summaryrefslogtreecommitdiff
path: root/numpy/random/tests/test_random.py
diff options
context:
space:
mode:
authorOscar Villellas <oscar.villellas@continuum.io>2017-01-03 20:28:00 +0100
committerOscar Villellas <oscar.villellas@continuum.io>2017-01-03 20:28:00 +0100
commit4c93e28685eecfd359f7ca9ad6f8003f054626ca (patch)
tree91b81599f615d45e7103d55daf69b25d19eabe4a /numpy/random/tests/test_random.py
parentf555826ac776e0866e1edfc1804c88c2a23dab3b (diff)
parent02e2ea815a6c76152096364edd10e2dd954bcb56 (diff)
downloadnumpy-4c93e28685eecfd359f7ca9ad6f8003f054626ca.tar.gz
Merge remote-tracking branch 'numpy-org/master' into mult-norm
Diffstat (limited to 'numpy/random/tests/test_random.py')
-rw-r--r--numpy/random/tests/test_random.py1010
1 files changed, 916 insertions, 94 deletions
diff --git a/numpy/random/tests/test_random.py b/numpy/random/tests/test_random.py
index f73991267..64e6e2168 100644
--- a/numpy/random/tests/test_random.py
+++ b/numpy/random/tests/test_random.py
@@ -4,10 +4,13 @@ import warnings
import numpy as np
from numpy.testing import (
TestCase, run_module_suite, assert_, assert_raises, assert_equal,
- assert_warns)
+ assert_warns, assert_array_equal, assert_array_almost_equal,
+ suppress_warnings)
from numpy import random
from numpy.compat import asbytes
import sys
+import warnings
+
class TestSeed(TestCase):
def test_scalar(self):
@@ -27,18 +30,19 @@ class TestSeed(TestCase):
assert_equal(s.randint(1000), 265)
def test_invalid_scalar(self):
- # seed must be a unsigned 32 bit integers
+ # seed must be an unsigned 32 bit integer
assert_raises(TypeError, np.random.RandomState, -0.5)
assert_raises(ValueError, np.random.RandomState, -1)
def test_invalid_array(self):
- # seed must be a unsigned 32 bit integers
+ # seed must be an unsigned 32 bit integer
assert_raises(TypeError, np.random.RandomState, [-0.5])
assert_raises(ValueError, np.random.RandomState, [-1])
assert_raises(ValueError, np.random.RandomState, [4294967296])
assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296])
assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296])
+
class TestBinomial(TestCase):
def test_n_zero(self):
# Tests the corner case of n == 0 for the binomial distribution.
@@ -47,7 +51,7 @@ class TestBinomial(TestCase):
zeros = np.zeros(2, dtype='int')
for p in [0, .5, 1]:
assert_(random.binomial(0, p) == 0)
- np.testing.assert_array_equal(random.binomial(zeros, p), zeros)
+ assert_array_equal(random.binomial(zeros, p), zeros)
def test_p_is_nan(self):
# Issue #4571.
@@ -129,8 +133,104 @@ class TestSetState(TestCase):
# arguments without truncation.
self.prng.negative_binomial(0.5, 0.5)
+
+class TestRandint(TestCase):
+
+ rfunc = np.random.randint
+
+ # valid integer/boolean types
+ itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
+ np.int32, np.uint32, np.int64, np.uint64]
+
+ def test_unsupported_type(self):
+ assert_raises(TypeError, self.rfunc, 1, dtype=np.float)
+
+ def test_bounds_checking(self):
+ for dt in self.itype:
+ lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
+ ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
+ assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt)
+ assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt)
+ assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt)
+ assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)
+
+ def test_rng_zero_and_extremes(self):
+ for dt in self.itype:
+ lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
+ ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
+ tgt = ubnd - 1
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
+ tgt = lbnd
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
+ tgt = (lbnd + ubnd)//2
+ assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
+
+ def test_in_bounds_fuzz(self):
+ # Don't use fixed seed
+ np.random.seed()
+ for dt in self.itype[1:]:
+ for ubnd in [4, 8, 16]:
+ vals = self.rfunc(2, ubnd, size=2**16, dtype=dt)
+ assert_(vals.max() < ubnd)
+ assert_(vals.min() >= 2)
+ vals = self.rfunc(0, 2, size=2**16, dtype=np.bool)
+ assert_(vals.max() < 2)
+ assert_(vals.min() >= 0)
+
+ def test_repeatability(self):
+ import hashlib
+ # We use a md5 hash of generated sequences of 1000 samples
+ # in the range [0, 6) for all but np.bool, where the range
+ # is [0, 2). Hashes are for little endian numbers.
