diff options
author | David Cournapeau <cournape@gmail.com> | 2009-09-16 07:12:46 +0000 |
---|---|---|
committer | David Cournapeau <cournape@gmail.com> | 2009-09-16 07:12:46 +0000 |
commit | fe002b2916a5928463f7c46c5c4875114228bf7f (patch) | |
tree | 1f56e956eae72299b91a84b2cf6874f7ec73d4fa /numpy/matrx | |
parent | ec7f9dcddd216019bcf15d162926c4df6355860e (diff) | |
download | numpy-fe002b2916a5928463f7c46c5c4875114228bf7f.tar.gz |
Move matrix class into its own module.
Diffstat (limited to 'numpy/matrx')
-rw-r--r-- | numpy/matrx/__init__.py | 7 | ||||
-rw-r--r-- | numpy/matrx/defmatrix.py | 677 | ||||
-rw-r--r-- | numpy/matrx/setup.py | 13 | ||||
-rw-r--r-- | numpy/matrx/setupscons.py | 13 | ||||
-rw-r--r-- | numpy/matrx/tests/test_defmatrix.py | 375 | ||||
-rw-r--r-- | numpy/matrx/tests/test_numeric.py | 8 |
6 files changed, 1093 insertions, 0 deletions
diff --git a/numpy/matrx/__init__.py b/numpy/matrx/__init__.py new file mode 100644 index 000000000..bdc653b06 --- /dev/null +++ b/numpy/matrx/__init__.py @@ -0,0 +1,7 @@ +from defmatrix import * + +__all__ = defmatrix.__all__ + +from numpy.testing import Tester +test = Tester().test +bench = Tester().bench diff --git a/numpy/matrx/defmatrix.py b/numpy/matrx/defmatrix.py new file mode 100644 index 000000000..dfa7e4a8d --- /dev/null +++ b/numpy/matrx/defmatrix.py @@ -0,0 +1,677 @@ +__all__ = ['matrix', 'bmat', 'mat', 'asmatrix'] + +import sys +import numpy.core.numeric as N +from numpy.core.numeric import concatenate, isscalar, binary_repr, identity, asanyarray +from numpy.core.numerictypes import issubdtype + +# make translation table +_table = [None]*256 +for k in range(256): + _table[k] = chr(k) +_table = ''.join(_table) + +_numchars = '0123456789.-+jeEL' +_todelete = [] +for k in _table: + if k not in _numchars: + _todelete.append(k) +_todelete = ''.join(_todelete) +del k + +def _eval(astr): + return eval(astr.translate(_table,_todelete)) + +def _convert_from_string(data): + rows = data.split(';') + newdata = [] + count = 0 + for row in rows: + trow = row.split(',') + newrow = [] + for col in trow: + temp = col.split() + newrow.extend(map(_eval,temp)) + if count == 0: + Ncols = len(newrow) + elif len(newrow) != Ncols: + raise ValueError, "Rows not the same size." + count += 1 + newdata.append(newrow) + return newdata + +def asmatrix(data, dtype=None): + """ + Interpret the input as a matrix. + + Unlike `matrix`, `asmatrix` does not make a copy if the input is already + a matrix or an ndarray. Equivalent to ``matrix(data, copy=False)``. + + Parameters + ---------- + data : array_like + Input data. + + Returns + ------- + mat : matrix + `data` interpreted as a matrix. + + Examples + -------- + >>> x = np.array([[1, 2], [3, 4]]) + + >>> m = np.asmatrix(x) + + >>> x[0,0] = 5 + + >>> m + matrix([[5, 2], + [3, 4]]) + + """ + return matrix(data, dtype=dtype, copy=False) + +def matrix_power(M,n): + """ + Raise a square matrix to the (integer) power n. + + For positive integers n, the power is computed by repeated matrix + squarings and matrix multiplications. If n=0, the identity matrix + of the same type as M is returned. If n<0, the inverse is computed + and raised to the exponent. + + Parameters + ---------- + M : array_like + Must be a square array (that is, of dimension two and with + equal sizes). + n : integer + The exponent can be any integer or long integer, positive + negative or zero. + + Returns + ------- + M to the power n + The return value is a an array the same shape and size as M; + if the exponent was positive or zero then the type of the + elements is the same as those of M. If the exponent was negative + the elements are floating-point. + + Raises + ------ + LinAlgException + If the matrix is not numerically invertible, an exception is raised. + + See Also + -------- + The matrix() class provides an equivalent function as the exponentiation + operator. + + Examples + -------- + >>> np.linalg.matrix_power(np.array([[0,1],[-1,0]]),10) + array([[-1, 0], + [ 0, -1]]) + + """ + M = asanyarray(M) + if len(M.shape) != 2 or M.shape[0] != M.shape[1]: + raise ValueError("input must be a square array") + if not issubdtype(type(n),int): + raise TypeError("exponent must be an integer") + + from numpy.linalg import inv + + if n==0: + M = M.copy() + M[:] = identity(M.shape[0]) + return M + elif n<0: + M = inv(M) + n *= -1 + + result = M + if n <= 3: + for _ in range(n-1): + result=N.dot(result,M) + return result + + # binary decomposition to reduce the number of Matrix + # multiplications for n > 3. + beta = binary_repr(n) + Z,q,t = M,0,len(beta) + while beta[t-q-1] == '0': + Z = N.dot(Z,Z) + q += 1 + result = Z + for k in range(q+1,t): + Z = N.dot(Z,Z) + if beta[t-k-1] == '1': + result = N.dot(result,Z) + return result + + +class matrix(N.ndarray): + """ + matrix(data, dtype=None, copy=True) + + Returns a matrix from an array-like object, or from a string + of data. A matrix is a specialized 2-d array that retains + its 2-d nature through operations. It has certain special + operators, such as ``*`` (matrix multiplication) and + ``**`` (matrix power). + + Parameters + ---------- + data : array_like or string + If data is a string, the string is interpreted as a matrix + with commas or spaces separating columns, and semicolons + separating rows. + dtype : data-type + Data-type of the output matrix. + copy : bool + If data is already an ndarray, then this flag determines whether + the data is copied, or whether a view is constructed. + + See Also + -------- + array + + Examples + -------- + >>> a = np.matrix('1 2; 3 4') + >>> print a + [[1 2] + [3 4]] + + >>> np.matrix([[1, 2], [3, 4]]) + matrix([[1, 2], + [3, 4]]) + + """ + __array_priority__ = 10.0 + def __new__(subtype, data, dtype=None, copy=True): + if isinstance(data, matrix): + dtype2 = data.dtype + if (dtype is None): + dtype = dtype2 + if (dtype2 == dtype) and (not copy): + return data + return data.astype(dtype) + + if isinstance(data, N.ndarray): + if dtype is None: + intype = data.dtype + else: + intype = N.dtype(dtype) + new = data.view(subtype) + if intype != data.dtype: + return new.astype(intype) + if copy: return new.copy() + else: return new + + if isinstance(data, str): + data = _convert_from_string(data) + + # now convert data to an array + arr = N.array(data, dtype=dtype, copy=copy) + ndim = arr.ndim + shape = arr.shape + if (ndim > 2): + raise ValueError, "matrix must be 2-dimensional" + elif ndim == 0: + shape = (1,1) + elif ndim == 1: + shape = (1,shape[0]) + + order = False + if (ndim == 2) and arr.flags.fortran: + order = True + + if not (order or arr.flags.contiguous): + arr = arr.copy() + + ret = N.ndarray.__new__(subtype, shape, arr.dtype, + buffer=arr, + order=order) + return ret + + def __array_finalize__(self, obj): + self._getitem = False + if (isinstance(obj, matrix) and obj._getitem): return + ndim = self.ndim + if (ndim == 2): + return + if (ndim > 2): + newshape = tuple([x for x in self.shape if x > 1]) + ndim = len(newshape) + if ndim == 2: + self.shape = newshape + return + elif (ndim > 2): + raise ValueError, "shape too large to be a matrix." + else: + newshape = self.shape + if ndim == 0: + self.shape = (1,1) + elif ndim == 1: + self.shape = (1,newshape[0]) + return + + def __getitem__(self, index): + self._getitem = True + + try: + out = N.ndarray.