summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
authorMatti Picus <matti.picus@gmail.com>2019-11-13 10:39:43 -0700
committerGitHub <noreply@github.com>2019-11-13 10:39:43 -0700
commit231f59daab0e8ea222a21d524817b2eeb46b9cd7 (patch)
tree004b92b52d581d518957c1446a618c9d9123cda6 /numpy
parent4e8ab26a17b96b7b0bdd41ba5e2cfac09685d153 (diff)
parent3a4b93ecc4dca7df73e22f778c29d07f1bb059c2 (diff)
downloadnumpy-231f59daab0e8ea222a21d524817b2eeb46b9cd7.tar.gz
Merge pull request #14898 from eric-wieser/delete-generated-file
MAINT: Delete and ignore generated files
Diffstat (limited to 'numpy')
-rw-r--r--numpy/random/.gitignore3
-rw-r--r--numpy/random/_bounded_integers.pxd29
-rw-r--r--numpy/random/_bounded_integers.pyx1564
3 files changed, 3 insertions, 1593 deletions
diff --git a/numpy/random/.gitignore b/numpy/random/.gitignore
new file mode 100644
index 000000000..fea3f955a
--- /dev/null
+++ b/numpy/random/.gitignore
@@ -0,0 +1,3 @@
+# generated files
+_bounded_integers.pyx
+_bounded_integers.pxd
diff --git a/numpy/random/_bounded_integers.pxd b/numpy/random/_bounded_integers.pxd
deleted file mode 100644
index d3ee97a70..000000000
--- a/numpy/random/_bounded_integers.pxd
+++ /dev/null
@@ -1,29 +0,0 @@
-from libc.stdint cimport (uint8_t, uint16_t, uint32_t, uint64_t,
- int8_t, int16_t, int32_t, int64_t, intptr_t)
-import numpy as np
-cimport numpy as np
-ctypedef np.npy_bool bool_t
-
-from ._bit_generator cimport bitgen_t
-
-cdef inline uint64_t _gen_mask(uint64_t max_val) nogil:
- """Mask generator for use in bounded random numbers"""
- # Smallest bit mask >= max
- cdef uint64_t mask = max_val
- mask |= mask >> 1
- mask |= mask >> 2
- mask |= mask >> 4
- mask |= mask >> 8
- mask |= mask >> 16
- mask |= mask >> 32
- return mask
-
-cdef object _rand_uint64(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
-cdef object _rand_uint32(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
-cdef object _rand_uint16(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
-cdef object _rand_uint8(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
-cdef object _rand_bool(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
-cdef object _rand_int64(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
-cdef object _rand_int32(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
-cdef object _rand_int16(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
-cdef object _rand_int8(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
diff --git a/numpy/random/_bounded_integers.pyx b/numpy/random/_bounded_integers.pyx
deleted file mode 100644
index d6a534b43..000000000
--- a/numpy/random/_bounded_integers.pyx
+++ /dev/null
@@ -1,1564 +0,0 @@
-#!python
-#cython: wraparound=False, nonecheck=False, boundscheck=False, cdivision=True
-
-import numpy as np
-cimport numpy as np
-
-__all__ = []
-
-np.import_array()
-
-cdef extern from "include/distributions.h":
- # Generate random numbers in closed interval [off, off + rng].
- uint64_t random_bounded_uint64(bitgen_t *bitgen_state,
- uint64_t off, uint64_t rng,
- uint64_t mask, bint use_masked) nogil
- uint32_t random_buffered_bounded_uint32(bitgen_t *bitgen_state,
- uint32_t off, uint32_t rng,
- uint32_t mask, bint use_masked,
- int *bcnt, uint32_t *buf) nogil
- uint16_t random_buffered_bounded_uint16(bitgen_t *bitgen_state,
- uint16_t off, uint16_t rng,
- uint16_t mask, bint use_masked,
- int *bcnt, uint32_t *buf) nogil
- uint8_t random_buffered_bounded_uint8(bitgen_t *bitgen_state,
- uint8_t off, uint8_t rng,
- uint8_t mask, bint use_masked,
- int *bcnt, uint32_t *buf) nogil
- np.npy_bool random_buffered_bounded_bool(bitgen_t *bitgen_state,
- np.npy_bool off, np.npy_bool rng,
- np.npy_bool mask, bint use_masked,
- int *bcnt, uint32_t *buf) nogil
- void random_bounded_uint64_fill(bitgen_t *bitgen_state,
- uint64_t off, uint64_t rng, np.npy_intp cnt,
- bint use_masked,
- uint64_t *out) nogil
- void random_bounded_uint32_fill(bitgen_t *bitgen_state,
- uint32_t off, uint32_t rng, np.npy_intp cnt,
- bint use_masked,
- uint32_t *out) nogil
- void random_bounded_uint16_fill(bitgen_t *bitgen_state,
- uint16_t off, uint16_t rng, np.npy_intp cnt,
- bint use_masked,
- uint16_t *out) nogil
- void random_bounded_uint8_fill(bitgen_t *bitgen_state,
- uint8_t off, uint8_t rng, np.npy_intp cnt,
- bint use_masked,
- uint8_t *out) nogil
- void random_bounded_bool_fill(bitgen_t *bitgen_state,
- np.npy_bool off, np.npy_bool rng, np.npy_intp cnt,
- bint use_masked,
- np.npy_bool *out) nogil
-
-
-
-_integers_types = {'bool': (0, 2),
- 'int8': (-2**7, 2**7),
- 'int16': (-2**15, 2**15),
- 'int32': (-2**31, 2**31),
- 'int64': (-2**63, 2**63),
- 'uint8': (0, 2**8),
- 'uint16': (0, 2**16),
- 'uint32': (0, 2**32),
- 'uint64': (0, 2**64)}
-
-
-cdef object _rand_uint32_broadcast(np.ndarray low, np.ndarray high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- Array path for smaller integer types
-
- This path is simpler since the high value in the open interval [low, high)
- must be in-range for the next larger type, uint64. Here we case to
- this type for checking and the recast to uint32 when producing the
- random integers.
- """
- cdef uint32_t rng, last_rng, off, val, mask, out_val, is_open
- cdef uint32_t buf
- cdef uint32_t *out_data
- cdef uint64_t low_v, high_v
- cdef np.ndarray low_arr, high_arr, out_arr
- cdef np.npy_intp i, cnt
- cdef np.broadcast it
- cdef int buf_rem = 0
-
- # Array path
- is_open = not closed
- low_arr = <np.ndarray>low
- high_arr = <np.ndarray>high
- if np.any(np.less(low_arr, 0)):
- raise ValueError('low is out of bounds for uint32')
- if closed:
- high_comp = np.greater_equal
- low_high_comp = np.greater
- else:
- high_comp = np.greater
- low_high_comp = np.greater_equal
-
- if np.any(high_comp(high_arr, 0X100000000ULL)):
- raise ValueError('high is out of bounds for uint32')
- if np.any(low_high_comp(low_arr, high_arr)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT64, np.NPY_ALIGNED | np.NPY_FORCECAST)
- high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_UINT64, np.NPY_ALIGNED | np.NPY_FORCECAST)
-
- if size is not None:
- out_arr = <np.ndarray>np.empty(size, np.uint32)
- else:
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
- out_arr = <np.ndarray>np.empty(it.shape, np.uint32)
-
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
- out_data = <uint32_t *>np.PyArray_DATA(out_arr)
- cnt = np.PyArray_SIZE(out_arr)
- mask = last_rng = 0
- with lock, nogil:
- for i in range(cnt):
- low_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
- high_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
- # Subtract 1 since generator produces values on the closed int [off, off+rng]
- rng = <uint32_t>((high_v - is_open) - low_v)
- off = <uint32_t>(<uint64_t>low_v)
-
- if rng != last_rng:
- # Smallest bit mask >= max
- mask = <uint32_t>_gen_mask(rng)
-
- out_data[i] = random_buffered_bounded_uint32(state, off, rng, mask, use_masked, &buf_rem, &buf)
-
- np.PyArray_MultiIter_NEXT(it)
- return out_arr
-
-cdef object _rand_uint16_broadcast(np.ndarray low, np.ndarray high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- Array path for smaller integer types
-
- This path is simpler since the high value in the open interval [low, high)
- must be in-range for the next larger type, uint32. Here we case to
- this type for checking and the recast to uint16 when producing the
- random integers.
