summaryrefslogtreecommitdiff
path: root/numpy/ma
diff options
context:
space:
mode:
authorB R S Recht <brsr@users.noreply.github.com>2017-05-04 20:03:09 -0400
committerEric Wieser <wieser.eric@gmail.com>2017-05-05 01:03:09 +0100
commit69b0c42bca27dd5d5522de306bcd7db7deccbfad (patch)
treeb857fc11775a3633bf959a158f5d6be3e7ef7971 /numpy/ma
parent1d592c12ca7f9c7f471aa8d20b538c5cb4f2cdce (diff)
downloadnumpy-69b0c42bca27dd5d5522de306bcd7db7deccbfad.tar.gz
ENH: Add isin, genereralizing in1d to ND arrays (#8423)
This fixes gh-8331 Also update the docs for arraysetops to remove the outdated "1D" from the description, which was already incorrect for np.unique.
Diffstat (limited to 'numpy/ma')
-rw-r--r--numpy/ma/extras.py29
-rw-r--r--numpy/ma/tests/test_extras.py23
2 files changed, 50 insertions, 2 deletions
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index 4955d25eb..e100e471c 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -16,7 +16,7 @@ __all__ = [
'column_stack', 'compress_cols', 'compress_nd', 'compress_rowcols',
'compress_rows', 'count_masked', 'corrcoef', 'cov', 'diagflat', 'dot',
'dstack', 'ediff1d', 'flatnotmasked_contiguous', 'flatnotmasked_edges',
- 'hsplit', 'hstack', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols',
+ 'hsplit', 'hstack', 'isin', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols',
'mask_rows', 'masked_all', 'masked_all_like', 'median', 'mr_',
'notmasked_contiguous', 'notmasked_edges', 'polyfit', 'row_stack',
'setdiff1d', 'setxor1d', 'unique', 'union1d', 'vander', 'vstack',
@@ -1131,6 +1131,7 @@ def setxor1d(ar1, ar2, assume_unique=False):
flag2 = (flag[1:] == flag[:-1])
return aux[flag2]
+
def in1d(ar1, ar2, assume_unique=False, invert=False):
"""
Test whether each element of an array is also present in a second
@@ -1138,8 +1139,11 @@ def in1d(ar1, ar2, assume_unique=False, invert=False):
The output is always a masked array. See `numpy.in1d` for more details.
+ We recommend using :func:`isin` instead of `in1d` for new code.
+
See Also
--------
+ isin : Version of this function that preserves the shape of ar1.
numpy.in1d : Equivalent function for ndarrays.
Notes
@@ -1170,6 +1174,29 @@ def in1d(ar1, ar2, assume_unique=False, invert=False):
return flag[indx][rev_idx]
+def isin(element, test_elements, assume_unique=False, invert=False):
+ """
+ Calculates `element in test_elements`, broadcasting over
+ `element` only.
+
+ The output is always a masked array of the same shape as `element`.
+ See `numpy.isin` for more details.
+
+ See Also
+ --------
+ in1d : Flattened version of this function.
+ numpy.isin : Equivalent function for ndarrays.
+
+ Notes
+ -----
+ .. versionadded:: 1.13.0
+
+ """
+ element = ma.asarray(element)
+ return in1d(element, test_elements, assume_unique=assume_unique,
+ invert=invert).reshape(element.shape)
+
+
def union1d(ar1, ar2):
"""
Union of two arrays.
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py
index 77a5c0fc6..e7ebd8b82 100644
--- a/numpy/ma/tests/test_extras.py
+++ b/numpy/ma/tests/test_extras.py
@@ -28,7 +28,7 @@ from numpy.ma.extras import (
median, average, unique, setxor1d, setdiff1d, union1d, intersect1d, in1d,
ediff1d, apply_over_axes, apply_along_axis, compress_nd, compress_rowcols,
mask_rowcols, clump_masked, clump_unmasked, flatnotmasked_contiguous,
- notmasked_contiguous, notmasked_edges, masked_all, masked_all_like,
+ notmasked_contiguous, notmasked_edges, masked_all, masked_all_like, isin,
diagflat
)
import numpy.ma.extras as mae
@@ -1435,6 +1435,27 @@ class TestArraySetOps(TestCase):
#
assert_array_equal([], setxor1d([], []))
+ def test_isin(self):
+ # the tests for in1d cover most of isin's behavior
+ # if in1d is removed, would need to change those tests to test
+ # isin instead.
+ a = np.arange(24).reshape([2, 3, 4])
+ mask = np.zeros([2, 3, 4])
+ mask[1, 2, 0] = 1
+ a = array(a, mask=mask)
+ b = array(data=[0, 10, 20, 30, 1, 3, 11, 22, 33],
+ mask=[0, 1, 0, 1, 0, 1, 0, 1, 0])
+ ec = zeros((2, 3, 4), dtype=bool)
+ ec[0, 0, 0] = True
+ ec[0, 0, 1] = True
+ ec[0, 2, 3] = True
+ c = isin(a, b)
+ assert_(isinstance(c, MaskedArray))
+ assert_array_equal(c, ec)
+ #compare results of np.isin to ma.isin
+ d = np.isin(a, b[~b.mask]) & ~a.mask
+ assert_array_equal(c, d)
+
def test_in1d(self):
# Test in1d
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])