summaryrefslogtreecommitdiff
path: root/numpy/random/tests/test_randomstate_regression.py
diff options
context:
space:
mode:
authorSebastian Berg <sebastian@sipsolutions.net>2019-05-28 10:09:13 -0700
committerGitHub <noreply@github.com>2019-05-28 10:09:13 -0700
commit22239d120f59826e8a2c758f4bee9893e835f511 (patch)
tree185c530dadfd28d5b47753de6f4985be61b8a1f2 /numpy/random/tests/test_randomstate_regression.py
parent5b06588ec34d2b29502059a4fd86e24da8ddfc96 (diff)
parent70d6293bf8ae48e68844d34def56e9fb59027433 (diff)
downloadnumpy-22239d120f59826e8a2c758f4bee9893e835f511.tar.gz
Merge pull request #13163 from mattip/randomgen
ENH: randomgen This merges randomgen into numpy, which was originally developed at https://github.com/bashtage/randomgen and provides a new and improved API for random number generation with much new and improved functionality.
Diffstat (limited to 'numpy/random/tests/test_randomstate_regression.py')
-rw-r--r--numpy/random/tests/test_randomstate_regression.py157
1 files changed, 157 insertions, 0 deletions
diff --git a/numpy/random/tests/test_randomstate_regression.py b/numpy/random/tests/test_randomstate_regression.py
new file mode 100644
index 000000000..9c319319e
--- /dev/null
+++ b/numpy/random/tests/test_randomstate_regression.py
@@ -0,0 +1,157 @@
+import sys
+from numpy.testing import (
+ assert_, assert_array_equal, assert_raises,
+ )
+from numpy.compat import long
+import numpy as np
+
+from numpy.random import mtrand as random
+
+
+class TestRegression(object):
+
+ def test_VonMises_range(self):
+ # Make sure generated random variables are in [-pi, pi].
+ # Regression test for ticket #986.
+ for mu in np.linspace(-7., 7., 5):
+ r = random.vonmises(mu, 1, 50)
+ assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
+
+ def test_hypergeometric_range(self):
+ # Test for ticket #921
+ assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4))
+ assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0))
+
+ # Test for ticket #5623
+ args = [
+ (2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems
+ ]
+ is_64bits = sys.maxsize > 2**32
+ if is_64bits and sys.platform != 'win32':
+ # Check for 64-bit systems
+ args.append((2**40 - 2, 2**40 - 2, 2**40 - 2))
+ for arg in args:
+ assert_(random.hypergeometric(*arg) > 0)
+
+ def test_logseries_convergence(self):
+ # Test for ticket #923
+ N = 1000
+ random.seed(0)
+ rvsn = random.logseries(0.8, size=N)
+ # these two frequency counts should be close to theoretical
+ # numbers with this large sample
+ # theoretical large N result is 0.49706795
+ freq = np.sum(rvsn == 1) / float(N)
+ msg = "Frequency was %f, should be > 0.45" % freq
+ assert_(freq > 0.45, msg)
+ # theoretical large N result is 0.19882718
+ freq = np.sum(rvsn == 2) / float(N)
+ msg = "Frequency was %f, should be < 0.23" % freq
+ assert_(freq < 0.23, msg)
+
+ def test_permutation_longs(self):
+ random.seed(1234)
+ a = random.permutation(12)
+ random.seed(1234)
+ b = random.permutation(long(12))
+ assert_array_equal(a, b)
+
+ def test_shuffle_mixed_dimension(self):
+ # Test for trac ticket #2074
+ for t in [[1, 2, 3, None],
+ [(1, 1), (2, 2), (3, 3), None],
+ [1, (2, 2), (3, 3), None],
+ [(1, 1), 2, 3, None]]:
+ random.seed(12345)
+ shuffled = list(t)
+ random.shuffle(shuffled)
+ assert_array_equal(shuffled, [t[0], t[3], t[1], t[2]])
+
+ def test_call_within_randomstate(self):
+ # Check that custom RandomState does not call into global state
+ m = random.RandomState()
+ res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3])
+ for i in range(3):
+ random.seed(i)
+ m.seed(4321)
+ # If m.state is not honored, the result will change
+ assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
+
+ def test_multivariate_normal_size_types(self):
+ # Test for multivariate_normal issue with 'size' argument.
+ # Check that the multivariate_normal size argument can be a
+ # numpy integer.
+ random.multivariate_normal([0], [[0]], size=1)
+ random.multivariate_normal([0], [[0]], size=np.int_(1))
+ random.multivariate_normal([0], [[0]], size=np.int64(1))
+
+ def test_beta_small_parameters(self):
+ # Test that beta with small a and b parameters does not produce
+ # NaNs due to roundoff errors causing 0 / 0, gh-5851
+ random.seed(1234567890)
+ x = random.beta(0.0001, 0.0001, size=100)
+ assert_(not np.any(np.isnan(x)), 'Nans in random.beta')
+
+ def test_choice_sum_of_probs_tolerance(self):
+ # The sum of probs should be 1.0 with some tolerance.
+ # For low precision dtypes the tolerance was too tight.
+ # See numpy github issue 6123.
+ random.seed(1234)
+ a = [1, 2, 3]
+ counts = [4, 4, 2]
+ for dt in np.float16, np.float32, np.float64:
+ probs = np.array(counts, dtype=dt) / sum(counts)
+ c = random.choice(a, p=probs)
+ assert_(c in a)
+ assert_raises(ValueError, random.choice, a, p=probs*0.9)
+
+ def test_shuffle_of_array_of_different_length_strings(self):
+ # Test that permuting an array of different length strings
+ # will not cause a segfault on garbage collection
+ # Tests gh-7710
+ random.seed(1234)
+
+ a = np.array(['a', 'a' * 1000])
+
+ for _ in range(100):
+ random.shuffle(a)
+
+ # Force Garbage Collection - should not segfault.
+ import gc
+ gc.collect()
+
+ def test_shuffle_of_array_of_objects(self):
+ # Test that permuting an array of objects will not cause
+ # a segfault on garbage collection.
+ # See gh-7719
+ random.seed(1234)
+ a = np.array([np.arange(1), np.arange(4)])
+
+ for _ in range(1000):
+ random.shuffle(a)
+
+ # Force Garbage Collection - should not segfault.
+ import gc
+ gc.collect()
+
+ def test_permutation_subclass(self):
+ class N(np.ndarray):
+ pass
+
+ random.seed(1)
+ orig = np.arange(3).view(N)
+ perm = random.permutation(orig)
+ assert_array_equal(perm, np.array([0, 2, 1]))
+ assert_array_equal(orig, np.arange(3).view(N))
+
+ class M(object):
+ a = np.arange(5)
+
+ def __array__(self):
+ return self.a
+
+ random.seed(1)
+ m = M()
+ perm = random.permutation(m)
+ assert_array_equal(perm, np.array([2, 1, 4, 0, 3]))
+ assert_array_equal(m.__array__(), np.arange(5))