+ tgt = {'bool': '7dd3170d7aa461d201a65f8bcf3944b0',
+ 'int16': '1b7741b80964bb190c50d541dca1cac1',
+ 'int32': '4dc9fcc2b395577ebb51793e58ed1a05',
+ 'int64': '17db902806f448331b5a758d7d2ee672',
+ 'int8': '27dd30c4e08a797063dffac2490b0be6',
+ 'uint16': '1b7741b80964bb190c50d541dca1cac1',
+ 'uint32': '4dc9fcc2b395577ebb51793e58ed1a05',
+ 'uint64': '17db902806f448331b5a758d7d2ee672',
+ 'uint8': '27dd30c4e08a797063dffac2490b0be6'}
+
+ for dt in self.itype[1:]:
+ np.random.seed(1234)
+
+ # view as little endian for hash
+ if sys.byteorder == 'little':
+ val = self.rfunc(0, 6, size=1000, dtype=dt)
+ else:
+ val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap()
+
+ res = hashlib.md5(val.view(np.int8)).hexdigest()
+ assert_(tgt[np.dtype(dt).name] == res)
+
+ # bools do not depend on endianess
+ np.random.seed(1234)
+ val = self.rfunc(0, 2, size=1000, dtype=np.bool).view(np.int8)
+ res = hashlib.md5(val).hexdigest()
+ assert_(tgt[np.dtype(np.bool).name] == res)
+
+ def test_respect_dtype_singleton(self):
+ # See gh-7203
+ for dt in self.itype:
+ lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
+ ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
+
+ sample = self.rfunc(lbnd, ubnd, dtype=dt)
+ self.assertEqual(sample.dtype, np.dtype(dt))
+
+ for dt in (np.bool, np.int, np.long):
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
+
+ # gh-7284: Ensure that we get Python data types
+ sample = self.rfunc(lbnd, ubnd, dtype=dt)
+ self.assertFalse(hasattr(sample, 'dtype'))
+ self.assertEqual(type(sample), dt)
+
+
class TestRandomDist(TestCase):
- # Make sure the random distrobution return the correct value for a
+ # Make sure the random distribution returns the correct value for a
# given seed
def setUp(self):
@@ -142,7 +242,7 @@ class TestRandomDist(TestCase):
desired = np.array([[0.61879477158567997, 0.59162362775974664],
[0.88868358904449662, 0.89165480011560816],
[0.4575674820298663, 0.7781880808593471]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_randn(self):
np.random.seed(self.seed)
@@ -150,7 +250,7 @@ class TestRandomDist(TestCase):
desired = np.array([[1.34016345771863121, 1.73759122771936081],
[1.498988344300628, -0.2286433324536169],
[2.031033998682787, 2.17032494605655257]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_randint(self):
np.random.seed(self.seed)
@@ -158,15 +258,47 @@ class TestRandomDist(TestCase):
desired = np.array([[31, 3],
[-52, 41],
[-48, -66]])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_random_integers(self):
np.random.seed(self.seed)
- actual = np.random.random_integers(-99, 99, size=(3, 2))
+ with suppress_warnings() as sup:
+ w = sup.record(DeprecationWarning)
+ actual = np.random.random_integers(-99, 99, size=(3, 2))
+ assert_(len(w) == 1)
desired = np.array([[31, 3],
[-52, 41],
[-48, -66]])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
+
+ def test_random_integers_max_int(self):
+ # Tests whether random_integers can generate the
+ # maximum allowed Python int that can be converted
+ # into a C long. Previous implementations of this
+ # method have thrown an OverflowError when attempting
+ # to generate this integer.
+ with suppress_warnings() as sup:
+ w = sup.record(DeprecationWarning)
+ actual = np.random.random_integers(np.iinfo('l').max,
+ np.iinfo('l').max)
+ assert_(len(w) == 1)
+
+ desired = np.iinfo('l').max
+ assert_equal(actual, desired)
+
+ def test_random_integers_deprecated(self):
+ with warnings.catch_warnings():
+ warnings.simplefilter("error", DeprecationWarning)
+
+ # DeprecationWarning raised with high == None
+ assert_raises(DeprecationWarning,
+ np.random.random_integers,
+ np.iinfo('l').max)
+
+ # DeprecationWarning raised with high != None
+ assert_raises(DeprecationWarning,
+ np.random.random_integers,
+ np.iinfo('l').max, np.iinfo('l').max)
def test_random_sample(self):
np.random.seed(self.seed)
@@ -174,38 +306,38 @@ class TestRandomDist(TestCase):
desired = np.array([[0.61879477158567997, 0.59162362775974664],
[0.88868358904449662, 0.89165480011560816],
[0.4575674820298663, 0.7781880808593471]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_choice_uniform_replace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 4)
desired = np.array([2, 3, 2, 3])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_choice_nonuniform_replace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
desired = np.array([1, 1, 2, 2])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_choice_uniform_noreplace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 3, replace=False)
desired = np.array([0, 1, 3])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_choice_nonuniform_noreplace(self):
np.random.seed(self.seed)
actual = np.random.choice(4, 3, replace=False,
p=[0.1, 0.3, 0.5, 0.1])
desired = np.array([2, 3, 1])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_choice_noninteger(self):
np.random.seed(self.seed)
actual = np.random.choice(['a', 'b', 'c', 'd'], 4)
desired = np.array(['c', 'd', 'c', 'd'])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_choice_exceptions(self):
sample = np.random.choice
@@ -214,13 +346,13 @@ class TestRandomDist(TestCase):
assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
assert_raises(ValueError, sample, [], 3)
assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
- p=[[0.25, 0.25], [0.25, 0.25]])
+ p=[[0.25, 0.25], [0.25, 0.25]])
assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], 2, replace=False,
- p=[1, 0, 0])
+ assert_raises(ValueError, sample, [1, 2, 3], 2,
+ replace=False, p=[1, 0, 0])
def test_choice_return_shape(self):
p = [0.1, 0.9]
@@ -262,43 +394,44 @@ class TestRandomDist(TestCase):
np.random.seed(self.seed)
actual = np.random.bytes(10)
desired = asbytes('\x82Ui\x9e\xff\x97+Wf\xa5')
- np.testing.assert_equal(actual, desired)
+ assert_equal(actual, desired)
def test_shuffle(self):
- # Test lists, arrays, and multidimensional versions of both:
- for conv in [lambda x: x,
- np.asarray,
+ # Test lists, arrays (of various dtypes), and multidimensional versions
