summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorSebastian Berg <sebastian@sipsolutions.net>2021-11-08 20:39:50 -0600
committerSebastian Berg <sebastian@sipsolutions.net>2021-11-12 12:12:00 -0600
commit0d5fb819bd6ff8f025db1dfdd0e86e109a64d694 (patch)
tree5d708360e321694125dddd32c3141d1b0462fd14 /numpy
parent8437663e851d358cac74d346d3f3dbb3ad0d52ed (diff)
downloadnumpy-0d5fb819bd6ff8f025db1dfdd0e86e109a64d694.tar.gz
DOC: Remove reference to paper from quantile `method` kwarg
Apparently, sphinx does not resolve references to footnotes from parameter descriptions.
Diffstat (limited to 'numpy')
-rw-r--r--numpy/lib/function_base.py4
-rw-r--r--numpy/lib/nanfunctions.py4
2 files changed, 4 insertions, 4 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 03019f1b5..7d0f7bb6a 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -3899,7 +3899,7 @@ def percentile(a,
This parameter specifies the method to use for estimating the
percentile. There are many different methods, some unique to NumPy.
See the notes for explanation. The options aligning with the R types
- and the H&F paper [1]_ are:
+ and the H&F paper are:
* (H&F 1): 'inverted_cdf'
* (H&F 2): 'averaged_inverted_cdf'
@@ -4178,7 +4178,7 @@ def quantile(a,
This parameter specifies the method to use for estimating the
quantile. There are many different methods, some unique to NumPy.
See the notes for explanation. The options aligning with the R types
- and the H&F paper [1]_ are:
+ and the H&F paper are:
* (H&F 1): 'inverted_cdf'
* (H&F 2): 'averaged_inverted_cdf'
diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py
index 4613c1d26..39e168944 100644
--- a/numpy/lib/nanfunctions.py
+++ b/numpy/lib/nanfunctions.py
@@ -1274,7 +1274,7 @@ def nanpercentile(
This parameter specifies the method to use for estimating the
percentile. There are many different methods, some unique to NumPy.
See the notes for explanation. The options aligning with the R types
- and the H&F paper [1]_ are:
+ and the H&F paper are:
* (H&F 1): 'inverted_cdf'
* (H&F 2): 'averaged_inverted_cdf'
@@ -1428,7 +1428,7 @@ def nanquantile(
This parameter specifies the method to use for estimating the
quantile. There are many different methods, some unique to NumPy.
See the notes for explanation. The options aligning with the R types
- and the H&F paper [1]_ are:
+ and the H&F paper are:
* (H&F 1): 'inverted_cdf'
* (H&F 2): 'averaged_inverted_cdf'