- """
- cdef uint16_t rng, last_rng, off, val, mask, out_val, is_open
- cdef uint32_t buf
- cdef uint16_t *out_data
- cdef uint32_t low_v, high_v
- cdef np.ndarray low_arr, high_arr, out_arr
- cdef np.npy_intp i, cnt
- cdef np.broadcast it
- cdef int buf_rem = 0
-
- # Array path
- is_open = not closed
- low_arr = <np.ndarray>low
- high_arr = <np.ndarray>high
- if np.any(np.less(low_arr, 0)):
- raise ValueError('low is out of bounds for uint16')
- if closed:
- high_comp = np.greater_equal
- low_high_comp = np.greater
- else:
- high_comp = np.greater
- low_high_comp = np.greater_equal
-
- if np.any(high_comp(high_arr, 0X10000UL)):
- raise ValueError('high is out of bounds for uint16')
- if np.any(low_high_comp(low_arr, high_arr)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT32, np.NPY_ALIGNED | np.NPY_FORCECAST)
- high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_UINT32, np.NPY_ALIGNED | np.NPY_FORCECAST)
-
- if size is not None:
- out_arr = <np.ndarray>np.empty(size, np.uint16)
- else:
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
- out_arr = <np.ndarray>np.empty(it.shape, np.uint16)
-
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
- out_data = <uint16_t *>np.PyArray_DATA(out_arr)
- cnt = np.PyArray_SIZE(out_arr)
- mask = last_rng = 0
- with lock, nogil:
- for i in range(cnt):
- low_v = (<uint32_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
- high_v = (<uint32_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
- # Subtract 1 since generator produces values on the closed int [off, off+rng]
- rng = <uint16_t>((high_v - is_open) - low_v)
- off = <uint16_t>(<uint32_t>low_v)
-
- if rng != last_rng:
- # Smallest bit mask >= max
- mask = <uint16_t>_gen_mask(rng)
-
- out_data[i] = random_buffered_bounded_uint16(state, off, rng, mask, use_masked, &buf_rem, &buf)
-
- np.PyArray_MultiIter_NEXT(it)
- return out_arr
-
-cdef object _rand_uint8_broadcast(np.ndarray low, np.ndarray high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- Array path for smaller integer types
-
- This path is simpler since the high value in the open interval [low, high)
- must be in-range for the next larger type, uint16. Here we case to
- this type for checking and the recast to uint8 when producing the
- random integers.
- """
- cdef uint8_t rng, last_rng, off, val, mask, out_val, is_open
- cdef uint32_t buf
- cdef uint8_t *out_data
- cdef uint16_t low_v, high_v
- cdef np.ndarray low_arr, high_arr, out_arr
- cdef np.npy_intp i, cnt
- cdef np.broadcast it
- cdef int buf_rem = 0
-
- # Array path
- is_open = not closed
- low_arr = <np.ndarray>low
- high_arr = <np.ndarray>high
- if np.any(np.less(low_arr, 0)):
- raise ValueError('low is out of bounds for uint8')
- if closed:
- high_comp = np.greater_equal
- low_high_comp = np.greater
- else:
- high_comp = np.greater
- low_high_comp = np.greater_equal
-
- if np.any(high_comp(high_arr, 0X100UL)):
- raise ValueError('high is out of bounds for uint8')
- if np.any(low_high_comp(low_arr, high_arr)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT16, np.NPY_ALIGNED | np.NPY_FORCECAST)
- high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_UINT16, np.NPY_ALIGNED | np.NPY_FORCECAST)
-
- if size is not None:
- out_arr = <np.ndarray>np.empty(size, np.uint8)
- else:
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
- out_arr = <np.ndarray>np.empty(it.shape, np.uint8)
-
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
- out_data = <uint8_t *>np.PyArray_DATA(out_arr)
- cnt = np.PyArray_SIZE(out_arr)
- mask = last_rng = 0
- with lock, nogil:
- for i in range(cnt):
- low_v = (<uint16_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
- high_v = (<uint16_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
- # Subtract 1 since generator produces values on the closed int [off, off+rng]
- rng = <uint8_t>((high_v - is_open) - low_v)
- off = <uint8_t>(<uint16_t>low_v)
-
- if rng != last_rng:
- # Smallest bit mask >= max
- mask = <uint8_t>_gen_mask(rng)
-
- out_data[i] = random_buffered_bounded_uint8(state, off, rng, mask, use_masked, &buf_rem, &buf)
-
- np.PyArray_MultiIter_NEXT(it)
- return out_arr
-
-cdef object _rand_bool_broadcast(np.ndarray low, np.ndarray high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- Array path for smaller integer types
-
- This path is simpler since the high value in the open interval [low, high)
- must be in-range for the next larger type, uint8. Here we case to
- this type for checking and the recast to bool when producing the
- random integers.
- """
- cdef bool_t rng, last_rng, off, val, mask, out_val, is_open
- cdef uint32_t buf
- cdef bool_t *out_data
- cdef uint8_t low_v, high_v
- cdef np.ndarray low_arr, high_arr, out_arr
- cdef np.npy_intp i, cnt
- cdef np.broadcast it
- cdef int buf_rem = 0
-
- # Array path
- is_open = not closed
- low_arr = <np.ndarray>low
- high_arr = <np.ndarray>high
- if np.any(np.less(low_arr, 0)):
- raise ValueError('low is out of bounds for bool')
- if closed:
- high_comp = np.greater_equal
- low_high_comp = np.greater
- else:
- high_comp = np.greater
- low_high_comp = np.greater_equal
-
- if np.any(high_comp(high_arr, 0x2UL)):
- raise ValueError('high is out of bounds for bool')
- if np.any(low_high_comp(low_arr, high_arr)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT8, np.NPY_ALIGNED | np.NPY_FORCECAST)
- high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_UINT8, np.NPY_ALIGNED | np.NPY_FORCECAST)
-
- if size is not None:
- out_arr = <np.ndarray>np.empty(size, np.bool_)
- else:
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
- out_arr = <np.ndarray>np.empty(it.shape, np.bool_)
-
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
- out_data = <bool_t *>np.PyArray_DATA(out_arr)
- cnt = np.PyArray_SIZE(out_arr)
- mask = last_rng = 0
- with lock, nogil:
- for i in range(cnt):
- low_v = (<uint8_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
- high_v = (<uint8_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
- # Subtract 1 since generator produces values on the closed int [off, off+rng]
- rng = <bool_t>((high_v - is_open) - low_v)
- off = <bool_t>(<uint8_t>low_v)
-
- if rng != last_rng:
- # Smallest bit mask >= max
- mask = <bool_t>_gen_mask(rng)
-
- out_data[i] = random_buffered_bounded_bool(state, off, rng, mask, use_masked, &buf_rem, &buf)
-
- np.PyArray_MultiIter_NEXT(it)
- return out_arr
-
-cdef object _rand_int32_broadcast(np.ndarray low, np.ndarray high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- Array path for smaller integer types
-
- This path is simpler since the high value in the open interval [low, high)
- must be in-range for the next larger type, uint64. Here we case to
- this type for checking and the recast to int32 when producing the
- random integers.