+ # of both, c-contiguous or not:
+ for conv in [lambda x: np.array([]),
+ lambda x: x,
+ lambda x: np.asarray(x).astype(np.int8),
+ lambda x: np.asarray(x).astype(np.float32),
+ lambda x: np.asarray(x).astype(np.complex64),
+ lambda x: np.asarray(x).astype(object),
lambda x: [(i, i) for i in x],
- lambda x: np.asarray([(i, i) for i in x])]:
+ lambda x: np.asarray([[i, i] for i in x]),
+ lambda x: np.vstack([x, x]).T,
+ # gh-4270
+ lambda x: np.asarray([(i, i) for i in x],
+ [("a", object, 1),
+ ("b", np.int32, 1)])]:
np.random.seed(self.seed)
alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
np.random.shuffle(alist)
actual = alist
desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
- np.testing.assert_array_equal(actual, desired)
-
- def test_shuffle_flexible(self):
- # gh-4270
- arr = [(0, 1), (2, 3)]
- dt = np.dtype([('a', np.int32, 1), ('b', np.int32, 1)])
- nparr = np.array(arr, dtype=dt)
- a, b = nparr[0].copy(), nparr[1].copy()
- for i in range(50):
- np.random.shuffle(nparr)
- assert_(a in nparr)
- assert_(b in nparr)
+ assert_array_equal(actual, desired)
def test_shuffle_masked(self):
# gh-3263
- a = np.ma.masked_values(np.reshape(range(20), (5,4)) % 3 - 1, -1)
+ a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
- ma = np.ma.count_masked(a)
- mb = np.ma.count_masked(b)
+ a_orig = a.copy()
+ b_orig = b.copy()
for i in range(50):
np.random.shuffle(a)
- self.assertEqual(ma, np.ma.count_masked(a))
+ assert_equal(
+ sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
np.random.shuffle(b)
- self.assertEqual(mb, np.ma.count_masked(b))
+ assert_equal(
+ sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
def test_beta(self):
np.random.seed(self.seed)
@@ -307,15 +440,15 @@ class TestRandomDist(TestCase):
[[1.45341850513746058e-02, 5.31297615662868145e-04],
[1.85366619058432324e-06, 4.19214516800110563e-03],
[1.58405155108498093e-04, 1.26252891949397652e-04]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_binomial(self):
np.random.seed(self.seed)
actual = np.random.binomial(100.123, .456, size=(3, 2))
desired = np.array([[37, 43],
- [42, 48],
- [46, 45]])
- np.testing.assert_array_equal(actual, desired)
+ [42, 48],
+ [46, 45]])
+ assert_array_equal(actual, desired)
def test_chisquare(self):
np.random.seed(self.seed)
@@ -323,7 +456,7 @@ class TestRandomDist(TestCase):
desired = np.array([[63.87858175501090585, 68.68407748911370447],
[65.77116116901505904, 47.09686762438974483],
[72.3828403199695174, 74.18408615260374006]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=13)
+ assert_array_almost_equal(actual, desired, decimal=13)
def test_dirichlet(self):
np.random.seed(self.seed)
@@ -335,7 +468,7 @@ class TestRandomDist(TestCase):
[0.58964023305154301, 0.41035976694845688]],
[[0.59266909280647828, 0.40733090719352177],
[0.56974431743975207, 0.43025568256024799]]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_dirichlet_size(self):
# gh-3173
@@ -355,7 +488,11 @@ class TestRandomDist(TestCase):
desired = np.array([[1.08342649775011624, 1.00607889924557314],
[2.46628830085216721, 2.49668106809923884],
[0.68717433461363442, 1.69175666993575979]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_exponential_0(self):
+ assert_equal(np.random.exponential(scale=0), 0)
+ assert_raises(ValueError, np.random.exponential, scale=-0.)
def test_f(self):
np.random.seed(self.seed)
@@ -363,7 +500,7 @@ class TestRandomDist(TestCase):
desired = np.array([[1.21975394418575878, 1.75135759791559775],
[1.44803115017146489, 1.22108959480396262],
[1.02176975757740629, 1.34431827623300415]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_gamma(self):
np.random.seed(self.seed)
@@ -371,7 +508,11 @@ class TestRandomDist(TestCase):
desired = np.array([[24.60509188649287182, 28.54993563207210627],
[26.13476110204064184, 12.56988482927716078],
[31.71863275789960568, 33.30143302795922011]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=14)
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_gamma_0(self):
+ assert_equal(np.random.gamma(shape=0, scale=0), 0)
+ assert_raises(ValueError, np.random.gamma, shape=-0., scale=-0.)
def test_geometric(self):
np.random.seed(self.seed)
@@ -379,7 +520,7 @@ class TestRandomDist(TestCase):
desired = np.array([[8, 7],
[17, 17],
[5, 12]])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_gumbel(self):
np.random.seed(self.seed)
@@ -387,7 +528,11 @@ class TestRandomDist(TestCase):
desired = np.array([[0.19591898743416816, 0.34405539668096674],
[-1.4492522252274278, -1.47374816298446865],
[1.10651090478803416, -0.69535848626236174]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_gumbel_0(self):
+ assert_equal(np.random.gumbel(scale=0), 0)
+ assert_raises(ValueError, np.random.gumbel, scale=-0.)
def test_hypergeometric(self):
np.random.seed(self.seed)
@@ -395,25 +540,25 @@ class TestRandomDist(TestCase):
desired = np.array([[10, 10],
[10, 10],
[9, 9]])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
# Test nbad = 0
actual = np.random.hypergeometric(5, 0, 3, size=4)
desired = np.array([3, 3, 3, 3])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
actual = np.random.hypergeometric(15, 0, 12, size=4)
desired = np.array([12, 12, 12, 12])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
# Test ngood = 0
actual = np.random.hypergeometric(0, 5, 3, size=4)
desired = np.array([0, 0, 0, 0])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
actual = np.random.hypergeometric(0, 15, 12, size=4)
desired = np.array([0, 0, 0, 0])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_laplace(self):
np.random.seed(self.seed)
@@ -421,7 +566,11 @@ class TestRandomDist(TestCase):
desired = np.array([[0.66599721112760157, 0.52829452552221945],
[3.12791959514407125, 3.18202813572992005],
[-0.05391065675859356, 1.74901336242837324]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_laplace_0(self):
+ assert_equal(np.random.laplace(scale=0), 0)
+ assert_raises(ValueError, np.random.laplace, scale=-0.)
