diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2012-01-03 08:05:45 -0700 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2012-01-09 11:09:37 -0700 |
commit | a4e99a7998a30d8e777510aaa5926b436a844f2b (patch) | |
tree | 4539998dd7846b8e1ce27800f79be0f32a48d666 /numpy/polynomial/polynomial.py | |
parent | 88163cb1ffb3a98a4ecc74481312a618813a9f1e (diff) | |
download | numpy-a4e99a7998a30d8e777510aaa5926b436a844f2b.tar.gz |
SPELL: Spellcheck the modules. Clarify an example.
Diffstat (limited to 'numpy/polynomial/polynomial.py')
-rw-r--r-- | numpy/polynomial/polynomial.py | 40 |
1 files changed, 20 insertions, 20 deletions
diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py index ec8259b03..01197af12 100644 --- a/numpy/polynomial/polynomial.py +++ b/numpy/polynomial/polynomial.py @@ -203,7 +203,7 @@ def polyadd(c1, c2): Parameters ---------- c1, c2 : array_like - 1-d arrays of polynomial coefficients ordered from low to high. + 1-D arrays of polynomial coefficients ordered from low to high. Returns ------- @@ -247,7 +247,7 @@ def polysub(c1, c2): Parameters ---------- c1, c2 : array_like - 1-d arrays of polynomial coefficients ordered from low to + 1-D arrays of polynomial coefficients ordered from low to high. Returns @@ -292,7 +292,7 @@ def polymulx(c): Parameters ---------- c : array_like - 1-d array of polynomial coefficients ordered from low to + 1-D array of polynomial coefficients ordered from low to high. Returns @@ -329,7 +329,7 @@ def polymul(c1, c2): Parameters ---------- c1, c2 : array_like - 1-d arrays of coefficients representing a polynomial, relative to the + 1-D arrays of coefficients representing a polynomial, relative to the "standard" basis, and ordered from lowest order term to highest. Returns @@ -367,7 +367,7 @@ def polydiv(c1, c2): Parameters ---------- c1, c2 : array_like - 1-d arrays of polynomial coefficients ordered from low to high. + 1-D arrays of polynomial coefficients ordered from low to high. Returns ------- @@ -423,13 +423,13 @@ def polypow(c, pow, maxpower=None) : Parameters ---------- c : array_like - 1d array of array of series coefficients ordered from low to + 1-D array of array of series coefficients ordered from low to high degree. pow : integer Power to which the series will be raised maxpower : integer, optional Maximum power allowed. This is mainly to limit growth of the series - to umanageable size. Default is 16 + to unmanageable size. Default is 16 Returns ------- @@ -575,7 +575,7 @@ def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0): Parameters ---------- c : array_like - 1-d array of polynomial coefficients, ordered from low to high. + 1-D array of polynomial coefficients, ordered from low to high. m : int, optional Order of integration, must be positive. (Default: 1) k : {[], list, scalar}, optional @@ -712,7 +712,7 @@ def polyval(x, c, tensor=True): with themselves and with the elements of `c`. c : array_like Array of coefficients ordered so that the coefficients for terms of - degree n are contained in c[n]. If `c` is multidimesional the + degree n are contained in c[n]. If `c` is multidimensional the remaining indices enumerate multiple polynomials. In the two dimensional case the coefficients may be thought of as stored in the columns of `c`. @@ -751,14 +751,14 @@ def polyval(x, c, tensor=True): >>> polyval(a, [1,2,3]) array([[ 1., 6.], [ 17., 34.]]) - >>> c = np.arange(4).reshape(2,2) - >>> c + >>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients + >>> coef array([[[ 0, 1], [ 2, 3]], - >>> polyval([1,2], c, tensor=True) + >>> polyval([1,2], coef, tensor=True) array([[ 2., 4.], [ 4., 7.]]) - >>> polyval([1,2], c, tensor=False) + >>> polyval([1,2], coef, tensor=False) array([ 2., 7.]) """ @@ -838,7 +838,7 @@ def polyval2d(x, y, c): def polygrid2d(x, y, c): """ - Evaluate a 2-D polynomial on the Cartesion product of x and y. + Evaluate a 2-D polynomial on the Cartesian product of x and y. This function returns the values: @@ -873,7 +873,7 @@ def polygrid2d(x, y, c): Returns ------- values : ndarray, compatible object - The values of the two dimensional polynomial at points in the Cartesion + The values of the two dimensional polynomial at points in the Cartesian product of `x` and `y`. See Also @@ -926,7 +926,7 @@ def polyval3d(x, y, z, c): Returns ------- values : ndarray, compatible object - The values of the multidimension polynomial on points formed with + The values of the multidimensional polynomial on points formed with triples of corresponding values from `x`, `y`, and `z`. See Also @@ -952,7 +952,7 @@ def polyval3d(x, y, z, c): def polygrid3d(x, y, z, c): """ - Evaluate a 3-D polynomial on the Cartesion product of x, y and z. + Evaluate a 3-D polynomial on the Cartesian product of x, y and z. This function returns the values: @@ -971,7 +971,7 @@ def polygrid3d(x, y, z, c): If `c` has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the result will be c.shape[3:] + - x.shape + yshape + z.shape. + x.shape + y.shape + z.shape. Parameters ---------- @@ -990,7 +990,7 @@ def polygrid3d(x, y, z, c): Returns ------- values : ndarray, compatible object - The values of the two dimensional polynomial at points in the Cartesion + The values of the two dimensional polynomial at points in the Cartesian product of `x` and `y`. See Also @@ -1396,7 +1396,7 @@ def polycompanion(c): Parameters ---------- c : array_like - 1-d array of polynomial coefficients ordered from low to high + 1-D array of polynomial coefficients ordered from low to high degree. Returns |