__getitem__(self, index) + finally: + self._getitem = False + + if not isinstance(out, N.ndarray): + return out + + if out.ndim == 0: + return out[()] + if out.ndim == 1: + sh = out.shape[0] + # Determine when we should have a column array + try: + n = len(index) + except: + n = 0 + if n > 1 and isscalar(index[1]): + out.shape = (sh,1) + else: + out.shape = (1,sh) + return out + + def __mul__(self, other): + if isinstance(other,(N.ndarray, list, tuple)) : + # This promotes 1-D vectors to row vectors + return N.dot(self, asmatrix(other)) + if isscalar(other) or not hasattr(other, '__rmul__') : + return N.dot(self, other) + return NotImplemented + + def __rmul__(self, other): + return N.dot(other, self) + + def __imul__(self, other): + self[:] = self * other + return self + + def __pow__(self, other): + return matrix_power(self, other) + + def __ipow__(self, other): + self[:] = self ** other + return self + + def __rpow__(self, other): + return NotImplemented + + def __repr__(self): + s = repr(self.__array__()).replace('array', 'matrix') + # now, 'matrix' has 6 letters, and 'array' 5, so the columns don't + # line up anymore. We need to add a space. + l = s.splitlines() + for i in range(1, len(l)): + if l[i]: + l[i] = ' ' + l[i] + return '\n'.join(l) + + def __str__(self): + return str(self.__array__()) + + def _align(self, axis): + """A convenience function for operations that need to preserve axis + orientation. + """ + if axis is None: + return self[0,0] + elif axis==0: + return self + elif axis==1: + return self.transpose() + else: + raise ValueError, "unsupported axis" + + # Necessary because base-class tolist expects dimension + # reduction by x[0] + def tolist(self): + return self.__array__().tolist() + + # To preserve orientation of result... + def sum(self, axis=None, dtype=None, out=None): + """Sum the matrix over the given axis. If the axis is None, sum + over all dimensions. This preserves the orientation of the + result as a row or column. + """ + return N.ndarray.sum(self, axis, dtype, out)._align(axis) + + def mean(self, axis=None, dtype=None, out=None): + """Compute the mean along the specified axis. + + Returns the average of the array elements. The average is taken over + the flattened array by default, otherwise over the specified axis. + + Parameters + ---------- + axis : integer + Axis along which the means are computed. The default is + to compute the standard deviation of the flattened array. + + dtype : type + Type to use in computing the means. For arrays of integer type + the default is float32, for arrays of float types it is the + same as the array type. + + out : ndarray + Alternative output array in which to place the result. It must + have the same shape as the expected output but the type will be + cast if necessary. + + Returns + ------- + mean : The return type varies, see above. + A new array holding the result is returned unless out is + specified, in which case a reference to out is returned. + + SeeAlso + ------- + var : variance + std : standard deviation + + Notes + ----- + The mean is the sum of the elements along the axis divided by the + number of elements. + """ + return N.ndarray.mean(self, axis, dtype, out)._align(axis) + + def std(self, axis=None, dtype=None, out=None, ddof=0): + """Compute the standard deviation along the specified axis. + + Returns the standard deviation of the array elements, a measure of the + spread of a distribution. The standard deviation is computed for the + flattened array by default, otherwise over the specified axis. + + Parameters + ---------- + axis : integer + Axis along which the standard deviation is computed. The + default is to compute the standard deviation of the flattened + array. + dtype : type + Type to use in computing the standard deviation. For arrays of + integer type the default is float32, for arrays of float types + it is the same as the array type. + out : ndarray + Alternative output array in which to place the result. It must + have the same shape as the expected output but the type will be + cast if necessary. + ddof : {0, integer} + Means Delta Degrees of Freedom. The divisor used in calculations + is N-ddof. + + Returns + ------- + standard deviation : The return type varies, see above. + A new array holding the result is returned unless out is + specified, in which case a reference to out is returned. + + SeeAlso + ------- + var : variance + mean : average + + Notes + ----- + The standard deviation is the square root of the + average of the squared deviations from the mean, i.e. var = + sqrt(mean(abs(x - x.mean())**2)). The computed standard + deviation is computed by dividing by the number of elements, + N-ddof. The option ddof defaults to zero, that is, a biased + estimate. Note that for complex numbers std takes the absolute + value before squaring, so that the result is always real + and nonnegative. + + """ + return N.ndarray.std(self, axis, dtype, out, ddof)._align(axis) + + def var(self, axis=None, dtype=None, out=None, ddof=0): + """Compute the variance along the specified axis. + + Returns the variance of the array elements, a measure of the spread of + a distribution. The variance is computed for the flattened array by + default, otherwise over the specified axis. + + Parameters + ---------- + axis : integer + Axis along which the variance is computed. The default is to + compute the variance of the flattened array. + dtype : data-type + Type to use in computing the variance. For arrays of integer + type the default is float32, for arrays of float types it is + the same as the array type. + out : ndarray + Alternative output array in which to place the result. It must + have the same shape as the expected output but the type will be + cast if necessary. + ddof : {0, integer} + Means Delta Degrees of Freedom. The divisor used in calculations + is N-ddof. + + Returns + ------- + variance : depends, see above + A new array holding the result is returned unless out is + specified, in which case a reference to out is returned. + + SeeAlso + ------- + std : standard deviation + mean : average + + Notes + ----- + + The variance is the average of the squared deviations from the + mean, i.e. var = mean(abs(x - x.mean())**2). The mean is + computed by dividing by N-ddof, where N is the number of elements. + The argument ddof defaults to zero; for an unbiased estimate + supply ddof=1. Note that for complex numbers the absolute value + is taken before squaring, so that the result is always real + and nonnegative. + """ + return N.ndarray.var(self, axis, dtype, out, ddof)._align(axis) + + def prod(self, axis=None, dtype=None, out=None): + return N.ndarray.prod(self, axis, dtype, out)._align(axis) + + def any(self, axis=None, out=None): + """ + Test whether any array element along a given axis evaluates to True. + + Refer to `numpy.any` for full documentation. + + Parameters + ---------- + axis: int, optional + Axis along which logical OR is performed + out: ndarray, optional + Output to existing array instead of creating new one, must have + same shape as expected output + + Returns + ------- + any : bool, ndarray + Returns a single bool if `axis` is ``None``; otherwise, + returns `ndarray` + + """ + return N.ndarray.any(self, axis, out)._align(axis) + + def all(self, axis=None, out=None): + return N.ndarray.all(self, axis, out)._align(axis) + + def max(self, axis=None, out=None): + return N.ndarray.max(self, axis, out)._align(axis) + + def argmax(self, axis=None, out=None): + return N.ndarray.argmax(self, axis, out)._align(axis) + + def min(self, axis=None, out=None): + return N.ndarray.min(self, axis, out)._align(axis) + + def argmin(self, axis=None, out=None): + return N.ndarray.argmin(self, axis, out)._align(axis) + + def ptp(self, axis=None, out=None): + return N.ndarray.ptp(self, axis, out)._align(axis) + + def getI(self): + M,N = self.shape + if M == N: + from numpy.dual import inv as func + else: + from numpy.dual import pinv as func + return asmatrix(func(self)) + + def getA(self): + return self.__array__() + + def getA1(self): + return self.__array__().ravel() + + def getT(self): + """ + m.T + + Returns the transpose of m. + + Examples + -------- + >>> m = np.matrix('[1, 2; 3, 4]') + >>> m + matrix([[1, 2], + [3, 4]]) + >>> m.T + matrix([[1, 3], + [2, 4]]) + + See Also + -------- + transpose + + """ + return self.transpose() + + def getH(self): + if issubclass(self.dtype.type, N.complexfloating): + return self.transpose().conjugate() + else: + return self.transpose() + + T = property(getT, None, doc="transpose") + A = property(getA, None, doc="base array") + A1 = property(getA1, None, doc="1-d base array") + H = property(getH, None, doc="hermitian (conjugate) transpose") + I = property(getI, None, doc="inverse") + +def _from_string(str,gdict,ldict): + rows = str.split(';') + rowtup = [] + for row in rows: + trow = row.split(',') + newrow = [] + for x in trow: + newrow.extend(x.split()) + trow = newrow + coltup = [] + for col in trow: + col = col.strip() + try: + thismat = ldict[col] + except KeyError: + try: + thismat = gdict[col] + except KeyError: + raise KeyError, "%s not found" % (col,) + + coltup.append(thismat) + rowtup.append(concatenate(coltup,axis=-1)) + return concatenate(rowtup,axis=0) + + +def bmat(obj, ldict=None, gdict=None): + """ + Build a matrix object from a string, nested sequence, or array. + + Parameters + ---------- + obj : string, sequence or array + Input data. Variables names in the current scope may + be referenced, even if `obj` is a string. + + Returns + ------- + out : matrix + Returns a matrix object, which is a specialized 2-D array. + + See Also + -------- + matrix + + Examples + -------- + >>> A = np.mat('1 1; 1 1') + >>> B = np.mat('2 2; 2 2') + >>> C = np.mat('3 4; 5 6') + >>> D = np.mat('7 8; 9 0') + + All the following expressions construct the same block matrix: + + >>> np.bmat([[A, B], [C, D]]) + matrix([[1, 1, 2, 2], + [1, 1, 2, 2], + [3, 4, 7, 8], + [5, 6, 9, 0]]) + >>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]]) + matrix([[1, 1, 2, 2], + [1, 1, 2, 2], + [3, 4, 7, 8], + [5, 6, 9, 0]]) + >>> np.bmat('A,B; C,D') + matrix([[1, 1, 2, 2], + [1, 1, 2, 2], + [3, 4, 7, 8], + [5, 6, 9, 0]]) + + """ + if isinstance(obj, str): + if gdict is None: + # get previous frame + frame = sys._getframe().f_back + glob_dict = frame.f_globals + loc_dict = frame.f_locals + else: + glob_dict = gdict + loc_dict = ldict + + return matrix(_from_string(obj, glob_dict, loc_dict)) + + if isinstance(obj, (tuple, list)): + # [[A,B],[C,D]] + arr_rows = [] + for row in obj: + if isinstance(row, N.ndarray): # not 2-d + return matrix(concatenate(obj,axis=-1)) + else: + arr_rows.append(concatenate(row,axis=-1)) + return matrix(concatenate(arr_rows,axis=0)) + if isinstance(obj, N.ndarray): + return matrix(obj) + +mat = asmatrix diff --git a/numpy/matrx/setup.py b/numpy/matrx/setup.py new file mode 100644 index 000000000..ca288b96e --- /dev/null +++ b/numpy/matrx/setup.py @@ -0,0 +1,13 @@ +#!