def test_logistic(self):
np.random.seed(self.seed)
@@ -429,7 +578,11 @@ class TestRandomDist(TestCase):
desired = np.array([[1.09232835305011444, 0.8648196662399954],
[4.27818590694950185, 4.33897006346929714],
[-0.21682183359214885, 2.63373365386060332]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_laplace_0(self):
+ assert_(np.random.laplace(scale=0) in [0, 1])
+ assert_raises(ValueError, np.random.laplace, scale=-0.)
def test_lognormal(self):
np.random.seed(self.seed)
@@ -437,7 +590,11 @@ class TestRandomDist(TestCase):
desired = np.array([[16.50698631688883822, 36.54846706092654784],
[22.67886599981281748, 0.71617561058995771],
[65.72798501792723869, 86.84341601437161273]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=13)
+ assert_array_almost_equal(actual, desired, decimal=13)
+
+ def test_lognormal_0(self):
+ assert_equal(np.random.lognormal(sigma=0), 1)
+ assert_raises(ValueError, np.random.lognormal, sigma=-0.)
def test_logseries(self):
np.random.seed(self.seed)
@@ -445,7 +602,7 @@ class TestRandomDist(TestCase):
desired = np.array([[2, 2],
[6, 17],
[3, 6]])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_multinomial(self):
np.random.seed(self.seed)
@@ -456,7 +613,7 @@ class TestRandomDist(TestCase):
[2, 1, 4, 3, 6, 4]],
[[4, 4, 2, 5, 2, 3],
[4, 3, 4, 2, 3, 4]]])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_multivariate_normal(self):
np.random.seed(self.seed)
@@ -504,7 +661,7 @@ class TestRandomDist(TestCase):
desired = np.array([[848, 841],
[892, 611],
[779, 647]])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
def test_noncentral_chisquare(self):
np.random.seed(self.seed)
@@ -512,13 +669,20 @@ class TestRandomDist(TestCase):
desired = np.array([[23.91905354498517511, 13.35324692733826346],
[31.22452661329736401, 16.60047399466177254],
[5.03461598262724586, 17.94973089023519464]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=14)
+ assert_array_almost_equal(actual, desired, decimal=14)
actual = np.random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
- desired = np.array([[ 1.47145377828516666, 0.15052899268012659],
- [ 0.00943803056963588, 1.02647251615666169],
- [ 0.332334982684171 , 0.15451287602753125]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=14)
+ desired = np.array([[1.47145377828516666, 0.15052899268012659],
+ [0.00943803056963588, 1.02647251615666169],
+ [0.332334982684171, 0.15451287602753125]])
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ np.random.seed(self.seed)
+ actual = np.random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
+ desired = np.array([[9.597154162763948, 11.725484450296079],
+ [10.413711048138335, 3.694475922923986],
+ [13.484222138963087, 14.377255424602957]])
+ assert_array_almost_equal(actual, desired, decimal=14)
def test_noncentral_f(self):
np.random.seed(self.seed)
@@ -527,7 +691,7 @@ class TestRandomDist(TestCase):
desired = np.array([[1.40598099674926669, 0.34207973179285761],
[3.57715069265772545, 7.92632662577829805],
[0.43741599463544162, 1.1774208752428319]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=14)
+ assert_array_almost_equal(actual, desired, decimal=14)
def test_normal(self):
np.random.seed(self.seed)
@@ -535,7 +699,11 @@ class TestRandomDist(TestCase):
desired = np.array([[2.80378370443726244, 3.59863924443872163],
[3.121433477601256, -0.33382987590723379],
[4.18552478636557357, 4.46410668111310471]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_normal_0(self):
+ assert_equal(np.random.normal(scale=0), 0)
+ assert_raises(ValueError, np.random.normal, scale=-0.)
def test_pareto(self):
np.random.seed(self.seed)
@@ -556,9 +724,9 @@ class TestRandomDist(TestCase):
np.random.seed(self.seed)
actual = np.random.poisson(lam=.123456789, size=(3, 2))
desired = np.array([[0, 0],
- [1, 0],
- [0, 0]])
- np.testing.assert_array_equal(actual, desired)
+ [1, 0],
+ [0, 0]])
+ assert_array_equal(actual, desired)
def test_poisson_exceptions(self):
lambig = np.iinfo('l').max
@@ -574,7 +742,7 @@ class TestRandomDist(TestCase):
desired = np.array([[0.02048932883240791, 0.01424192241128213],
[0.38446073748535298, 0.39499689943484395],
[0.00177699707563439, 0.13115505880863756]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_rayleigh(self):
np.random.seed(self.seed)
@@ -582,7 +750,11 @@ class TestRandomDist(TestCase):
desired = np.array([[13.8882496494248393, 13.383318339044731],
[20.95413364294492098, 21.08285015800712614],
[11.06066537006854311, 17.35468505778271009]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=14)
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_rayleigh_0(self):
+ assert_equal(np.random.rayleigh(scale=0), 0)
+ assert_raises(ValueError, np.random.rayleigh, scale=-0.)
