+ 8.43 , 7.78 , 9.865, 5.878, 8.979, 4.732,
+ 3.012, 6.022, 5.095, 3.116, 5.238, 3.957,
+ 6.04 , 9.63 , 7.712, 3.382, 4.489, 6.479,
+ 7.189, 9.645, 5.395, 4.961, 9.894, 2.893,
+ 7.357, 9.828, 6.272, 3.758, 6.693, 0.993])
+ X = x.reshape(6,6)
+ XX = x.reshape(3,2,2,3)
+
+ m = numpy.array([0, 1, 0, 1, 0, 0,
+ 1, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 0, 0,
+ 0, 0, 1, 0, 1, 0])
+ mx = array(data=x,mask=m)
+ mX = array(data=X,mask=m.reshape(X.shape))
+ mXX = array(data=XX,mask=m.reshape(XX.shape))
+
+ m2 = numpy.array([1, 1, 0, 1, 0, 0,
+ 1, 1, 1, 1, 0, 1,
+ 0, 0, 1, 1, 0, 1,
+ 0, 0, 0, 1, 1, 1,
+ 1, 0, 0, 1, 1, 0,
+ 0, 0, 1, 0, 1, 1])
+ m2x = array(data=x,mask=m2)
+ m2X = array(data=X,mask=m2.reshape(X.shape))
+ m2XX = array(data=XX,mask=m2.reshape(XX.shape))
+ self.d = (x,X,XX,m,mx,mX,mXX)
+
+ #------------------------------------------------------
+ def test_trace(self):
+ (x,X,XX,m,mx,mX,mXX,) = self.d
+ mXdiag = mX.diagonal()
+ self.assertEqual(mX.trace(), mX.diagonal().compressed().sum())
+ self.failUnless(eq(mX.trace(),
+ X.trace() - sum(mXdiag.mask*X.diagonal(),axis=0)))
+
+ def test_clip(self):
+ (x,X,XX,m,mx,mX,mXX,) = self.d
+ clipped = mx.clip(2,8)
+ self.failUnless(eq(clipped.mask,mx.mask))
+ self.failUnless(eq(clipped.data,x.clip(2,8)))
+ self.failUnless(eq(clipped.data,mx.data.clip(2,8)))
+
+ def test_ptp(self):
+ (x,X,XX,m,mx,mX,mXX,) = self.d
+ (n,m) = X.shape
+ self.assertEqual(mx.ptp(),mx.compressed().ptp())
+ rows = numpy.zeros(n,numpy.float_)
+ cols = numpy.zeros(m,numpy.float_)
+ for k in range(m):
+ cols[k] = mX[:,k].compressed().ptp()
+ for k in range(n):
+ rows[k] = mX[k].compressed().ptp()
+ self.failUnless(eq(mX.ptp(0),cols))
+ self.failUnless(eq(mX.ptp(1),rows))
+
+ def test_swapaxes(self):
+ (x,X,XX,m,mx,mX,mXX,) = self.d
+ mXswapped = mX.swapaxes(0,1)
+ self.failUnless(eq(mXswapped[-1],mX[:,-1]))
+ mXXswapped = mXX.swapaxes(0,2)
+ self.assertEqual(mXXswapped.shape,(2,2,3,3))
+
+
+ def test_cumprod(self):
+ (x,X,XX,m,mx,mX,mXX,) = self.d
+ mXcp = mX.cumprod(0)
+ self.failUnless(eq(mXcp.data,mX.filled(1).cumprod(0)))
+ mXcp = mX.cumprod(1)
+ self.failUnless(eq(mXcp.data,mX.filled(1).cumprod(1)))
+
+ def test_cumsum(self):
+ (x,X,XX,m,mx,mX,mXX,) = self.d
+ mXcp = mX.cumsum(0)
+ self.failUnless(eq(mXcp.data,mX.filled(0).cumsum(0)))
+ mXcp = mX.cumsum(1)
+ self.failUnless(eq(mXcp.data,mX.filled(0).cumsum(1)))
+
+ def test_varstd(self):
+ (x,X,XX,m,mx,mX,mXX,) = self.d
+ self.failUnless(eq(mX.var(axis=None),mX.compressed().var()))
+ self.failUnless(eq(mX.std(axis=None),mX.compressed().std()))
+ self.failUnless(eq(mXX.var(axis=3).shape,XX.var(axis=3).shape))
+ self.failUnless(eq(mX.var().shape,X.var().shape))
+ (mXvar0,mXvar1) = (mX.var(axis=0), mX.var(axis=1))
+ for k in range(6):
+ self.failUnless(eq(mXvar1[k],mX[k].compressed().var()))
+ self.failUnless(eq(mXvar0[k],mX[:,k].compressed().var()))
+ self.failUnless(eq(numpy.sqrt(mXvar0[k]),
+ mX[:,k].compressed().std()))
+
+
+def eqmask(m1, m2):
+ if m1 is nomask:
+ return m2 is nomask
+ if m2 is nomask:
+ return m1 is nomask
+ return (m1 == m2).all()
+
+def timingTest():
+ for f in [testf, testinplace]:
+ for n in [1000,10000,50000]:
+ t = testta(n, f)
+ t1 = testtb(n, f)
+ t2 = testtc(n, f)
+ print f.test_name
+ print """\
+n = %7d
+numpy time (ms) %6.1f
+MA maskless ratio %6.1f
+MA masked ratio %6.1f
+""" % (n, t*1000.0, t1/t, t2/t)
+
+def testta(n, f):
+ x=numpy.arange(n) + 1.0
+ tn0 = time.time()
+ z = f(x)
+ return time.time() - tn0
+
+def testtb(n, f):
+ x=arange(n) + 1.0
+ tn0 = time.time()
+ z = f(x)
+ return time.time() - tn0
+
+def testtc(n, f):
+ x=arange(n) + 1.0
+ x[0] = masked
+ tn0 = time.time()
+ z = f(x)
+ return time.time() - tn0
+
+def testf(x):
+ for i in range(25):
+ y = x **2 + 2.0 * x - 1.0
+ w = x **2 + 1.0
+ z = (y / w) ** 2
+ return z
+testf.test_name = 'Simple arithmetic'
+
+def testinplace(x):
+ for i in range(25):
+ y = x**2
+ y += 2.0*x
+ y -= 1.0
+ y /= x
+ return y
+testinplace.test_name = 'Inplace operations'
+
+if __name__ == "__main__":
+ NumpyTest('numpy.ma').run()
+ #timingTest()