diff options
author | Sebastian Berg <sebastian@sipsolutions.net> | 2019-05-28 10:09:13 -0700 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-05-28 10:09:13 -0700 |
commit | 22239d120f59826e8a2c758f4bee9893e835f511 (patch) | |
tree | 185c530dadfd28d5b47753de6f4985be61b8a1f2 /numpy/random/tests/test_randomstate_regression.py | |
parent | 5b06588ec34d2b29502059a4fd86e24da8ddfc96 (diff) | |
parent | 70d6293bf8ae48e68844d34def56e9fb59027433 (diff) | |
download | numpy-22239d120f59826e8a2c758f4bee9893e835f511.tar.gz |
Merge pull request #13163 from mattip/randomgen
ENH: randomgen
This merges randomgen into numpy, which was originally developed at https://github.com/bashtage/randomgen and provides a new and improved API for random number generation with much new and improved functionality.
Diffstat (limited to 'numpy/random/tests/test_randomstate_regression.py')
-rw-r--r-- | numpy/random/tests/test_randomstate_regression.py | 157 |
1 files changed, 157 insertions, 0 deletions
diff --git a/numpy/random/tests/test_randomstate_regression.py b/numpy/random/tests/test_randomstate_regression.py new file mode 100644 index 000000000..9c319319e --- /dev/null +++ b/numpy/random/tests/test_randomstate_regression.py @@ -0,0 +1,157 @@ +import sys +from numpy.testing import ( + assert_, assert_array_equal, assert_raises, + ) +from numpy.compat import long +import numpy as np + +from numpy.random import mtrand as random + + +class TestRegression(object): + + def test_VonMises_range(self): + # Make sure generated random variables are in [-pi, pi]. + # Regression test for ticket #986. + for mu in np.linspace(-7., 7., 5): + r = random.vonmises(mu, 1, 50) + assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) + + def test_hypergeometric_range(self): + # Test for ticket #921 + assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4)) + assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0)) + + # Test for ticket #5623 + args = [ + (2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems + ] + is_64bits = sys.maxsize > 2**32 + if is_64bits and sys.platform != 'win32': + # Check for 64-bit systems + args.append((2**40 - 2, 2**40 - 2, 2**40 - 2)) + for arg in args: + assert_(random.hypergeometric(*arg) > 0) + + def test_logseries_convergence(self): + # Test for ticket #923 + N = 1000 + random.seed(0) + rvsn = random.logseries(0.8, size=N) + # these two frequency counts should be close to theoretical + # numbers with this large sample + # theoretical large N result is 0.49706795 + freq = np.sum(rvsn == 1) / float(N) + msg = "Frequency was %f, should be > 0.45" % freq + assert_(freq > 0.45, msg) + # theoretical large N result is 0.19882718 + freq = np.sum(rvsn == 2) / float(N) + msg = "Frequency was %f, should be < 0.23" % freq + assert_(freq < 0.23, msg) + + def test_permutation_longs(self): + random.seed(1234) + a = random.permutation(12) + random.seed(1234) + b = random.permutation(long(12)) + assert_array_equal(a, b) + + def test_shuffle_mixed_dimension(self): + # Test for trac ticket #2074 + for t in [[1, 2, 3, None], + [(1, 1), (2, 2), (3, 3), None], + [1, (2, 2), (3, 3), None], + [(1, 1), 2, 3, None]]: + random.seed(12345) + shuffled = list(t) + random.shuffle(shuffled) + assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]]) + + def test_call_within_randomstate(self): + # Check that custom RandomState does not call into global state + m = random.RandomState() + res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3]) + for i in range(3): + random.seed(i) + m.seed(4321) + # If m.state is not honored, the result will change + assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res) + + def test_multivariate_normal_size_types(self): + # Test for multivariate_normal issue with 'size' argument. + # Check that the multivariate_normal size argument can be a + # numpy integer. + random.multivariate_normal([0], [[0]], size=1) + random.multivariate_normal([0], [[0]], size=np.int_(1)) + random.multivariate_normal([0], [[0]], size=np.int64(1)) + + def test_beta_small_parameters(self): + # Test that beta with small a and b parameters does not produce + # NaNs due to roundoff errors causing 0 / 0, gh-5851 + random.seed(1234567890) + x = random.beta(0.0001, 0.0001, size=100) + assert_(not np.any(np.isnan(x)), 'Nans in random.beta') + + def test_choice_sum_of_probs_tolerance(self): + # The sum of probs should be 1.0 with some tolerance. + # For low precision dtypes the tolerance was too tight. + # See numpy github issue 6123. + random.seed(1234) + a = [1, 2, 3] + counts = [4, 4, 2] + for dt in np.float16, np.float32, np.float64: + probs = np.array(counts, dtype=dt) / sum(counts) + c = random.choice(a, p=probs) + assert_(c in a) + assert_raises(ValueError, random.choice, a, p=probs*0.9) + + def test_shuffle_of_array_of_different_length_strings(self): + # Test that permuting an array of different length strings + # will not cause a segfault on garbage collection + # Tests gh-7710 + random.seed(1234) + + a = np.array(['a', 'a' * 1000]) + + for _ in range(100): + random.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_shuffle_of_array_of_objects(self): + # Test that permuting an array of objects will not cause + # a segfault on garbage collection. + # See gh-7719 + random.seed(1234) + a = np.array([np.arange(1), np.arange(4)]) + + for _ in range(1000): + random.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_permutation_subclass(self): + class N(np.ndarray): + pass + + random.seed(1) + orig = np.arange(3).view(N) + perm = random.permutation(orig) + assert_array_equal(perm, np.array([0, 2, 1])) + assert_array_equal(orig, np.arange(3).view(N)) + + class M(object): + a = np.arange(5) + + def __array__(self): + return self.a + + random.seed(1) + m = M() + perm = random.permutation(m) + assert_array_equal(perm, np.array([2, 1, 4, 0, 3])) + assert_array_equal(m.__array__(), np.arange(5)) |