def test_standard_cauchy(self):
np.random.seed(self.seed)
@@ -590,7 +762,7 @@ class TestRandomDist(TestCase):
desired = np.array([[0.77127660196445336, -6.55601161955910605],
[0.93582023391158309, -2.07479293013759447],
[-4.74601644297011926, 0.18338989290760804]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_exponential(self):
np.random.seed(self.seed)
@@ -598,7 +770,7 @@ class TestRandomDist(TestCase):
desired = np.array([[0.96441739162374596, 0.89556604882105506],
[2.1953785836319808, 2.22243285392490542],
[0.6116915921431676, 1.50592546727413201]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_gamma(self):
np.random.seed(self.seed)
@@ -606,7 +778,11 @@ class TestRandomDist(TestCase):
desired = np.array([[5.50841531318455058, 6.62953470301903103],
[5.93988484943779227, 2.31044849402133989],
[7.54838614231317084, 8.012756093271868]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=14)
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_standard_gamma_0(self):
+ assert_equal(np.random.standard_gamma(shape=0), 0)
+ assert_raises(ValueError, np.random.standard_gamma, shape=-0.)
def test_standard_normal(self):
np.random.seed(self.seed)
@@ -614,7 +790,7 @@ class TestRandomDist(TestCase):
desired = np.array([[1.34016345771863121, 1.73759122771936081],
[1.498988344300628, -0.2286433324536169],
[2.031033998682787, 2.17032494605655257]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_t(self):
np.random.seed(self.seed)
@@ -622,7 +798,7 @@ class TestRandomDist(TestCase):
desired = np.array([[0.97140611862659965, -0.08830486548450577],
[1.36311143689505321, -0.55317463909867071],
[-0.18473749069684214, 0.61181537341755321]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_triangular(self):
np.random.seed(self.seed)
@@ -631,7 +807,7 @@ class TestRandomDist(TestCase):
desired = np.array([[12.68117178949215784, 12.4129206149193152],
[16.20131377335158263, 16.25692138747600524],
[11.20400690911820263, 14.4978144835829923]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=14)
+ assert_array_almost_equal(actual, desired, decimal=14)
def test_uniform(self):
np.random.seed(self.seed)
@@ -639,16 +815,18 @@ class TestRandomDist(TestCase):
desired = np.array([[6.99097932346268003, 6.73801597444323974],
[9.50364421400426274, 9.53130618907631089],
[5.48995325769805476, 8.47493103280052118]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_uniform_range_bounds(self):
fmin = np.finfo('float').min
fmax = np.finfo('float').max
func = np.random.uniform
- np.testing.assert_raises(OverflowError, func, -np.inf, 0)
- np.testing.assert_raises(OverflowError, func, 0, np.inf)
- np.testing.assert_raises(OverflowError, func, fmin, fmax)
+ assert_raises(OverflowError, func, -np.inf, 0)
+ assert_raises(OverflowError, func, 0, np.inf)
+ assert_raises(OverflowError, func, fmin, fmax)
+ assert_raises(OverflowError, func, [-np.inf], [0])
+ assert_raises(OverflowError, func, [0], [np.inf])
# (fmax / 1e17) - fmin is within range, so this should not throw
np.random.uniform(low=fmin, high=fmax / 1e17)
@@ -659,7 +837,7 @@ class TestRandomDist(TestCase):
desired = np.array([[2.28567572673902042, 2.89163838442285037],
[0.38198375564286025, 2.57638023113890746],
[1.19153771588353052, 1.83509849681825354]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
def test_vonmises_small(self):
# check infinite loop, gh-4720
@@ -673,7 +851,7 @@ class TestRandomDist(TestCase):
desired = np.array([[3.82935265715889983, 5.13125249184285526],
[0.35045403618358717, 1.50832396872003538],
[0.24124319895843183, 0.22031101461955038]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=14)
+ assert_array_almost_equal(actual, desired, decimal=14)
def test_weibull(self):
np.random.seed(self.seed)
@@ -681,7 +859,11 @@ class TestRandomDist(TestCase):
desired = np.array([[0.97097342648766727, 0.91422896443565516],
[1.89517770034962929, 1.91414357960479564],
[0.67057783752390987, 1.39494046635066793]])
- np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ assert_array_almost_equal(actual, desired, decimal=15)
+
+ def test_weibull_0(self):
+ assert_equal(np.random.weibull(a=0), 0)
+ assert_raises(ValueError, np.random.weibull, a=-0.)
def test_zipf(self):
np.random.seed(self.seed)
@@ -689,10 +871,565 @@ class TestRandomDist(TestCase):
desired = np.array([[66, 29],
[1, 1],
[3, 13]])
- np.testing.assert_array_equal(actual, desired)
+ assert_array_equal(actual, desired)
+
+
+class TestBroadcast(TestCase):
+ # tests that functions that broadcast behave
+ # correctly when presented with non-scalar arguments
+ def setUp(self):
+ self.seed = 123456789
+
+ def setSeed(self):
+ np.random.seed(self.seed)
+
+ # TODO: Include test for randint once it can broadcast
+ # Can steal the test written in PR #6938
+
+ def test_uniform(self):
+ low = [0]
+ high = [1]
+ uniform = np.random.uniform
+ desired = np.array([0.53283302478975902,
+ 0.53413660089041659,
+ 0.50955303552646702])
+
+ self.setSeed()
+ actual = uniform(low * 3, high)
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ self.setSeed()
+ actual = uniform(low, high * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+
+ def test_normal(self):
+ loc = [0]
+ scale = [1]
+ bad_scale = [-1]
+ normal = np.random.normal
+ desired = np.array([2.2129019979039612,
+ 2.1283977976520019,
+ 1.8417114045748335])
+
+ self.setSeed()
+ actual = normal(loc * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, normal, loc * 3, bad_scale)