/usr/bin/env python +import os + +def configuration(parent_package='', top_path=None): + from numpy.distutils.misc_util import Configuration + config = Configuration('matrx', parent_package, top_path) + config.add_data_dir('tests') + return config + +if __name__ == "__main__": + from numpy.distutils.core import setup + config = configuration(top_path='').todict() + setup(**config) diff --git a/numpy/matrx/setupscons.py b/numpy/matrx/setupscons.py new file mode 100644 index 000000000..ca288b96e --- /dev/null +++ b/numpy/matrx/setupscons.py @@ -0,0 +1,13 @@ +#!/usr/bin/env python +import os + +def configuration(parent_package='', top_path=None): + from numpy.distutils.misc_util import Configuration + config = Configuration('matrx', parent_package, top_path) + config.add_data_dir('tests') + return config + +if __name__ == "__main__": + from numpy.distutils.core import setup + config = configuration(top_path='').todict() + setup(**config) diff --git a/numpy/matrx/tests/test_defmatrix.py b/numpy/matrx/tests/test_defmatrix.py new file mode 100644 index 000000000..2cf4914a7 --- /dev/null +++ b/numpy/matrx/tests/test_defmatrix.py @@ -0,0 +1,375 @@ +from numpy.testing import * +from numpy.core import * +from numpy import matrix, asmatrix, bmat +from numpy.matrx.defmatrix import matrix_power +from numpy.matrx import mat +import numpy as np + +class TestCtor(TestCase): + def test_basic(self): + A = array([[1,2],[3,4]]) + mA = matrix(A) + assert all(mA.A == A) + + B = bmat("A,A;A,A") + C = bmat([[A,A], [A,A]]) + D = array([[1,2,1,2], + [3,4,3,4], + [1,2,1,2], + [3,4,3,4]]) + assert all(B.A == D) + assert all(C.A == D) + + E = array([[5,6],[7,8]]) + AEresult = matrix([[1,2,5,6],[3,4,7,8]]) + assert all(bmat([A,E]) == AEresult) + + vec = arange(5) + mvec = matrix(vec) + assert mvec.shape == (1,5) + + def test_bmat_nondefault_str(self): + A = array([[1,2],[3,4]]) + B = array([[5,6],[7,8]]) + Aresult = array([[1,2,1,2], + [3,4,3,4], + [1,2,1,2], + [3,4,3,4]]) + Bresult = array([[5,6,5,6], + [7,8,7,8], + [5,6,5,6], + [7,8,7,8]]) + mixresult = array([[1,2,5,6], + [3,4,7,8], + [5,6,1,2], + [7,8,3,4]]) + assert all(bmat("A,A;A,A") == Aresult) + assert all(bmat("A,A;A,A",ldict={'A':B}) == Aresult) + assert_raises(TypeError, bmat, "A,A;A,A",gdict={'A':B}) + assert all(bmat("A,A;A,A",ldict={'A':A},gdict={'A':B}) == Aresult) + b2 = bmat("A,B;C,D",ldict={'A':A,'B':B},gdict={'C':B,'D':A}) + assert all(b2 == mixresult) + + +class TestProperties(TestCase): + def test_sum(self): + """Test whether matrix.sum(axis=1) preserves orientation. + Fails in NumPy <= 0.9.6.2127. + """ + M = matrix([[1,2,0,0], + [3,4,0,0], + [1,2,1,2], + [3,4,3,4]]) + sum0 = matrix([8,12,4,6]) + sum1 = matrix([3,7,6,14]).T + sumall = 30 + assert_array_equal(sum0, M.sum(axis=0)) + assert_array_equal(sum1, M.sum(axis=1)) + assert sumall == M.sum() + + + def test_prod(self): + x = matrix([[1,2,3],[4,5,6]]) + assert x.prod() == 720 + assert all(x.prod(0) == matrix([[4,10,18]])) + assert all(x.prod(1) == matrix([[6],[120]])) + + y = matrix([0,1,3]) + assert y.prod() == 0 + + def test_max(self): + x = matrix([[1,2,3],[4,5,6]]) + assert x.max() == 6 + assert all(x.max(0) == matrix([[4,5,6]])) + assert all(x.max(1) == matrix([[3],[6]])) + + def test_min(self): + x = matrix([[1,2,3],[4,5,6]]) + assert x.min() == 1 + assert all(x.min(0) == matrix([[1,2,3]])) + assert all(x.min(1) == matrix([[1],[4]])) + + def test_ptp(self): + x = np.arange(4).reshape((2,2)) + assert