- """
- cdef uint32_t rng, last_rng, off, val, mask, out_val, is_open
- cdef uint32_t buf
- cdef uint32_t *out_data
- cdef uint64_t low_v, high_v
- cdef np.ndarray low_arr, high_arr, out_arr
- cdef np.npy_intp i, cnt
- cdef np.broadcast it
- cdef int buf_rem = 0
-
- # Array path
- is_open = not closed
- low_arr = <np.ndarray>low
- high_arr = <np.ndarray>high
- if np.any(np.less(low_arr, -0x80000000LL)):
- raise ValueError('low is out of bounds for int32')
- if closed:
- high_comp = np.greater_equal
- low_high_comp = np.greater
- else:
- high_comp = np.greater
- low_high_comp = np.greater_equal
-
- if np.any(high_comp(high_arr, 0x80000000LL)):
- raise ValueError('high is out of bounds for int32')
- if np.any(low_high_comp(low_arr, high_arr)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_INT64, np.NPY_ALIGNED | np.NPY_FORCECAST)
- high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_INT64, np.NPY_ALIGNED | np.NPY_FORCECAST)
-
- if size is not None:
- out_arr = <np.ndarray>np.empty(size, np.int32)
- else:
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
- out_arr = <np.ndarray>np.empty(it.shape, np.int32)
-
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
- out_data = <uint32_t *>np.PyArray_DATA(out_arr)
- cnt = np.PyArray_SIZE(out_arr)
- mask = last_rng = 0
- with lock, nogil:
- for i in range(cnt):
- low_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
- high_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
- # Subtract 1 since generator produces values on the closed int [off, off+rng]
- rng = <uint32_t>((high_v - is_open) - low_v)
- off = <uint32_t>(<uint64_t>low_v)
-
- if rng != last_rng:
- # Smallest bit mask >= max
- mask = <uint32_t>_gen_mask(rng)
-
- out_data[i] = random_buffered_bounded_uint32(state, off, rng, mask, use_masked, &buf_rem, &buf)
-
- np.PyArray_MultiIter_NEXT(it)
- return out_arr
-
-cdef object _rand_int16_broadcast(np.ndarray low, np.ndarray high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- Array path for smaller integer types
-
- This path is simpler since the high value in the open interval [low, high)
- must be in-range for the next larger type, uint32. Here we case to
- this type for checking and the recast to int16 when producing the
- random integers.
- """
- cdef uint16_t rng, last_rng, off, val, mask, out_val, is_open
- cdef uint32_t buf
- cdef uint16_t *out_data
- cdef uint32_t low_v, high_v
- cdef np.ndarray low_arr, high_arr, out_arr
- cdef np.npy_intp i, cnt
- cdef np.broadcast it
- cdef int buf_rem = 0
-
- # Array path
- is_open = not closed
- low_arr = <np.ndarray>low
- high_arr = <np.ndarray>high
- if np.any(np.less(low_arr, -0x8000LL)):
- raise ValueError('low is out of bounds for int16')
- if closed:
- high_comp = np.greater_equal
- low_high_comp = np.greater
- else:
- high_comp = np.greater
- low_high_comp = np.greater_equal
-
- if np.any(high_comp(high_arr, 0x8000LL)):
- raise ValueError('high is out of bounds for int16')
- if np.any(low_high_comp(low_arr, high_arr)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_INT32, np.NPY_ALIGNED | np.NPY_FORCECAST)
- high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_INT32, np.NPY_ALIGNED | np.NPY_FORCECAST)
-
- if size is not None:
- out_arr = <np.ndarray>np.empty(size, np.int16)
- else:
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
- out_arr = <np.ndarray>np.empty(it.shape, np.int16)
-
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
- out_data = <uint16_t *>np.PyArray_DATA(out_arr)
- cnt = np.PyArray_SIZE(out_arr)
- mask = last_rng = 0
- with lock, nogil:
- for i in range(cnt):
- low_v = (<uint32_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
- high_v = (<uint32_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
- # Subtract 1 since generator produces values on the closed int [off, off+rng]
- rng = <uint16_t>((high_v - is_open) - low_v)
- off = <uint16_t>(<uint32_t>low_v)
-
- if rng != last_rng:
- # Smallest bit mask >= max
- mask = <uint16_t>_gen_mask(rng)
-
- out_data[i] = random_buffered_bounded_uint16(state, off, rng, mask, use_masked, &buf_rem, &buf)
-
- np.PyArray_MultiIter_NEXT(it)
- return out_arr
-
-cdef object _rand_int8_broadcast(np.ndarray low, np.ndarray high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- Array path for smaller integer types
-
- This path is simpler since the high value in the open interval [low, high)
- must be in-range for the next larger type, uint16. Here we case to
- this type for checking and the recast to int8 when producing the
- random integers.
- """
- cdef uint8_t rng, last_rng, off, val, mask, out_val, is_open
- cdef uint32_t buf
- cdef uint8_t *out_data
- cdef uint16_t low_v, high_v
- cdef np.ndarray low_arr, high_arr, out_arr
- cdef np.npy_intp i, cnt
- cdef np.broadcast it
- cdef int buf_rem = 0
-
- # Array path
- is_open = not closed
- low_arr = <np.ndarray>low
- high_arr = <np.ndarray>high
- if np.any(np.less(low_arr, -0x80LL)):
- raise ValueError('low is out of bounds for int8')
- if closed:
- high_comp = np.greater_equal
- low_high_comp = np.greater
- else:
- high_comp = np.greater
- low_high_comp = np.greater_equal
-
- if np.any(high_comp(high_arr, 0x80LL)):
- raise ValueError('high is out of bounds for int8')
- if np.any(low_high_comp(low_arr, high_arr)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_INT16, np.NPY_ALIGNED | np.NPY_FORCECAST)
- high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.NPY_INT16, np.NPY_ALIGNED | np.NPY_FORCECAST)
-
- if size is not None:
- out_arr = <np.ndarray>np.empty(size, np.int8)
- else:
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
- out_arr = <np.ndarray>np.empty(it.shape, np.int8)
-
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
- out_data = <uint8_t *>np.PyArray_DATA(out_arr)
- cnt = np.PyArray_SIZE(out_arr)
- mask = last_rng = 0
- with lock, nogil:
- for i in range(cnt):
- low_v = (<uint16_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
- high_v = (<uint16_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
- # Subtract 1 since generator produces values on the closed int [off, off+rng]
- rng = <uint8_t>((high_v - is_open) - low_v)
- off = <uint8_t>(<uint16_t>low_v)
-
- if rng != last_rng:
- # Smallest bit mask >= max
- mask = <uint8_t>_gen_mask(rng)
-
- out_data[i] = random_buffered_bounded_uint8(state, off, rng, mask, use_masked, &buf_rem, &buf)
-
- np.PyArray_MultiIter_NEXT(it)
- return out_arr
-
-
-cdef object _rand_uint64_broadcast(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- Array path for 64-bit integer types
-
- Requires special treatment since the high value can be out-of-range for
- the largest (64 bit) integer type since the generator is specified on the
- interval [low,high).