+
+ self.setSeed()
+ actual = normal(loc, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, normal, loc, bad_scale * 3)
+
+ def test_beta(self):
+ a = [1]
+ b = [2]
+ bad_a = [-1]
+ bad_b = [-2]
+ beta = np.random.beta
+ desired = np.array([0.19843558305989056,
+ 0.075230336409423643,
+ 0.24976865978980844])
+
+ self.setSeed()
+ actual = beta(a * 3, b)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, beta, bad_a * 3, b)
+ assert_raises(ValueError, beta, a * 3, bad_b)
+
+ self.setSeed()
+ actual = beta(a, b * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, beta, bad_a, b * 3)
+ assert_raises(ValueError, beta, a, bad_b * 3)
+
+ def test_exponential(self):
+ scale = [1]
+ bad_scale = [-1]
+ exponential = np.random.exponential
+ desired = np.array([0.76106853658845242,
+ 0.76386282278691653,
+ 0.71243813125891797])
+
+ self.setSeed()
+ actual = exponential(scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, exponential, bad_scale * 3)
+
+ def test_standard_gamma(self):
+ shape = [1]
+ bad_shape = [-1]
+ std_gamma = np.random.standard_gamma
+ desired = np.array([0.76106853658845242,
+ 0.76386282278691653,
+ 0.71243813125891797])
+
+ self.setSeed()
+ actual = std_gamma(shape * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, std_gamma, bad_shape * 3)
+
+ def test_gamma(self):
+ shape = [1]
+ scale = [2]
+ bad_shape = [-1]
+ bad_scale = [-2]
+ gamma = np.random.gamma
+ desired = np.array([1.5221370731769048,
+ 1.5277256455738331,
+ 1.4248762625178359])
+
+ self.setSeed()
+ actual = gamma(shape * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, gamma, bad_shape * 3, scale)
+ assert_raises(ValueError, gamma, shape * 3, bad_scale)
+
+ self.setSeed()
+ actual = gamma(shape, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, gamma, bad_shape, scale * 3)
+ assert_raises(ValueError, gamma, shape, bad_scale * 3)
+
+ def test_f(self):
+ dfnum = [1]
+ dfden = [2]
+ bad_dfnum = [-1]
+ bad_dfden = [-2]
+ f = np.random.f
+ desired = np.array([0.80038951638264799,
+ 0.86768719635363512,
+ 2.7251095168386801])
+
+ self.setSeed()
+ actual = f(dfnum * 3, dfden)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, f, bad_dfnum * 3, dfden)
+ assert_raises(ValueError, f, dfnum * 3, bad_dfden)
+
+ self.setSeed()
+ actual = f(dfnum, dfden * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, f, bad_dfnum, dfden * 3)
+ assert_raises(ValueError, f, dfnum, bad_dfden * 3)
+ def test_noncentral_f(self):
+ dfnum = [2]
+ dfden = [3]
+ nonc = [4]
+ bad_dfnum = [0]
+ bad_dfden = [-1]
+ bad_nonc = [-2]
+ nonc_f = np.random.noncentral_f
+ desired = np.array([9.1393943263705211,
+ 13.025456344595602,
+ 8.8018098359100545])
+
+ self.setSeed()
+ actual = nonc_f(dfnum * 3, dfden, nonc)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
+ assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
+ assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
+
+ self.setSeed()
+ actual = nonc_f(dfnum, dfden * 3, nonc)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
+ assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
+
+ self.setSeed()
+ actual = nonc_f(dfnum, dfden, nonc * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
+ assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
+
+ def test_chisquare(self):
+ df = [1]
+ bad_df = [-1]
+ chisquare = np.random.chisquare
+ desired = np.array([0.57022801133088286,
+ 0.51947702108840776,
+ 0.1320969254923558])
+
+ self.setSeed()
+ actual = chisquare(df * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, chisquare, bad_df * 3)
+
+ def test_noncentral_chisquare(self):
+ df = [1]
+ nonc = [2]
+ bad_df = [-1]
+ bad_nonc = [-2]
+ nonc_chi = np.random.noncentral_chisquare
+ desired = np.array([9.0015599467913763,
+ 4.5804135049718742,
+ 6.0872302432834564])
+
+ self.setSeed()
+ actual = nonc_chi(df * 3, nonc)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
+ assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
+
+ self.setSeed()
+ actual = nonc_chi(df, nonc * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
+ assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
+
+ def test_standard_t(self):
+ df = [1]
+ bad_df = [-1]
+ t = np.random.standard_t
+ desired = np.array([3.0702872575217643,
+ 5.8560725167361607,
+ 1.0274791436474273])
+
+ self.setSeed()
+ actual = t(df * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, t, bad_df * 3)
-class TestThread(object):
+ def test_vonmises(self):
+ mu = [2]
+ kappa = [1]
+ bad_kappa = [-1]
+ vonmises = np.random.vonmises
+ desired = np.array([2.9883443664201312,
+ -2.7064099483995943,
+ -1.8672476700665914])
+
+ self.setSeed()
+ actual = vonmises(mu * 3, kappa)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, vonmises, mu * 3, bad_kappa)
+
+ self.setSeed()
+ actual = vonmises(mu, kappa * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, vonmises, mu, bad_kappa * 3)
+
+ def test_pareto(self):
+ a = [1]
+ bad_a = [-1]
+ pareto = np.random.pareto
+ desired = np.array([1.1405622680198362,
+ 1.1465519762044529,
+ 1.0389564467453547])
+
+ self.setSeed()
+ actual = pareto(a * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, pareto, bad_a * 3)
+
+ def test_weibull(self):
+ a = [1]
+ bad_a = [-1]
+ weibull = np.random.weibull
+ desired = np.array([0.76106853658845242,
+ 0.76386282278691653,
+ 0.71243813125891797])
+
+ self.setSeed()
+ actual = weibull(a * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, weibull, bad_a * 3)