x.ptp() == 3 + assert all(x.ptp(0) == array([2, 2])) + assert all(x.ptp(1) == array([1, 1])) + + def test_var(self): + x = np.arange(9).reshape((3,3)) + mx = x.view(np.matrix) + assert_equal(x.var(ddof=0), mx.var(ddof=0)) + assert_equal(x.var(ddof=1), mx.var(ddof=1)) + + def test_basic(self): + import numpy.linalg as linalg + + A = array([[1., 2.], + [3., 4.]]) + mA = matrix(A) + assert allclose(linalg.inv(A), mA.I) + assert all(array(transpose(A) == mA.T)) + assert all(array(transpose(A) == mA.H)) + assert all(A == mA.A) + + B = A + 2j*A + mB = matrix(B) + assert allclose(linalg.inv(B), mB.I) + assert all(array(transpose(B) == mB.T)) + assert all(array(conjugate(transpose(B)) == mB.H)) + + def test_pinv(self): + x = matrix(arange(6).reshape(2,3)) + xpinv = matrix([[-0.77777778, 0.27777778], + [-0.11111111, 0.11111111], + [ 0.55555556, -0.05555556]]) + assert_almost_equal(x.I, xpinv) + + def test_comparisons(self): + A = arange(100).reshape(10,10) + mA = matrix(A) + mB = matrix(A) + 0.1 + assert all(mB == A+0.1) + assert all(mB == matrix(A+0.1)) + assert not any(mB == matrix(A-0.1)) + assert all(mA < mB) + assert all(mA <= mB) + assert all(mA <= mA) + assert not any(mA < mA) + + assert not any(mB < mA) + assert all(mB >= mA) + assert all(mB >= mB) + assert not any(mB > mB) + + assert all(mA == mA) + assert not any(mA == mB) + assert all(mB != mA) + + assert not all(abs(mA) > 0) + assert all(abs(mB > 0)) + + def test_asmatrix(self): + A = arange(100).reshape(10,10) + mA = asmatrix(A) + A[0,0] = -10 + assert A[0,0] == mA[0,0] + + def test_noaxis(self): + A = matrix([[1,0],[0,1]]) + assert A.sum() == matrix(2) + assert A.mean() == matrix(0.5) + + def test_repr(self): + A = matrix([[1,0],[0,1]]) + assert repr(A) == "matrix([[1, 0],\n [0, 1]])" + +class TestCasting(TestCase): + def test_basic(self): + A = arange(100).reshape(10,10) + mA = matrix(A) + + mB = mA.copy() + O = ones((10,10), float64) * 0.1 + mB = mB + O + assert mB.dtype.type == float64 + assert all(mA != mB) + assert all(mB == mA+0.1) + + mC = mA.copy() + O = ones((10,10), complex128) + mC = mC * O + assert mC.dtype.type == complex128 + assert all(mA != mB) + + +class TestAlgebra(TestCase): + def test_basic(self): + import numpy.linalg as linalg + + A = array([[1., 2.], + [3., 4.]]) + mA = matrix(A) + + B = identity(2) + for i in xrange(6): + assert allclose((mA ** i).A, B) + B = dot(B, A) + + Ainv = linalg.inv(A) + B = identity(2) + for i in xrange(6): + assert allclose((mA ** -i).A, B) + B = dot(B, Ainv) + + assert allclose((mA * mA).A, dot(A, A)) + assert allclose((mA + mA).A, (A + A)) + assert allclose((3*mA).A, (3*A)) + + mA2 = matrix(A) + mA2 *= 3 + assert allclose(mA2.A, 3*A) + + def test_pow(self): + """Test raising a matrix to an integer power works as expected.""" + m = matrix("1. 2.; 3. 4.") + m2 = m.copy() + m2 **= 2 + mi = m.copy() + mi **= -1 + m4 = m2.copy() + m4 **= 2 + assert_array_almost_equal(m2, m**2) + assert_array_almost_equal(m4, np.dot(m2, m2)) + assert_array_almost_equal(np.dot(mi, m), np.eye(2)) + + def test_notimplemented(self): + '''Check that 'not implemented' operations produce a failure.''' + A = matrix([[1., 2.], + [3., 4.]]) + + # __rpow__ + try: + 1.0**A + except TypeError: + pass + else: + self.fail("matrix.__rpow__ doesn't raise a TypeError") + + # __mul__ with something not a list, ndarray, tuple, or scalar + try: + A*object() + except TypeError: + pass + else: + self.fail("matrix.