-
- The internal generator does not have this issue since it generates from
- the closes interval [low, high-1] and high-1 is always in range for the
- 64 bit integer type.
- """
-
- cdef np.ndarray low_arr, high_arr, out_arr, highm1_arr
- cdef np.npy_intp i, cnt, n
- cdef np.broadcast it
- cdef object closed_upper
- cdef uint64_t *out_data
- cdef uint64_t *highm1_data
- cdef uint64_t low_v, high_v
- cdef uint64_t rng, last_rng, val, mask, off, out_val
-
- low_arr = <np.ndarray>low
- high_arr = <np.ndarray>high
-
- if np.any(np.less(low_arr, 0x0ULL)):
- raise ValueError('low is out of bounds for uint64')
- dt = high_arr.dtype
- if closed or np.issubdtype(dt, np.integer):
- # Avoid object dtype path if already an integer
- high_lower_comp = np.less if closed else np.less_equal
- if np.any(high_lower_comp(high_arr, 0x0ULL)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
- high_m1 = high_arr if closed else high_arr - dt.type(1)
- if np.any(np.greater(high_m1, 0xFFFFFFFFFFFFFFFFULL)):
- raise ValueError('high is out of bounds for uint64')
- highm1_arr = <np.ndarray>np.PyArray_FROM_OTF(high_m1, np.NPY_UINT64, np.NPY_ALIGNED | np.NPY_FORCECAST)
- else:
- # If input is object or a floating type
- highm1_arr = <np.ndarray>np.empty_like(high_arr, dtype=np.uint64)
- highm1_data = <uint64_t *>np.PyArray_DATA(highm1_arr)
- cnt = np.PyArray_SIZE(high_arr)
- flat = high_arr.flat
- for i in range(cnt):
- # Subtract 1 since generator produces values on the closed int [off, off+rng]
- closed_upper = int(flat[i]) - 1
- if closed_upper > 0xFFFFFFFFFFFFFFFFULL:
- raise ValueError('high is out of bounds for uint64')
- if closed_upper < 0x0ULL:
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
- highm1_data[i] = <uint64_t>closed_upper
-
- if np.any(np.greater(low_arr, highm1_arr)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- high_arr = highm1_arr
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_UINT64, np.NPY_ALIGNED | np.NPY_FORCECAST)
-
- if size is not None:
- out_arr = <np.ndarray>np.empty(size, np.uint64)
- else:
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
- out_arr = <np.ndarray>np.empty(it.shape, np.uint64)
-
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
- out_data = <uint64_t *>np.PyArray_DATA(out_arr)
- n = np.PyArray_SIZE(out_arr)
- mask = last_rng = 0
- with lock, nogil:
- for i in range(n):
- low_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
- high_v = (<uint64_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
- # Generator produces values on the closed int [off, off+rng], -1 subtracted above
- rng = <uint64_t>(high_v - low_v)
- off = <uint64_t>(<uint64_t>low_v)
-
- if rng != last_rng:
- mask = _gen_mask(rng)
- out_data[i] = random_bounded_uint64(state, off, rng, mask, use_masked)
-
- np.PyArray_MultiIter_NEXT(it)
-
- return out_arr
-
-cdef object _rand_int64_broadcast(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- Array path for 64-bit integer types
-
- Requires special treatment since the high value can be out-of-range for
- the largest (64 bit) integer type since the generator is specified on the
- interval [low,high).
-
- The internal generator does not have this issue since it generates from
- the closes interval [low, high-1] and high-1 is always in range for the
- 64 bit integer type.
- """
-
- cdef np.ndarray low_arr, high_arr, out_arr, highm1_arr
- cdef np.npy_intp i, cnt, n
- cdef np.broadcast it
- cdef object closed_upper
- cdef uint64_t *out_data
- cdef int64_t *highm1_data
- cdef int64_t low_v, high_v
- cdef uint64_t rng, last_rng, val, mask, off, out_val
-
- low_arr = <np.ndarray>low
- high_arr = <np.ndarray>high
-
- if np.any(np.less(low_arr, -0x8000000000000000LL)):
- raise ValueError('low is out of bounds for int64')
- dt = high_arr.dtype
- if closed or np.issubdtype(dt, np.integer):
- # Avoid object dtype path if already an integer
- high_lower_comp = np.less if closed else np.less_equal
- if np.any(high_lower_comp(high_arr, -0x8000000000000000LL)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
- high_m1 = high_arr if closed else high_arr - dt.type(1)
- if np.any(np.greater(high_m1, 0x7FFFFFFFFFFFFFFFLL)):
- raise ValueError('high is out of bounds for int64')
- highm1_arr = <np.ndarray>np.PyArray_FROM_OTF(high_m1, np.NPY_INT64, np.NPY_ALIGNED | np.NPY_FORCECAST)
- else:
- # If input is object or a floating type
- highm1_arr = <np.ndarray>np.empty_like(high_arr, dtype=np.int64)
- highm1_data = <int64_t *>np.PyArray_DATA(highm1_arr)
- cnt = np.PyArray_SIZE(high_arr)
- flat = high_arr.flat
- for i in range(cnt):
- # Subtract 1 since generator produces values on the closed int [off, off+rng]
- closed_upper = int(flat[i]) - 1
- if closed_upper > 0x7FFFFFFFFFFFFFFFLL:
- raise ValueError('high is out of bounds for int64')
- if closed_upper < -0x8000000000000000LL:
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
- highm1_data[i] = <int64_t>closed_upper
-
- if np.any(np.greater(low_arr, highm1_arr)):
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- high_arr = highm1_arr
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_INT64, np.NPY_ALIGNED | np.NPY_FORCECAST)
-
- if size is not None:
- out_arr = <np.ndarray>np.empty(size, np.int64)
- else:
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
- out_arr = <np.ndarray>np.empty(it.shape, np.int64)
-
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
- out_data = <uint64_t *>np.PyArray_DATA(out_arr)
- n = np.PyArray_SIZE(out_arr)
- mask = last_rng = 0
- with lock, nogil:
- for i in range(n):
- low_v = (<int64_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
- high_v = (<int64_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
- # Generator produces values on the closed int [off, off+rng], -1 subtracted above
- rng = <uint64_t>(high_v - low_v)
- off = <uint64_t>(<int64_t>low_v)
-
- if rng != last_rng:
- mask = _gen_mask(rng)
- out_data[i] = random_bounded_uint64(state, off, rng, mask, use_masked)
-
- np.PyArray_MultiIter_NEXT(it)
-
- return out_arr
-
-
-cdef object _rand_uint64(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- _rand_uint64(low, high, size, use_masked, *state, lock)
-
- Return random np.uint64 integers from `low` (inclusive) to `high` (exclusive).
