summaryrefslogtreecommitdiff
path: root/numpy/polynomial/polynomial.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2012-01-03 08:05:45 -0700
committerCharles Harris <charlesr.harris@gmail.com>2012-01-09 11:09:37 -0700
commita4e99a7998a30d8e777510aaa5926b436a844f2b (patch)
tree4539998dd7846b8e1ce27800f79be0f32a48d666 /numpy/polynomial/polynomial.py
parent88163cb1ffb3a98a4ecc74481312a618813a9f1e (diff)
downloadnumpy-a4e99a7998a30d8e777510aaa5926b436a844f2b.tar.gz
SPELL: Spellcheck the modules. Clarify an example.
Diffstat (limited to 'numpy/polynomial/polynomial.py')
-rw-r--r--numpy/polynomial/polynomial.py40
1 files changed, 20 insertions, 20 deletions
diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py
index ec8259b03..01197af12 100644
--- a/numpy/polynomial/polynomial.py
+++ b/numpy/polynomial/polynomial.py
@@ -203,7 +203,7 @@ def polyadd(c1, c2):
Parameters
----------
c1, c2 : array_like
- 1-d arrays of polynomial coefficients ordered from low to high.
+ 1-D arrays of polynomial coefficients ordered from low to high.
Returns
-------
@@ -247,7 +247,7 @@ def polysub(c1, c2):
Parameters
----------
c1, c2 : array_like
- 1-d arrays of polynomial coefficients ordered from low to
+ 1-D arrays of polynomial coefficients ordered from low to
high.
Returns
@@ -292,7 +292,7 @@ def polymulx(c):
Parameters
----------
c : array_like
- 1-d array of polynomial coefficients ordered from low to
+ 1-D array of polynomial coefficients ordered from low to
high.
Returns
@@ -329,7 +329,7 @@ def polymul(c1, c2):
Parameters
----------
c1, c2 : array_like
- 1-d arrays of coefficients representing a polynomial, relative to the
+ 1-D arrays of coefficients representing a polynomial, relative to the
"standard" basis, and ordered from lowest order term to highest.
Returns
@@ -367,7 +367,7 @@ def polydiv(c1, c2):
Parameters
----------
c1, c2 : array_like
- 1-d arrays of polynomial coefficients ordered from low to high.
+ 1-D arrays of polynomial coefficients ordered from low to high.
Returns
-------
@@ -423,13 +423,13 @@ def polypow(c, pow, maxpower=None) :
Parameters
----------
c : array_like
- 1d array of array of series coefficients ordered from low to
+ 1-D array of array of series coefficients ordered from low to
high degree.
pow : integer
Power to which the series will be raised
maxpower : integer, optional
Maximum power allowed. This is mainly to limit growth of the series
- to umanageable size. Default is 16
+ to unmanageable size. Default is 16
Returns
-------
@@ -575,7 +575,7 @@ def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
Parameters
----------
c : array_like
- 1-d array of polynomial coefficients, ordered from low to high.
+ 1-D array of polynomial coefficients, ordered from low to high.
m : int, optional
Order of integration, must be positive. (Default: 1)
k : {[], list, scalar}, optional
@@ -712,7 +712,7 @@ def polyval(x, c, tensor=True):
with themselves and with the elements of `c`.
c : array_like
Array of coefficients ordered so that the coefficients for terms of
- degree n are contained in c[n]. If `c` is multidimesional the
+ degree n are contained in c[n]. If `c` is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of `c`.
@@ -751,14 +751,14 @@ def polyval(x, c, tensor=True):
>>> polyval(a, [1,2,3])
array([[ 1., 6.],
[ 17., 34.]])
- >>> c = np.arange(4).reshape(2,2)
- >>> c
+ >>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
+ >>> coef
array([[[ 0, 1],
[ 2, 3]],
- >>> polyval([1,2], c, tensor=True)
+ >>> polyval([1,2], coef, tensor=True)
array([[ 2., 4.],
[ 4., 7.]])
- >>> polyval([1,2], c, tensor=False)
+ >>> polyval([1,2], coef, tensor=False)
array([ 2., 7.])
"""
@@ -838,7 +838,7 @@ def polyval2d(x, y, c):
def polygrid2d(x, y, c):
"""
- Evaluate a 2-D polynomial on the Cartesion product of x and y.
+ Evaluate a 2-D polynomial on the Cartesian product of x and y.
This function returns the values:
@@ -873,7 +873,7 @@ def polygrid2d(x, y, c):
Returns
-------
values : ndarray, compatible object
- The values of the two dimensional polynomial at points in the Cartesion
+ The values of the two dimensional polynomial at points in the Cartesian
product of `x` and `y`.
See Also
@@ -926,7 +926,7 @@ def polyval3d(x, y, z, c):
Returns
-------
values : ndarray, compatible object
- The values of the multidimension polynomial on points formed with
+ The values of the multidimensional polynomial on points formed with
triples of corresponding values from `x`, `y`, and `z`.
See Also
@@ -952,7 +952,7 @@ def polyval3d(x, y, z, c):
def polygrid3d(x, y, z, c):
"""
- Evaluate a 3-D polynomial on the Cartesion product of x, y and z.
+ Evaluate a 3-D polynomial on the Cartesian product of x, y and z.
This function returns the values:
@@ -971,7 +971,7 @@ def polygrid3d(x, y, z, c):
If `c` has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
- x.shape + yshape + z.shape.
+ x.shape + y.shape + z.shape.
Parameters
----------
@@ -990,7 +990,7 @@ def polygrid3d(x, y, z, c):
Returns
-------
values : ndarray, compatible object
- The values of the two dimensional polynomial at points in the Cartesion
+ The values of the two dimensional polynomial at points in the Cartesian
product of `x` and `y`.
See Also
@@ -1396,7 +1396,7 @@ def polycompanion(c):
Parameters
----------
c : array_like
- 1-d array of polynomial coefficients ordered from low to high
+ 1-D array of polynomial coefficients ordered from low to high
degree.
Returns