+
+ def test_power(self):
+ a = [1]
+ bad_a = [-1]
+ power = np.random.power
+ desired = np.array([0.53283302478975902,
+ 0.53413660089041659,
+ 0.50955303552646702])
+
+ self.setSeed()
+ actual = power(a * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, power, bad_a * 3)
+
+ def test_laplace(self):
+ loc = [0]
+ scale = [1]
+ bad_scale = [-1]
+ laplace = np.random.laplace
+ desired = np.array([0.067921356028507157,
+ 0.070715642226971326,
+ 0.019290950698972624])
+
+ self.setSeed()
+ actual = laplace(loc * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, laplace, loc * 3, bad_scale)
+
+ self.setSeed()
+ actual = laplace(loc, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, laplace, loc, bad_scale * 3)
+
+ def test_gumbel(self):
+ loc = [0]
+ scale = [1]
+ bad_scale = [-1]
+ gumbel = np.random.gumbel
+ desired = np.array([0.2730318639556768,
+ 0.26936705726291116,
+ 0.33906220393037939])
+
+ self.setSeed()
+ actual = gumbel(loc * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, gumbel, loc * 3, bad_scale)
+
+ self.setSeed()
+ actual = gumbel(loc, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, gumbel, loc, bad_scale * 3)
+
+ def test_logistic(self):
+ loc = [0]
+ scale = [1]
+ bad_scale = [-1]
+ logistic = np.random.logistic
+ desired = np.array([0.13152135837586171,
+ 0.13675915696285773,
+ 0.038216792802833396])
+
+ self.setSeed()
+ actual = logistic(loc * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, logistic, loc * 3, bad_scale)
+
+ self.setSeed()
+ actual = logistic(loc, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, logistic, loc, bad_scale * 3)
+
+ def test_lognormal(self):
+ mean = [0]
+ sigma = [1]
+ bad_sigma = [-1]
+ lognormal = np.random.lognormal
+ desired = np.array([9.1422086044848427,
+ 8.4013952870126261,
+ 6.3073234116578671])
+
+ self.setSeed()
+ actual = lognormal(mean * 3, sigma)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
+
+ self.setSeed()
+ actual = lognormal(mean, sigma * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, lognormal, mean, bad_sigma * 3)
+
+ def test_rayleigh(self):
+ scale = [1]
+ bad_scale = [-1]
+ rayleigh = np.random.rayleigh
+ desired = np.array([1.2337491937897689,
+ 1.2360119924878694,
+ 1.1936818095781789])
+
+ self.setSeed()
+ actual = rayleigh(scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, rayleigh, bad_scale * 3)
+
+ def test_wald(self):
+ mean = [0.5]
+ scale = [1]
+ bad_mean = [0]
+ bad_scale = [-2]
+ wald = np.random.wald
+ desired = np.array([0.11873681120271318,
+ 0.12450084820795027,
+ 0.9096122728408238])
+
+ self.setSeed()
+ actual = wald(mean * 3, scale)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, wald, bad_mean * 3, scale)
+ assert_raises(ValueError, wald, mean * 3, bad_scale)
+
+ self.setSeed()
+ actual = wald(mean, scale * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, wald, bad_mean, scale * 3)
+ assert_raises(ValueError, wald, mean, bad_scale * 3)
+
+ def test_triangular(self):
+ left = [1]
+ right = [3]
+ mode = [2]
+ bad_left_one = [3]
+ bad_mode_one = [4]
+ bad_left_two, bad_mode_two = right * 2
+ triangular = np.random.triangular
+ desired = np.array([2.03339048710429,
+ 2.0347400359389356,
+ 2.0095991069536208])
+
+ self.setSeed()
+ actual = triangular(left * 3, mode, right)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
+ assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
+ assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, right)
+
+ self.setSeed()
+ actual = triangular(left, mode * 3, right)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
+ assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, right)
+
+ self.setSeed()
+ actual = triangular(left, mode, right * 3)
+ assert_array_almost_equal(actual, desired, decimal=14)
+ assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
+ assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, right * 3)
+
+ def test_binomial(self):
+ n = [1]
+ p = [0.5]
+ bad_n = [-1]
+ bad_p_one = [-1]
+ bad_p_two = [1.5]
+ binom = np.random.binomial
+ desired = np.array([1, 1, 1])
+
+ self.setSeed()
+ actual = binom(n * 3, p)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, binom, bad_n * 3, p)
+ assert_raises(ValueError, binom, n * 3, bad_p_one)
+ assert_raises(ValueError, binom, n * 3, bad_p_two)
+
+ self.setSeed()
+ actual = binom(n, p * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, binom, bad_n, p * 3)
+ assert_raises(ValueError, binom, n, bad_p_one * 3)
+ assert_raises(ValueError, binom, n, bad_p_two * 3)
+
+ def test_negative_binomial(self):
+ n = [1]
+ p = [0.5]
+ bad_n = [-1]
+ bad_p_one = [-1]
+ bad_p_two = [1.5]
+ neg_binom = np.random.negative_binomial
+ desired = np.array([1, 0, 1])
+
+ self.setSeed()
+ actual = neg_binom(n * 3, p)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, neg_binom, bad_n * 3, p)
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
+
+ self.setSeed()
+ actual = neg_binom(n, p * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, neg_binom, bad_n, p * 3)
+ assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
+ assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
+
+ def test_poisson(self):
+ max_lam = np.random.RandomState().poisson_lam_max
+
+ lam = [1]
+ bad_lam_one = [-1]
+ bad_lam_two = [max_lam * 2]
+ poisson = np.random.poisson
+ desired = np.array([1, 1, 0])
+
+ self.setSeed()