-
- Return random integers from the "discrete uniform" distribution in the
- interval [`low`, `high`). If `high` is None (the default),
- then results are from [0, `low`). On entry the arguments are presumed
- to have been validated for size and order for the np.uint64 type.
-
- Parameters
- ----------
- low : int or array-like
- Lowest (signed) integer to be drawn from the distribution (unless
- ``high=None``, in which case this parameter is the *highest* such
- integer).
- high : int or array-like
- If provided, one above the largest (signed) integer to be drawn from the
- distribution (see above for behavior if ``high=None``).
- size : int or tuple of ints
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- use_masked : bool
- If True then rejection sampling with a range mask is used else Lemire's algorithm is used.
- closed : bool
- If True then sample from [low, high]. If False, sample [low, high)
- state : bit generator
- Bit generator state to use in the core random number generators
- lock : threading.Lock
- Lock to prevent multiple using a single generator simultaneously
-
- Returns
- -------
- out : python scalar or ndarray of np.uint64
- `size`-shaped array of random integers from the appropriate
- distribution, or a single such random int if `size` not provided.
-
- Notes
- -----
- The internal integer generator produces values from the closed
- interval [low, high-(not closed)]. This requires some care since
- high can be out-of-range for uint64. The scalar path leaves
- integers as Python integers until the 1 has been subtracted to
- avoid needing to cast to a larger type.
- """
- cdef np.ndarray out_arr, low_arr, high_arr
- cdef uint64_t rng, off, out_val
- cdef uint64_t *out_data
- cdef np.npy_intp i, n, cnt
-
- if size is not None:
- if (np.prod(size) == 0):
- return np.empty(size, dtype=np.uint64)
-
- low_arr = <np.ndarray>np.array(low, copy=False)
- high_arr = <np.ndarray>np.array(high, copy=False)
- low_ndim = np.PyArray_NDIM(low_arr)
- high_ndim = np.PyArray_NDIM(high_arr)
- if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and
- (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))):
- low = int(low_arr)
- high = int(high_arr)
- # Subtract 1 since internal generator produces on closed interval [low, high]
- if not closed:
- high -= 1
-
- if low < 0x0ULL:
- raise ValueError("low is out of bounds for uint64")
- if high > 0xFFFFFFFFFFFFFFFFULL:
- raise ValueError("high is out of bounds for uint64")
- if low > high: # -1 already subtracted, closed interval
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- rng = <uint64_t>(high - low)
- off = <uint64_t>(<uint64_t>low)
- if size is None:
- with lock:
- random_bounded_uint64_fill(state, off, rng, 1, use_masked, &out_val)
- return np.uint64(<uint64_t>out_val)
- else:
- out_arr = <np.ndarray>np.empty(size, np.uint64)
- cnt = np.PyArray_SIZE(out_arr)
- out_data = <uint64_t *>np.PyArray_DATA(out_arr)
- with lock, nogil:
- random_bounded_uint64_fill(state, off, rng, cnt, use_masked, out_data)
- return out_arr
- return _rand_uint64_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock)
-
-cdef object _rand_uint32(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- _rand_uint32(low, high, size, use_masked, *state, lock)
-
- Return random np.uint32 integers from `low` (inclusive) to `high` (exclusive).
-
- Return random integers from the "discrete uniform" distribution in the
- interval [`low`, `high`). If `high` is None (the default),
- then results are from [0, `low`). On entry the arguments are presumed
- to have been validated for size and order for the np.uint32 type.
-
- Parameters
- ----------
- low : int or array-like
- Lowest (signed) integer to be drawn from the distribution (unless
- ``high=None``, in which case this parameter is the *highest* such
- integer).
- high : int or array-like
- If provided, one above the largest (signed) integer to be drawn from the
- distribution (see above for behavior if ``high=None``).
- size : int or tuple of ints
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- use_masked : bool
- If True then rejection sampling with a range mask is used else Lemire's algorithm is used.
- closed : bool
- If True then sample from [low, high]. If False, sample [low, high)
- state : bit generator
- Bit generator state to use in the core random number generators
- lock : threading.Lock
- Lock to prevent multiple using a single generator simultaneously
-
- Returns
- -------
- out : python scalar or ndarray of np.uint32
- `size`-shaped array of random integers from the appropriate
- distribution, or a single such random int if `size` not provided.
-
- Notes
- -----
- The internal integer generator produces values from the closed
- interval [low, high-(not closed)]. This requires some care since
- high can be out-of-range for uint32. The scalar path leaves
- integers as Python integers until the 1 has been subtracted to
- avoid needing to cast to a larger type.
- """
- cdef np.ndarray out_arr, low_arr, high_arr
- cdef uint32_t rng, off, out_val
- cdef uint32_t *out_data
- cdef np.npy_intp i, n, cnt
-
- if size is not None:
- if (np.prod(size) == 0):
- return np.empty(size, dtype=np.uint32)
-
- low_arr = <np.ndarray>np.array(low, copy=False)
- high_arr = <np.ndarray>np.array(high, copy=False)
- low_ndim = np.PyArray_NDIM(low_arr)
- high_ndim = np.PyArray_NDIM(high_arr)
- if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and
- (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))):
- low = int(low_arr)
- high = int(high_arr)
- # Subtract 1 since internal generator produces on closed interval [low, high]
- if not closed:
- high -= 1
-
- if low < 0x0UL:
- raise ValueError("low is out of bounds for uint32")
- if high > 0XFFFFFFFFUL:
- raise ValueError("high is out of bounds for uint32")
- if low > high: # -1 already subtracted, closed interval
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- rng = <uint32_t>(high - low)
- off = <uint32_t>(<uint32_t>low)
- if size is None:
- with lock:
- random_bounded_uint32_fill(state, off, rng, 1, use_masked, &out_val)
- return np.uint32(<uint32_t>out_val)
- else:
- out_arr = <np.ndarray>np.empty(size, np.uint32)
- cnt = np.PyArray_SIZE(out_arr)
- out_data = <uint32_t *>np.PyArray_DATA(out_arr)
- with lock, nogil:
- random_bounded_uint32_fill(state, off, rng, cnt, use_masked, out_data)
- return out_arr
- return _rand_uint32_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock)
-
-cdef object _rand_uint16(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- _rand_uint16(low, high, size, use_masked, *state, lock)
-
- Return random np.uint16 integers from `low` (inclusive) to `high` (exclusive).
-
- Return random integers from the "discrete uniform" distribution in the
- interval [`low`, `high`). If `high` is None (the default),
- then results are from [0, `low`). On entry the arguments are presumed
- to have been validated for size and order for the np.uint16 type.
-
- Parameters
- ----------
- low : int or array-like
- Lowest (signed) integer to be drawn from the distribution (unless
- ``high=None``, in which case this parameter is the *highest* such
- integer).
