summaryrefslogtreecommitdiff
path: root/numpy/oldnumeric
diff options
context:
space:
mode:
authorAlan McIntyre <alan.mcintyre@local>2008-09-13 18:10:48 +0000
committerAlan McIntyre <alan.mcintyre@local>2008-09-13 18:10:48 +0000
commit83eba775c46704a969826eb1990be80e35c65255 (patch)
treeb7462dcedf8c6c99c713ad096334a081df776970 /numpy/oldnumeric
parente8b5097f886ca58ff5713886f8378d2b233c418b (diff)
downloadnumpy-83eba775c46704a969826eb1990be80e35c65255.tar.gz
Rewrapped __all__ definition to conform to PEP8.
Standardize NumPy import as "import numpy as np". Removed unused imports. Fixed undefined reference to ndarray (should be np.ndarray). Fixed undefined references to exp (should be math.exp).
Diffstat (limited to 'numpy/oldnumeric')
-rw-r--r--numpy/oldnumeric/arrayfns.py27
-rw-r--r--numpy/oldnumeric/compat.py2
-rw-r--r--numpy/oldnumeric/mlab.py12
-rw-r--r--numpy/oldnumeric/rng.py12
4 files changed, 29 insertions, 24 deletions
diff --git a/numpy/oldnumeric/arrayfns.py b/numpy/oldnumeric/arrayfns.py
index 4c31a6827..dbb910770 100644
--- a/numpy/oldnumeric/arrayfns.py
+++ b/numpy/oldnumeric/arrayfns.py
@@ -1,10 +1,11 @@
"""Backward compatible with arrayfns from Numeric
"""
-__all__ = ['array_set', 'construct3', 'digitize', 'error', 'find_mask', 'histogram', 'index_sort',
- 'interp', 'nz', 'reverse', 'span', 'to_corners', 'zmin_zmax']
+__all__ = ['array_set', 'construct3', 'digitize', 'error', 'find_mask',
+ 'histogram', 'index_sort', 'interp', 'nz', 'reverse', 'span',
+ 'to_corners', 'zmin_zmax']
-import numpy as nx
+import numpy as np
from numpy import asarray
class error(Exception):
@@ -14,7 +15,7 @@ def array_set(vals1, indices, vals2):
indices = asarray(indices)
if indices.ndim != 1:
raise ValueError, "index array must be 1-d"
- if not isinstance(vals1, ndarray):
+ if not isinstance(vals1, np.ndarray):
raise TypeError, "vals1 must be an ndarray"
vals1 = asarray(vals1)
vals2 = asarray(vals2)
@@ -31,7 +32,7 @@ def index_sort(arr):
def interp(y, x, z, typ=None):
"""y(z) interpolated by treating y(x) as piecewise function
"""
- res = numpy.interp(z, x, y)
+ res = np.interp(z, x, y)
if typ is None or typ == 'd':
return res
if typ == 'f':
@@ -40,17 +41,17 @@ def interp(y, x, z, typ=None):
raise error, "incompatible typecode"
def nz(x):
- x = asarray(x,dtype=nx.ubyte)
+ x = asarray(x,dtype=np.ubyte)
if x.ndim != 1:
raise TypeError, "intput must have 1 dimension."