__mul__ with non-numeric object doesn't raise" + "a TypeError") + +class TestMatrixReturn(TestCase): + def test_instance_methods(self): + a = matrix([1.0], dtype='f8') + methodargs = { + 'astype' : ('intc',), + 'clip' : (0.0, 1.0), + 'compress' : ([1],), + 'repeat' : (1,), + 'reshape' : (1,), + 'swapaxes' : (0,0) + } + excluded_methods = [ + 'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield', + 'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize', + 'searchsorted', 'setflags', 'setfield', 'sort', 'take', + 'tofile', 'tolist', 'tostring', 'all', 'any', 'sum', + 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp', + 'prod', 'std', 'ctypes', 'itemset' + ] + for attrib in dir(a): + if attrib.startswith('_') or attrib in excluded_methods: + continue + f = eval('a.%s' % attrib) + if callable(f): + # reset contents of a + a.astype('f8') + a.fill(1.0) + if attrib in methodargs: + args = methodargs[attrib] + else: + args = () + b = f(*args) + assert type(b) is matrix, "%s" % attrib + assert type(a.real) is matrix + assert type(a.imag) is matrix + c,d = matrix([0.0]).nonzero() + assert type(c) is matrix + assert type(d) is matrix + + +class TestIndexing(TestCase): + def test_basic(self): + x = asmatrix(zeros((3,2),float)) + y = zeros((3,1),float) + y[:,0] = [0.8,0.2,0.3] + x[:,1] = y>0.5 + assert_equal(x, [[0,1],[0,0],[0,0]]) + + +class TestNewScalarIndexing(TestCase): + def setUp(self): + self.a = matrix([[1, 2],[3,4]]) + + def test_dimesions(self): + a = self.a + x = a[0] + assert_equal(x.ndim, 2) + + def test_array_from_matrix_list(self): + a = self.a + x = array([a, a]) + assert_equal(x.shape, [2,2,2]) + + def test_array_to_list(self): + a = self.a + assert_equal(a.tolist(),[[1, 2], [3, 4]]) + + def test_fancy_indexing(self): + a = self.a + x = a[1, [0,1,0]] + assert isinstance(x, matrix) + assert_equal(x, matrix([[3, 4, 3]])) + x = a[[1,0]] + assert isinstance(x, matrix) + assert_equal(x, matrix([[3, 4], [1, 2]])) + x = a[[[1],[0]],[[1,0],[0,1]]] + assert isinstance(x, matrix) + assert_equal(x, matrix([[4, 3], [1, 2]])) + + def test_matrix_element(self): + x = matrix([[1,2,3],[4,5,6]]) + assert_equal(x[0][0],matrix([[1,2,3]])) + assert_equal(x[0][0].shape,(1,3)) + assert_equal(x[0].shape,(1,3)) + assert_equal(x[:,0].shape,(2,1)) + + x = matrix(0) + assert_equal(x[0,0],0) + assert_equal(x[0],0) + assert_equal(x[:,0].shape,x.shape) + + def test_scalar_indexing(self): + x = asmatrix(zeros((3,2),float)) + assert_equal(x[0,0],x[0][0]) + + def test_row_column_indexing(self): + x = asmatrix(np.eye(2)) + assert_array_equal(x[0,:],[[1,0]]) + assert_array_equal(x[1,:],[[0,1]]) + assert_array_equal(x[:,0],[[1],[0]]) + assert_array_equal(x[:,1],[[0],[1]]) + + def test_boolean_indexing(self): + A = arange(6) + A.shape = (3,2) + x = asmatrix(A) + assert_array_equal(x[:,array([True,False])],x[:,0]) + assert_array_equal(x[array([True,False,False]),:],x[0,:]) + + def test_list_indexing(self): + A = arange(6) + A.shape = (3,2) + x = asmatrix(A) + assert_array_equal(x[:,[1,0]],x[:,::-1]) + assert_array_equal(x[[2,1,0],:],x[::-1,:]) + +class TestPower(TestCase): + def test_returntype(self): + a = array([[0,1],[0,0]]) + assert type(matrix_power(a, 2)) is ndarray + a = mat(a) + assert type(matrix_power(a, 2)) is matrix + + def test_list(self): + assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]]) + +if __name__ == "__main__": + run_module_suite() diff --git a/numpy/matrx/tests/test_numeric.py b/numpy/matrx/tests/test_numeric.py new file mode 100644 index 000000000..0b96bb05a --- /dev/null +++ b/numpy/matrx/tests/test_numeric.py @@ -0,0 +1,8 @@ +from numpy.testing import assert_equal, TestCase +from numpy.core import ones +from numpy import matrix + +class TestDot(TestCase): + def test_matscalar(self): + b1 = matrix(ones((3,3),dtype=complex)) + assert_equal(b1*1.0, b1) |