- high : int or array-like
- If provided, one above the largest (signed) integer to be drawn from the
- distribution (see above for behavior if ``high=None``).
- size : int or tuple of ints
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- use_masked : bool
- If True then rejection sampling with a range mask is used else Lemire's algorithm is used.
- closed : bool
- If True then sample from [low, high]. If False, sample [low, high)
- state : bit generator
- Bit generator state to use in the core random number generators
- lock : threading.Lock
- Lock to prevent multiple using a single generator simultaneously
-
- Returns
- -------
- out : python scalar or ndarray of np.uint16
- `size`-shaped array of random integers from the appropriate
- distribution, or a single such random int if `size` not provided.
-
- Notes
- -----
- The internal integer generator produces values from the closed
- interval [low, high-(not closed)]. This requires some care since
- high can be out-of-range for uint16. The scalar path leaves
- integers as Python integers until the 1 has been subtracted to
- avoid needing to cast to a larger type.
- """
- cdef np.ndarray out_arr, low_arr, high_arr
- cdef uint16_t rng, off, out_val
- cdef uint16_t *out_data
- cdef np.npy_intp i, n, cnt
-
- if size is not None:
- if (np.prod(size) == 0):
- return np.empty(size, dtype=np.uint16)
-
- low_arr = <np.ndarray>np.array(low, copy=False)
- high_arr = <np.ndarray>np.array(high, copy=False)
- low_ndim = np.PyArray_NDIM(low_arr)
- high_ndim = np.PyArray_NDIM(high_arr)
- if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and
- (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))):
- low = int(low_arr)
- high = int(high_arr)
- # Subtract 1 since internal generator produces on closed interval [low, high]
- if not closed:
- high -= 1
-
- if low < 0x0UL:
- raise ValueError("low is out of bounds for uint16")
- if high > 0XFFFFUL:
- raise ValueError("high is out of bounds for uint16")
- if low > high: # -1 already subtracted, closed interval
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- rng = <uint16_t>(high - low)
- off = <uint16_t>(<uint16_t>low)
- if size is None:
- with lock:
- random_bounded_uint16_fill(state, off, rng, 1, use_masked, &out_val)
- return np.uint16(<uint16_t>out_val)
- else:
- out_arr = <np.ndarray>np.empty(size, np.uint16)
- cnt = np.PyArray_SIZE(out_arr)
- out_data = <uint16_t *>np.PyArray_DATA(out_arr)
- with lock, nogil:
- random_bounded_uint16_fill(state, off, rng, cnt, use_masked, out_data)
- return out_arr
- return _rand_uint16_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock)
-
-cdef object _rand_uint8(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- _rand_uint8(low, high, size, use_masked, *state, lock)
-
- Return random np.uint8 integers from `low` (inclusive) to `high` (exclusive).
-
- Return random integers from the "discrete uniform" distribution in the
- interval [`low`, `high`). If `high` is None (the default),
- then results are from [0, `low`). On entry the arguments are presumed
- to have been validated for size and order for the np.uint8 type.
-
- Parameters
- ----------
- low : int or array-like
- Lowest (signed) integer to be drawn from the distribution (unless
- ``high=None``, in which case this parameter is the *highest* such
- integer).
- high : int or array-like
- If provided, one above the largest (signed) integer to be drawn from the
- distribution (see above for behavior if ``high=None``).
- size : int or tuple of ints
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- use_masked : bool
- If True then rejection sampling with a range mask is used else Lemire's algorithm is used.
- closed : bool
- If True then sample from [low, high]. If False, sample [low, high)
- state : bit generator
- Bit generator state to use in the core random number generators
- lock : threading.Lock
- Lock to prevent multiple using a single generator simultaneously
-
- Returns
- -------
- out : python scalar or ndarray of np.uint8
- `size`-shaped array of random integers from the appropriate
- distribution, or a single such random int if `size` not provided.
-
- Notes
- -----
- The internal integer generator produces values from the closed
- interval [low, high-(not closed)]. This requires some care since
- high can be out-of-range for uint8. The scalar path leaves
- integers as Python integers until the 1 has been subtracted to
- avoid needing to cast to a larger type.
- """
- cdef np.ndarray out_arr, low_arr, high_arr
- cdef uint8_t rng, off, out_val
- cdef uint8_t *out_data
- cdef np.npy_intp i, n, cnt
-
- if size is not None:
- if (np.prod(size) == 0):
- return np.empty(size, dtype=np.uint8)
-
- low_arr = <np.ndarray>np.array(low, copy=False)
- high_arr = <np.ndarray>np.array(high, copy=False)
- low_ndim = np.PyArray_NDIM(low_arr)
- high_ndim = np.PyArray_NDIM(high_arr)
- if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and
- (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))):
- low = int(low_arr)
- high = int(high_arr)
- # Subtract 1 since internal generator produces on closed interval [low, high]
- if not closed:
- high -= 1
-
- if low < 0x0UL:
- raise ValueError("low is out of bounds for uint8")
- if high > 0XFFUL:
- raise ValueError("high is out of bounds for uint8")
- if low > high: # -1 already subtracted, closed interval
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- rng = <uint8_t>(high - low)
- off = <uint8_t>(<uint8_t>low)
- if size is None:
- with lock:
- random_bounded_uint8_fill(state, off, rng, 1, use_masked, &out_val)
- return np.uint8(<uint8_t>out_val)
- else:
- out_arr = <np.ndarray>np.empty(size, np.uint8)
- cnt = np.PyArray_SIZE(out_arr)
- out_data = <uint8_t *>np.PyArray_DATA(out_arr)
- with lock, nogil:
- random_bounded_uint8_fill(state, off, rng, cnt, use_masked, out_data)
- return out_arr
- return _rand_uint8_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock)
-
-cdef object _rand_bool(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- _rand_bool(low, high, size, use_masked, *state, lock)
-
- Return random np.bool integers from `low` (inclusive) to `high` (exclusive).
-
- Return random integers from the "discrete uniform" distribution in the
- interval [`low`, `high`). If `high` is None (the default),
- then results are from [0, `low`). On entry the arguments are presumed
- to have been validated for size and order for the np.bool type.
-
- Parameters
- ----------
- low : int or array-like
- Lowest (signed) integer to be drawn from the distribution (unless
- ``high=None``, in which case this parameter is the *highest* such
- integer).
- high : int or array-like
- If provided, one above the largest (signed) integer to be drawn from the
- distribution (see above for behavior if ``high=None``).
- size : int or tuple of ints
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- use_masked : bool
- If True then rejection sampling with a range mask is used else Lemire's algorithm is used.
- closed : bool
- If True then sample from [low, high]. If False, sample [low, high)
- state : bit generator
- Bit generator state to use in the core random number generators
- lock : threading.Lock
- Lock to prevent multiple using a single generator simultaneously
-
- Returns
- -------
- out : python scalar or ndarray of np.bool
- `size`-shaped array of random integers from the appropriate
- distribution, or a single such random int if `size` not provided.
-
- Notes
- -----
- The internal integer generator produces values from the closed
- interval [low, high-(not closed)]. This requires some care since
- high can be out-of-range for bool. The scalar path leaves
- integers as Python integers until the 1 has been subtracted to
- avoid needing to cast to a larger type.