- indxs = nx.flatnonzero(x != 0)
+ indxs = np.flatnonzero(x != 0)
return indxs[-1].item()+1
def reverse(x, n):
x = asarray(x,dtype='d')
if x.ndim != 2:
raise ValueError, "input must be 2-d"
- y = nx.empty_like(x)
+ y = np.empty_like(x)
if n == 0:
y[...] = x[::-1,:]
elif n == 1:
@@ -58,11 +59,11 @@ def reverse(x, n):
return y
def span(lo, hi, num, d2=0):
- x = linspace(lo, hi, num)
+ x = np.linspace(lo, hi, num)
if d2 <= 0:
return x
else:
- ret = empty((d2,num),x.dtype)
+ ret = np.empty((d2,num),x.dtype)
ret[...] = x
return ret
@@ -71,15 +72,15 @@ def zmin_zmax(z, ireg):
ireg = asarray(ireg, dtype=int)
if z.shape != ireg.shape or z.ndim != 2:
raise ValueError, "z and ireg must be the same shape and 2-d"
- ix, iy = nx.nonzero(ireg)
+ ix, iy = np.nonzero(ireg)
# Now, add more indices
x1m = ix - 1
y1m = iy-1
i1 = x1m>=0
i2 = y1m>=0
i3 = i1 & i2
- nix = nx.r_[ix, x1m[i1], x1m[i1], ix[i2] ]
- niy = nx.r_[iy, iy[i1], y1m[i3], y1m[i2]]
+ nix = np.r_[ix, x1m[i1], x1m[i1], ix[i2] ]
+ niy = np.r_[iy, iy[i1], y1m[i3], y1m[i2]]
# remove any negative indices
zres = z[nix,niy]
return zres.min().item(), zres.max().item()
diff --git a/numpy/oldnumeric/compat.py b/numpy/oldnumeric/compat.py
index 7f123fa69..3e1d53d0e 100644
--- a/numpy/oldnumeric/compat.py
+++ b/numpy/oldnumeric/compat.py
@@ -12,7 +12,7 @@ __all__ = ['NewAxis',
import numpy.core.multiarray as multiarray
import numpy.core.umath as um
-from numpy.core.numeric import array, correlate
+from numpy.core.numeric import array
import functions
import sys
diff --git a/numpy/oldnumeric/mlab.py b/numpy/oldnumeric/mlab.py
index 47be89e1b..c11e34c1f 100644
--- a/numpy/oldnumeric/mlab.py
+++ b/numpy/oldnumeric/mlab.py
@@ -1,6 +1,10 @@
# This module is for compatibility only. All functions are defined elsewhere.
-__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean']
+__all__ = ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle',
+ 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort',
+ 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud',
+ 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc',
+ 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean']
import numpy.oldnumeric.linear_algebra as LinearAlgebra
import numpy.oldnumeric.random_array as RandomArray
@@ -12,7 +16,7 @@ from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \
from numpy.linalg import eig, svd
from numpy.random import rand, randn
-import numpy as nn
+import numpy as np
from typeconv import convtypecode
@@ -22,7 +26,7 @@ def eye(N, M=None, k=0, typecode=None, dtype=None):
"""
dtype = convtypecode(typecode, dtype)
if M is None: M = N
- m = nn.equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k)
+ m = np.equal(np.subtract.outer(np.arange(N), np.arange(M)),-k)
if m.dtype != dtype:
return m.astype(dtype)
@@ -32,7 +36,7 @@ def tri(N, M=None, k=0, typecode=None, dtype=None):
"""
dtype = convtypecode(typecode, dtype)
if M is None: M = N
- m = nn.greater_equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k)
+ m = np.greater_equal(np.subtract.outer(np.arange(N), np.arange(M)),-k)
if m.dtype != dtype:
return m.astype(dtype)
diff --git a/numpy/oldnumeric/rng.py b/numpy/oldnumeric/rng.py
index fcf08bb37..b4c72a68c 100644
--- a/numpy/oldnumeric/rng.py
+++ b/numpy/oldnumeric/rng.py
@@ -4,9 +4,9 @@
# It is for backwards compatibility only.
-__all__ = ['CreateGenerator','ExponentialDistribution','LogNormalDistribution','NormalDistribution',
- 'UniformDistribution', 'error', 'default_distribution', 'random_sample', 'ranf',
- 'standard_generator']
+__all__ = ['CreateGenerator','ExponentialDistribution','LogNormalDistribution',
+ 'NormalDistribution', 'UniformDistribution', 'error', 'ranf',
+ 'default_distribution', 'random_sample', 'standard_generator']
import numpy.random.mtrand as mt
import math
@@ -44,7 +44,7 @@ class ExponentialDistribution(Distribution):
return 0.0
else:
lambda_ = self._args[0]
- return lambda_*exp(-lambda_*x)
+ return lambda_*math.exp(-lambda_*x)
class LogNormalDistribution(Distribution):
def __init__(self, m, s):
@@ -61,7 +61,7 @@ class LogNormalDistribution(Distribution):
def density(x):
m,s = self._args
y = (math.log(x)-self._mn)/self._sn
- return self._fac*exp(-0.5*y*y)/x
+ return self._fac*math.exp(-0.5*y*y)/x
class NormalDistribution(Distribution):
@@ -76,7 +76,7 @@ class NormalDistribution(Distribution):
def density(x):
m,s = self._args
y = (x-m)/s
- return self._fac*exp(-0.5*y*y)
+ return self._fac*math.exp(-0.5*y*y)
class UniformDistribution(Distribution):
def __init__(self, a, b):