+ actual = poisson(lam * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, poisson, bad_lam_one * 3)
+ assert_raises(ValueError, poisson, bad_lam_two * 3)
+
+ def test_zipf(self):
+ a = [2]
+ bad_a = [0]
+ zipf = np.random.zipf
+ desired = np.array([2, 2, 1])
+
+ self.setSeed()
+ actual = zipf(a * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, zipf, bad_a * 3)
+
+ def test_geometric(self):
+ p = [0.5]
+ bad_p_one = [-1]
+ bad_p_two = [1.5]
+ geom = np.random.geometric
+ desired = np.array([2, 2, 2])
+
+ self.setSeed()
+ actual = geom(p * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, geom, bad_p_one * 3)
+ assert_raises(ValueError, geom, bad_p_two * 3)
+
+ def test_hypergeometric(self):
+ ngood = [1]
+ nbad = [2]
+ nsample = [2]
+ bad_ngood = [-1]
+ bad_nbad = [-2]
+ bad_nsample_one = [0]
+ bad_nsample_two = [4]
+ hypergeom = np.random.hypergeometric
+ desired = np.array([1, 1, 1])
+
+ self.setSeed()
+ actual = hypergeom(ngood * 3, nbad, nsample)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample)
+ assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample)
+ assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one)
+ assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two)
+
+ self.setSeed()
+ actual = hypergeom(ngood, nbad * 3, nsample)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample)
+ assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample)
+ assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one)
+ assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two)
+
+ self.setSeed()
+ actual = hypergeom(ngood, nbad, nsample * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
+ assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
+
+ def test_logseries(self):
+ p = [0.5]
+ bad_p_one = [2]
+ bad_p_two = [-1]
+ logseries = np.random.logseries
+ desired = np.array([1, 1, 1])
+
+ self.setSeed()
+ actual = logseries(p * 3)
+ assert_array_equal(actual, desired)
+ assert_raises(ValueError, logseries, bad_p_one * 3)
+ assert_raises(ValueError, logseries, bad_p_two * 3)
+
+class TestThread(TestCase):
# make sure each state produces the same sequence even in threads
def setUp(self):
self.seeds = range(4)
@@ -714,10 +1451,10 @@ class TestThread(object):
function(np.random.RandomState(s), o)
# these platforms change x87 fpu precision mode in threads
- if (np.intp().dtype.itemsize == 4 and sys.platform == "win32"):
- np.testing.assert_array_almost_equal(out1, out2)
+ if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
+ assert_array_almost_equal(out1, out2)
else:
- np.testing.assert_array_equal(out1, out2)
+ assert_array_equal(out1, out2)
def test_normal(self):
def gen_random(state, out):
@@ -732,8 +1469,93 @@ class TestThread(object):
def test_multinomial(self):
def gen_random(state, out):
out[...] = state.multinomial(10, [1/6.]*6, size=10000)
- self.check_function(gen_random, sz=(10000,6))
+ self.check_function(gen_random, sz=(10000, 6))
+# See Issue #4263
+class TestSingleEltArrayInput(TestCase):
+ def setUp(self):
+ self.argOne = np.array([2])
+ self.argTwo = np.array([3])
+ self.argThree = np.array([4])
+ self.tgtShape = (1,)
+
+ def test_one_arg_funcs(self):
+ funcs = (np.random.exponential, np.random.standard_gamma,
+ np.random.chisquare, np.random.standard_t,
+ np.random.pareto, np.random.weibull,
+ np.random.power, np.random.rayleigh,
+ np.random.poisson, np.random.zipf,
+ np.random.geometric, np.random.logseries)
+
+ probfuncs = (np.random.geometric, np.random.logseries)
+
+ for func in funcs:
+ if func in probfuncs: # p < 1.0
+ out = func(np.array([0.5]))
+
+ else:
+ out = func(self.argOne)
+
+ self.assertEqual(out.shape, self.tgtShape)
+
+ def test_two_arg_funcs(self):
+ funcs = (np.random.uniform, np.random.normal,
+ np.random.beta, np.random.gamma,
+ np.random.f, np.random.noncentral_chisquare,
+ np.random.vonmises, np.random.laplace,
+ np.random.gumbel, np.random.logistic,
+ np.random.lognormal, np.random.wald,
+ np.random.binomial, np.random.negative_binomial)
+
+ probfuncs = (np.random.binomial, np.random.negative_binomial)
+
+ for func in funcs:
+ if func in probfuncs: # p <= 1
+ argTwo = np.array([0.5])
+
+ else:
+ argTwo = self.argTwo
+
+ out = func(self.argOne, argTwo)
+ self.assertEqual(out.shape, self.tgtShape)
+
+ out = func(self.argOne[0], argTwo)
+ self.assertEqual(out.shape, self.tgtShape)
+
+ out = func(self.argOne, argTwo[0])
+ self.assertEqual(out.shape, self.tgtShape)
+
+# TODO: Uncomment once randint can broadcast arguments
+# def test_randint(self):
+# itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16,
+# np.int32, np.uint32, np.int64, np.uint64]
+# func = np.random.randint
+# high = np.array([1])
+# low = np.array([0])
+#
+# for dt in itype:
+# out = func(low, high, dtype=dt)
+# self.assert_equal(out.shape, self.tgtShape)
+#
+# out = func(low[0], high, dtype=dt)
+# self.assert_equal(out.shape, self.tgtShape)
+#
+# out = func(low, high[0], dtype=dt)
+# self.assert_equal(out.shape, self.tgtShape)
+
+ def test_three_arg_funcs(self):
+ funcs = [np.random.noncentral_f, np.random.triangular,
+ np.random.hypergeometric]
+
+ for func in funcs:
+ out = func(self.argOne, self.argTwo, self.argThree)
+ self.assertEqual(out.shape, self.tgtShape)
+
+ out = func(self.argOne[0], self.argTwo, self.argThree)
+ self.assertEqual(out.shape, self.tgtShape)
+
+ out = func(self.argOne, self.argTwo[0], self.argThree)
+ self.assertEqual(out.shape, self.tgtShape)
if __name__ == "__main__":
run_module_suite()