- """
- cdef np.ndarray out_arr, low_arr, high_arr
- cdef bool_t rng, off, out_val
- cdef bool_t *out_data
- cdef np.npy_intp i, n, cnt
-
- if size is not None:
- if (np.prod(size) == 0):
- return np.empty(size, dtype=np.bool)
-
- low_arr = <np.ndarray>np.array(low, copy=False)
- high_arr = <np.ndarray>np.array(high, copy=False)
- low_ndim = np.PyArray_NDIM(low_arr)
- high_ndim = np.PyArray_NDIM(high_arr)
- if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and
- (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))):
- low = int(low_arr)
- high = int(high_arr)
- # Subtract 1 since internal generator produces on closed interval [low, high]
- if not closed:
- high -= 1
-
- if low < 0x0UL:
- raise ValueError("low is out of bounds for bool")
- if high > 0x1UL:
- raise ValueError("high is out of bounds for bool")
- if low > high: # -1 already subtracted, closed interval
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- rng = <bool_t>(high - low)
- off = <bool_t>(<bool_t>low)
- if size is None:
- with lock:
- random_bounded_bool_fill(state, off, rng, 1, use_masked, &out_val)
- return np.bool_(<bool_t>out_val)
- else:
- out_arr = <np.ndarray>np.empty(size, np.bool)
- cnt = np.PyArray_SIZE(out_arr)
- out_data = <bool_t *>np.PyArray_DATA(out_arr)
- with lock, nogil:
- random_bounded_bool_fill(state, off, rng, cnt, use_masked, out_data)
- return out_arr
- return _rand_bool_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock)
-
-cdef object _rand_int64(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- _rand_int64(low, high, size, use_masked, *state, lock)
-
- Return random np.int64 integers from `low` (inclusive) to `high` (exclusive).
-
- Return random integers from the "discrete uniform" distribution in the
- interval [`low`, `high`). If `high` is None (the default),
- then results are from [0, `low`). On entry the arguments are presumed
- to have been validated for size and order for the np.int64 type.
-
- Parameters
- ----------
- low : int or array-like
- Lowest (signed) integer to be drawn from the distribution (unless
- ``high=None``, in which case this parameter is the *highest* such
- integer).
- high : int or array-like
- If provided, one above the largest (signed) integer to be drawn from the
- distribution (see above for behavior if ``high=None``).
- size : int or tuple of ints
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- use_masked : bool
- If True then rejection sampling with a range mask is used else Lemire's algorithm is used.
- closed : bool
- If True then sample from [low, high]. If False, sample [low, high)
- state : bit generator
- Bit generator state to use in the core random number generators
- lock : threading.Lock
- Lock to prevent multiple using a single generator simultaneously
-
- Returns
- -------
- out : python scalar or ndarray of np.int64
- `size`-shaped array of random integers from the appropriate
- distribution, or a single such random int if `size` not provided.
-
- Notes
- -----
- The internal integer generator produces values from the closed
- interval [low, high-(not closed)]. This requires some care since
- high can be out-of-range for uint64. The scalar path leaves
- integers as Python integers until the 1 has been subtracted to
- avoid needing to cast to a larger type.
- """
- cdef np.ndarray out_arr, low_arr, high_arr
- cdef uint64_t rng, off, out_val
- cdef uint64_t *out_data
- cdef np.npy_intp i, n, cnt
-
- if size is not None:
- if (np.prod(size) == 0):
- return np.empty(size, dtype=np.int64)
-
- low_arr = <np.ndarray>np.array(low, copy=False)
- high_arr = <np.ndarray>np.array(high, copy=False)
- low_ndim = np.PyArray_NDIM(low_arr)
- high_ndim = np.PyArray_NDIM(high_arr)
- if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and
- (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))):
- low = int(low_arr)
- high = int(high_arr)
- # Subtract 1 since internal generator produces on closed interval [low, high]
- if not closed:
- high -= 1
-
- if low < -0x8000000000000000LL:
- raise ValueError("low is out of bounds for int64")
- if high > 0x7FFFFFFFFFFFFFFFL:
- raise ValueError("high is out of bounds for int64")
- if low > high: # -1 already subtracted, closed interval
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- rng = <uint64_t>(high - low)
- off = <uint64_t>(<int64_t>low)
- if size is None:
- with lock:
- random_bounded_uint64_fill(state, off, rng, 1, use_masked, &out_val)
- return np.int64(<int64_t>out_val)
- else:
- out_arr = <np.ndarray>np.empty(size, np.int64)
- cnt = np.PyArray_SIZE(out_arr)
- out_data = <uint64_t *>np.PyArray_DATA(out_arr)
- with lock, nogil:
- random_bounded_uint64_fill(state, off, rng, cnt, use_masked, out_data)
- return out_arr
- return _rand_int64_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock)
-
-cdef object _rand_int32(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- _rand_int32(low, high, size, use_masked, *state, lock)
-
- Return random np.int32 integers from `low` (inclusive) to `high` (exclusive).
-
- Return random integers from the "discrete uniform" distribution in the
- interval [`low`, `high`). If `high` is None (the default),
- then results are from [0, `low`). On entry the arguments are presumed
- to have been validated for size and order for the np.int32 type.
-
- Parameters
- ----------
- low : int or array-like
- Lowest (signed) integer to be drawn from the distribution (unless
- ``high=None``, in which case this parameter is the *highest* such
- integer).
- high : int or array-like
- If provided, one above the largest (signed) integer to be drawn from the
- distribution (see above for behavior if ``high=None``).
- size : int or tuple of ints
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- use_masked : bool
- If True then rejection sampling with a range mask is used else Lemire's algorithm is used.
- closed : bool
- If True then sample from [low, high]. If False, sample [low, high)
- state : bit generator
- Bit generator state to use in the core random number generators
- lock : threading.Lock
- Lock to prevent multiple using a single generator simultaneously
-
- Returns
- -------
- out : python scalar or ndarray of np.int32
- `size`-shaped array of random integers from the appropriate
- distribution, or a single such random int if `size` not provided.
-
- Notes
- -----
- The internal integer generator produces values from the closed
- interval [low, high-(not closed)]. This requires some care since
- high can be out-of-range for uint32. The scalar path leaves
- integers as Python integers until the 1 has been subtracted to
- avoid needing to cast to a larger type.
- """
- cdef np.ndarray out_arr, low_arr, high_arr
- cdef uint32_t rng, off, out_val
- cdef uint32_t *out_data
- cdef np.npy_intp i, n, cnt
-
- if size is not None:
- if (np.prod(size) == 0):
- return np.empty(size, dtype=np.int32)
-
- low_arr = <np.ndarray>np.array(low, copy=False)
- high_arr = <np.ndarray>np.array(high, copy=False)
- low_ndim = np.PyArray_NDIM(low_arr)
- high_ndim = np.PyArray_NDIM(high_arr)
- if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and
- (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))):
- low = int(low_arr)
- high = int(high_arr)
- # Subtract 1 since internal generator produces on closed interval [low, high]
- if not closed:
- high -= 1
-
- if low < -0x80000000L:
- raise ValueError("low is out of bounds for int32")
- if high > 0x7FFFFFFFL:
- raise ValueError("high is out of bounds for int32")
- if low > high: # -1 already subtracted, closed interval
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- rng = <uint32_t>(high - low)
- off = <uint32_t>(<int32_t>low)
- if size is None:
- with lock:
- random_bounded_uint32_fill(state, off, rng, 1, use_masked, &out_val)
- return np.int32(<int32_t>out_val)
- else:
- out_arr = <np.ndarray>np.empty(size, np.int32)
- cnt = np.PyArray_SIZE(out_arr)
- out_data = <uint32_t *>np.PyArray_DATA(out_arr)
- with lock, nogil:
- random_bounded_uint32_fill(state, off, rng, cnt, use_masked, out_data)
- return out_arr
- return _rand_int32_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock)
-
-cdef object _rand_int16(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- _rand_int16(low, high, size, use_masked, *state, lock)
-
- Return random np.int16 integers from `low` (inclusive) to `high` (exclusive).
-
- Return random integers from the "discrete uniform" distribution in the
- interval [`low`, `high`). If `high` is None (the default),
- then results are from [0, `low`). On entry the arguments are presumed
- to have been validated for size and order for the np.int16 type.
-
- Parameters
- ----------
- low : int or array-like
- Lowest (signed) integer to be drawn from the distribution (unless
- ``high=None``, in which case this parameter is the *highest* such
- integer).
- high : int or array-like
- If provided, one above the largest (signed) integer to be drawn from the
- distribution (see above for behavior if ``high=None``).
- size : int or tuple of ints
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- use_masked : bool
- If True then rejection sampling with a range mask is used else Lemire's algorithm is used.
- closed : bool
- If True then sample from [low, high]. If False, sample [low, high)
- state : bit generator
- Bit generator state to use in the core random number generators
- lock : threading.Lock
- Lock to prevent multiple using a single generator simultaneously
-
- Returns
- -------
- out : python scalar or ndarray of np.int16
- `size`-shaped array of random integers from the appropriate
- distribution, or a single such random int if `size` not provided.
-
- Notes
- -----
- The internal integer generator produces values from the closed
- interval [low, high-(not closed)]. This requires some care since
- high can be out-of-range for uint16. The scalar path leaves
- integers as Python integers until the 1 has been subtracted to
- avoid needing to cast to a larger type.
- """
- cdef np.ndarray out_arr, low_arr, high_arr
- cdef uint16_t rng, off, out_val
- cdef uint16_t *out_data
- cdef np.npy_intp i, n, cnt
-
- if size is not None:
- if (np.prod(size) == 0):
- return np.empty(size, dtype=np.int16)
-
- low_arr = <np.ndarray>np.array(low, copy=False)
- high_arr = <np.ndarray>np.array(high, copy=False)
- low_ndim = np.PyArray_NDIM(low_arr)
- high_ndim = np.PyArray_NDIM(high_arr)
- if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and
- (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))):
- low = int(low_arr)
- high = int(high_arr)
- # Subtract 1 since internal generator produces on closed interval [low, high]
- if not closed:
- high -= 1
-
- if low < -0x8000L:
- raise ValueError("low is out of bounds for int16")
- if high > 0x7FFFL:
- raise ValueError("high is out of bounds for int16")
- if low > high: # -1 already subtracted, closed interval
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- rng = <uint16_t>(high - low)
- off = <uint16_t>(<int16_t>low)
- if size is None:
- with lock:
- random_bounded_uint16_fill(state, off, rng, 1, use_masked, &out_val)
- return np.int16(<int16_t>out_val)
- else:
- out_arr = <np.ndarray>np.empty(size, np.int16)
- cnt = np.PyArray_SIZE(out_arr)
- out_data = <uint16_t *>np.PyArray_DATA(out_arr)
- with lock, nogil:
- random_bounded_uint16_fill(state, off, rng, cnt, use_masked, out_data)
- return out_arr
- return _rand_int16_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock)
-
-cdef object _rand_int8(object low, object high, object size,
- bint use_masked, bint closed,
- bitgen_t *state, object lock):
- """
- _rand_int8(low, high, size, use_masked, *state, lock)
-
- Return random np.int8 integers from `low` (inclusive) to `high` (exclusive).
-
- Return random integers from the "discrete uniform" distribution in the
- interval [`low`, `high`). If `high` is None (the default),
- then results are from [0, `low`). On entry the arguments are presumed
- to have been validated for size and order for the np.int8 type.
-
- Parameters
- ----------
- low : int or array-like
- Lowest (signed) integer to be drawn from the distribution (unless
- ``high=None``, in which case this parameter is the *highest* such
- integer).
- high : int or array-like
- If provided, one above the largest (signed) integer to be drawn from the
- distribution (see above for behavior if ``high=None``).
- size : int or tuple of ints
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
- ``m * n * k`` samples are drawn. Default is None, in which case a
- single value is returned.
- use_masked : bool
- If True then rejection sampling with a range mask is used else Lemire's algorithm is used.
- closed : bool
- If True then sample from [low, high]. If False, sample [low, high)
- state : bit generator
- Bit generator state to use in the core random number generators
- lock : threading.Lock
- Lock to prevent multiple using a single generator simultaneously
-
- Returns
- -------
- out : python scalar or ndarray of np.int8
- `size`-shaped array of random integers from the appropriate
- distribution, or a single such random int if `size` not provided.
-
- Notes
- -----
- The internal integer generator produces values from the closed
- interval [low, high-(not closed)]. This requires some care since
- high can be out-of-range for uint8. The scalar path leaves
- integers as Python integers until the 1 has been subtracted to
- avoid needing to cast to a larger type.
- """
- cdef np.ndarray out_arr, low_arr, high_arr
- cdef uint8_t rng, off, out_val
- cdef uint8_t *out_data
- cdef np.npy_intp i, n, cnt
-
- if size is not None:
- if (np.prod(size) == 0):
- return np.empty(size, dtype=np.int8)
-
- low_arr = <np.ndarray>np.array(low, copy=False)
- high_arr = <np.ndarray>np.array(high, copy=False)
- low_ndim = np.PyArray_NDIM(low_arr)
- high_ndim = np.PyArray_NDIM(high_arr)
- if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and
- (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))):
- low = int(low_arr)
- high = int(high_arr)
- # Subtract 1 since internal generator produces on closed interval [low, high]
- if not closed:
- high -= 1
-
- if low < -0x80L:
- raise ValueError("low is out of bounds for int8")
- if high > 0x7FL:
- raise ValueError("high is out of bounds for int8")
- if low > high: # -1 already subtracted, closed interval
- comp = '>' if closed else '>='
- raise ValueError('low {comp} high'.format(comp=comp))
-
- rng = <uint8_t>(high - low)
- off = <uint8_t>(<int8_t>low)
- if size is None:
- with lock:
- random_bounded_uint8_fill(state, off, rng, 1, use_masked, &out_val)
- return np.int8(<int8_t>out_val)
- else:
- out_arr = <np.ndarray>np.empty(size, np.int8)
- cnt = np.PyArray_SIZE(out_arr)
- out_data = <uint8_t *>np.PyArray_DATA(out_arr)
- with lock, nogil:
- random_bounded_uint8_fill(state, off, rng, cnt, use_masked, out_data)
- return out_arr
- return _rand_int8_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock)