diff options
author | Charles Harris <charlesr.harris@gmail.com> | 2018-10-11 14:03:45 -0500 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-10-11 14:03:45 -0500 |
commit | 2ae00145aa77a08cb1c504152fb8d910e0b3c346 (patch) | |
tree | e163f59c6ece2f2435f3196092a6313102f1db0c /numpy | |
parent | eb2bd11870731ea19a0eee72e616c7deb00f6c54 (diff) | |
parent | 4141e24fc201f8cf76180ca69eaa2d89eafaee58 (diff) | |
download | numpy-2ae00145aa77a08cb1c504152fb8d910e0b3c346.tar.gz |
Merge pull request #12116 from shoyer/array-function-numpy-lib
ENH: __array_function__ support for np.lib, part 1/2
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/lib/arraypad.py | 6 | ||||
-rw-r--r-- | numpy/lib/arraysetops.py | 39 | ||||
-rw-r--r-- | numpy/lib/financial.py | 64 | ||||
-rw-r--r-- | numpy/lib/function_base.py | 159 | ||||
-rw-r--r-- | numpy/lib/histograms.py | 18 | ||||
-rw-r--r-- | numpy/lib/index_tricks.py | 17 | ||||
-rw-r--r-- | numpy/lib/nanfunctions.py | 76 |
7 files changed, 379 insertions, 0 deletions
diff --git a/numpy/lib/arraypad.py b/numpy/lib/arraypad.py index e9ca9de4d..f76ad456f 100644 --- a/numpy/lib/arraypad.py +++ b/numpy/lib/arraypad.py @@ -6,6 +6,7 @@ of an n-dimensional array. from __future__ import division, absolute_import, print_function import numpy as np +from numpy.core.overrides import array_function_dispatch __all__ = ['pad'] @@ -990,6 +991,11 @@ def _validate_lengths(narray, number_elements): # Public functions +def _pad_dispatcher(array, pad_width, mode, **kwargs): + return (array,) + + +@array_function_dispatch(_pad_dispatcher) def pad(array, pad_width, mode, **kwargs): """ Pads an array. diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py index 62e9b6d50..2f8c07114 100644 --- a/numpy/lib/arraysetops.py +++ b/numpy/lib/arraysetops.py @@ -28,6 +28,7 @@ To do: Optionally return indices analogously to unique for all functions. from __future__ import division, absolute_import, print_function import numpy as np +from numpy.core.overrides import array_function_dispatch __all__ = [ @@ -36,6 +37,11 @@ __all__ = [ ] +def _ediff1d_dispatcher(ary, to_end=None, to_begin=None): + return (ary, to_end, to_begin) + + +@array_function_dispatch(_ediff1d_dispatcher) def ediff1d(ary, to_end=None, to_begin=None): """ The differences between consecutive elements of an array. @@ -133,6 +139,12 @@ def _unpack_tuple(x): return x +def _unique_dispatcher(ar, return_index=None, return_inverse=None, + return_counts=None, axis=None): + return (ar,) + + +@array_function_dispatch(_unique_dispatcher) def unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None): """ @@ -313,6 +325,12 @@ def _unique1d(ar, return_index=False, return_inverse=False, return ret +def _intersect1d_dispatcher( + ar1, ar2, assume_unique=None, return_indices=None): + return (ar1, ar2) + + +@array_function_dispatch(_intersect1d_dispatcher) def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): """ Find the intersection of two arrays. @@ -408,6 +426,11 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): return int1d +def _setxor1d_dispatcher(ar1, ar2, assume_unique=None): + return (ar1, ar2) + + +@array_function_dispatch(_setxor1d_dispatcher) def setxor1d(ar1, ar2, assume_unique=False): """ Find the set exclusive-or of two arrays. @@ -562,6 +585,11 @@ def in1d(ar1, ar2, assume_unique=False, invert=False): return ret[rev_idx] +def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None): + return (element, test_elements) + + +@array_function_dispatch(_isin_dispatcher) def isin(element, test_elements, assume_unique=False, invert=False): """ Calculates `element in test_elements`, broadcasting over `element` only. @@ -660,6 +688,11 @@ def isin(element, test_elements, assume_unique=False, invert=False): invert=invert).reshape(element.shape) +def _union1d_dispatcher(ar1, ar2): + return (ar1, ar2) + + +@array_function_dispatch(_union1d_dispatcher) def union1d(ar1, ar2): """ Find the union of two arrays. @@ -695,6 +728,12 @@ def union1d(ar1, ar2): """ return unique(np.concatenate((ar1, ar2), axis=None)) + +def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None): + return (ar1, ar2) + + +@array_function_dispatch(_setdiff1d_dispatcher) def setdiff1d(ar1, ar2, assume_unique=False): """ Find the set difference of two arrays. diff --git a/numpy/lib/financial.py b/numpy/lib/financial.py index 06fa1bd92..d1a0cd9c0 100644 --- a/numpy/lib/financial.py +++ b/numpy/lib/financial.py @@ -15,6 +15,8 @@ from __future__ import division, absolute_import, print_function from decimal import Decimal import numpy as np +from numpy.core.overrides import array_function_dispatch + __all__ = ['fv', 'pmt', 'nper', 'ipmt', 'ppmt', 'pv', 'rate', 'irr', 'npv', 'mirr'] @@ -36,6 +38,12 @@ def _convert_when(when): except (KeyError, TypeError): return [_when_to_num[x] for x in when] + +def _fv_dispatcher(rate, nper, pmt, pv, when=None): + return (rate, nper, pmt, pv) + + +@array_function_dispatch(_fv_dispatcher) def fv(rate, nper, pmt, pv, when='end'): """ Compute the future value. @@ -124,6 +132,12 @@ def fv(rate, nper, pmt, pv, when='end'): (1 + rate*when)*(temp - 1)/rate) return -(pv*temp + pmt*fact) + +def _pmt_dispatcher(rate, nper, pv, fv=None, when=None): + return (rate, nper, pv, fv) + + +@array_function_dispatch(_pmt_dispatcher) def pmt(rate, nper, pv, fv=0, when='end'): """ Compute the payment against loan principal plus interest. @@ -216,6 +230,12 @@ def pmt(rate, nper, pv, fv=0, when='end'): (1 + masked_rate*when)*(temp - 1)/masked_rate) return -(fv + pv*temp) / fact + +def _nper_dispatcher(rate, pmt, pv, fv=None, when=None): + return (rate, pmt, pv, fv) + + +@array_function_dispatch(_nper_dispatcher) def nper(rate, pmt, pv, fv=0, when='end'): """ Compute the number of periodic payments. @@ -284,6 +304,12 @@ def nper(rate, pmt, pv, fv=0, when='end'): B = np.log((-fv+z) / (pv+z))/np.log(1+rate) return np.where(rate == 0, A, B) + +def _ipmt_dispatcher(rate, per, nper, pv, fv=None, when=None): + return (rate, per, nper, pv, fv) + + +@array_function_dispatch(_ipmt_dispatcher) def ipmt(rate, per, nper, pv, fv=0, when='end'): """ Compute the interest portion of a payment. @@ -379,6 +405,7 @@ def ipmt(rate, per, nper, pv, fv=0, when='end'): pass return ipmt + def _rbl(rate, per, pmt, pv, when): """ This function is here to simply have a different name for the 'fv' @@ -388,6 +415,12 @@ def _rbl(rate, per, pmt, pv, when): """ return fv(rate, (per - 1), pmt, pv, when) + +def _ppmt_dispatcher(rate, per, nper, pv, fv=None, when=None): + return (rate, per, nper, pv, fv) + + +@array_function_dispatch(_ppmt_dispatcher) def ppmt(rate, per, nper, pv, fv=0, when='end'): """ Compute the payment against loan principal. @@ -416,6 +449,12 @@ def ppmt(rate, per, nper, pv, fv=0, when='end'): total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when) + +def _pv_dispatcher(rate, nper, pmt, fv=None, when=None): + return (rate, nper, nper, pv, fv) + + +@array_function_dispatch(_pv_dispatcher) def pv(rate, nper, pmt, fv=0, when='end'): """ Compute the present value. @@ -520,6 +559,12 @@ def _g_div_gp(r, n, p, x, y, w): (n*t2*x - p*(t1 - 1)*(r*w + 1)/(r**2) + n*p*t2*(r*w + 1)/r + p*(t1 - 1)*w/r)) + +def _rate_dispatcher(nper, pmt, pv, fv, when=None, guess=None, tol=None, + maxiter=None): + return (nper, pmt, pv, fv) + + # Use Newton's iteration until the change is less than 1e-6 # for all values or a maximum of 100 iterations is reached. # Newton's rule is @@ -527,6 +572,7 @@ def _g_div_gp(r, n, p, x, y, w): # where # g(r) is the formula # g'(r) is the derivative with respect to r. +@array_function_dispatch(_rate_dispatcher) def rate(nper, pmt, pv, fv, when='end', guess=None, tol=None, maxiter=100): """ Compute the rate of interest per period. @@ -598,6 +644,12 @@ def rate(nper, pmt, pv, fv, when='end', guess=None, tol=None, maxiter=100): else: return rn + +def _irr_dispatcher(values): + return (values,) + + +@array_function_dispatch(_irr_dispatcher) def irr(values): """ Return the Internal Rate of Return (IRR). @@ -677,6 +729,12 @@ def irr(values): rate = rate.item(np.argmin(np.abs(rate))) return rate + +def _npv_dispatcher(rate, values): + return (values,) + + +@array_function_dispatch(_npv_dispatcher) def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. @@ -722,6 +780,12 @@ def npv(rate, values): values = np.asarray(values) return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0) + +def _mirr_dispatcher(values, finance_rate, reinvest_rate): + return (values,) + + +@array_function_dispatch(_mirr_dispatcher) def mirr(values, finance_rate, reinvest_rate): """ Modified internal rate of return. diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index e2a8f4bc2..c52ecdbd8 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -26,6 +26,7 @@ from numpy.core.fromnumeric import ( ravel, nonzero, partition, mean, any, sum ) from numpy.core.numerictypes import typecodes +from numpy.core.overrides import array_function_dispatch from numpy.core.function_base import add_newdoc from numpy.lib.twodim_base import diag from .utils import deprecate @@ -58,6 +59,11 @@ __all__ = [ ] +def _rot90_dispatcher(m, k=None, axes=None): + return (m,) + + +@array_function_dispatch(_rot90_dispatcher) def rot90(m, k=1, axes=(0,1)): """ Rotate an array by 90 degrees in the plane specified by axes. @@ -144,6 +150,11 @@ def rot90(m, k=1, axes=(0,1)): return flip(transpose(m, axes_list), axes[1]) +def _flip_dispatcher(m, axis=None): + return (m,) + + +@array_function_dispatch(_flip_dispatcher) def flip(m, axis=None): """ Reverse the order of elements in an array along the given axis. @@ -268,6 +279,11 @@ def iterable(y): return True +def _average_dispatcher(a, axis=None, weights=None, returned=None): + return (a, weights) + + +@array_function_dispatch(_average_dispatcher) def average(a, axis=None, weights=None, returned=False): """ Compute the weighted average along the specified axis. @@ -474,6 +490,15 @@ def asarray_chkfinite(a, dtype=None, order=None): return a +def _piecewise_dispatcher(x, condlist, funclist, *args, **kw): + yield x + # support the undocumented behavior of allowing scalars + if np.iterable(condlist): + for c in condlist: + yield c + + +@array_function_dispatch(_piecewise_dispatcher) def piecewise(x, condlist, funclist, *args, **kw): """ Evaluate a piecewise-defined function. @@ -595,6 +620,14 @@ def piecewise(x, condlist, funclist, *args, **kw): return y +def _select_dispatcher(condlist, choicelist, default=None): + for c in condlist: + yield c + for c in choicelist: + yield c + + +@array_function_dispatch(_select_dispatcher) def select(condlist, choicelist, default=0): """ Return an array drawn from elements in choicelist, depending on conditions. @@ -698,6 +731,11 @@ def select(condlist, choicelist, default=0): return result +def _copy_dispatcher(a, order=None): + return (a,) + + +@array_function_dispatch(_copy_dispatcher) def copy(a, order='K'): """ Return an array copy of the given object. @@ -747,6 +785,13 @@ def copy(a, order='K'): # Basic operations +def _gradient_dispatcher(f, *varargs, **kwargs): + yield f + for v in varargs: + yield v + + +@array_function_dispatch(_gradient_dispatcher) def gradient(f, *varargs, **kwargs): """ Return the gradient of an N-dimensional array. @@ -1088,6 +1133,11 @@ def gradient(f, *varargs, **kwargs): return outvals +def _diff_dispatcher(a, n=None, axis=None, prepend=None, append=None): + return (a, prepend, append) + + +@array_function_dispatch(_diff_dispatcher) def diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): """ Calculate the n-th discrete difference along the given axis. @@ -1216,6 +1266,11 @@ def diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): return a +def _interp_dispatcher(x, xp, fp, left=None, right=None, period=None): + return (x, xp, fp) + + +@array_function_dispatch(_interp_dispatcher) def interp(x, xp, fp, left=None, right=None, period=None): """ One-dimensional linear interpolation. @@ -1348,6 +1403,11 @@ def interp(x, xp, fp, left=None, right=None, period=None): return interp_func(x, xp, fp, left, right) +def _angle_dispatcher(z, deg=None): + return (z,) + + +@array_function_dispatch(_angle_dispatcher) def angle(z, deg=False): """ Return the angle of the complex argument. @@ -1395,6 +1455,11 @@ def angle(z, deg=False): return a +def _unwrap_dispatcher(p, discont=None, axis=None): + return (p,) + + +@array_function_dispatch(_unwrap_dispatcher) def unwrap(p, discont=pi, axis=-1): """ Unwrap by changing deltas between values to 2*pi complement. @@ -1451,6 +1516,11 @@ def unwrap(p, discont=pi, axis=-1): return up +def _sort_complex(a): + return (a,) + + +@array_function_dispatch(_sort_complex) def sort_complex(a): """ Sort a complex array using the real part first, then the imaginary part. @@ -1487,6 +1557,11 @@ def sort_complex(a): return b +def _trim_zeros(filt, trim=None): + return (filt,) + + +@array_function_dispatch(_trim_zeros) def trim_zeros(filt, trim='fb'): """ Trim the leading and/or trailing zeros from a 1-D array or sequence. @@ -1556,6 +1631,11 @@ def unique(x): return asarray(items) +def _extract_dispatcher(condition, arr): + return (condition, arr) + + +@array_function_dispatch(_extract_dispatcher) def extract(condition, arr): """ Return the elements of an array that satisfy some condition. @@ -1607,6 +1687,11 @@ def extract(condition, arr): return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) +def _place_dispatcher(arr, mask, vals): + return (arr, mask, vals) + + +@array_function_dispatch(_place_dispatcher) def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. @@ -2161,6 +2246,12 @@ class vectorize(object): return outputs[0] if nout == 1 else outputs +def _cov_dispatcher(m, y=None, rowvar=None, bias=None, ddof=None, + fweights=None, aweights=None): + return (m, y, fweights, aweights) + + +@array_function_dispatch(_cov_dispatcher) def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None): """ @@ -2370,6 +2461,11 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, return c.squeeze() +def _corrcoef_dispatcher(x, y=None, rowvar=None, bias=None, ddof=None): + return (x, y) + + +@array_function_dispatch(_corrcoef_dispatcher) def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue): """ Return Pearson product-moment correlation coefficients. @@ -2938,6 +3034,11 @@ def _i0_2(x): return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) +def _i0_dispatcher(x): + return (x,) + + +@array_function_dispatch(_i0_dispatcher) def i0(x): """ Modified Bessel function of the first kind, order 0. @@ -3132,6 +3233,11 @@ def kaiser(M, beta): return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) +def _sinc_dispatcher(x): + return (x,) + + +@array_function_dispatch(_sinc_dispatcher) def sinc(x): """ Return the sinc function. @@ -3211,6 +3317,11 @@ def sinc(x): return sin(y)/y +def _msort_dispatcher(a): + return (a,) + + +@array_function_dispatch(_msort_dispatcher) def msort(a): """ Return a copy of an array sorted along the first axis. @@ -3294,6 +3405,12 @@ def _ureduce(a, func, **kwargs): return r, keepdim +def _median_dispatcher( + a, axis=None, out=None, overwrite_input=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_median_dispatcher) def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): """ Compute the median along the specified axis. @@ -3438,6 +3555,12 @@ def _median(a, axis=None, out=None, overwrite_input=False): return mean(part[indexer], axis=axis, out=out) +def _percentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + interpolation=None, keepdims=None): + return (a, q, out) + + +@array_function_dispatch(_percentile_dispatcher) def percentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): """ @@ -3583,6 +3706,12 @@ def percentile(a, q, axis=None, out=None, a, q, axis, out, overwrite_input, interpolation, keepdims) +def _quantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + interpolation=None, keepdims=None): + return (a, q, out) + + +@array_function_dispatch(_quantile_dispatcher) def quantile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=False): """ @@ -3845,6 +3974,11 @@ def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False, return r +def _trapz_dispatcher(y, x=None, dx=None, axis=None): + return (y, x) + + +@array_function_dispatch(_trapz_dispatcher) def trapz(y, x=None, dx=1.0, axis=-1): """ Integrate along the given axis using the composite trapezoidal rule. @@ -3935,7 +4069,12 @@ def trapz(y, x=None, dx=1.0, axis=-1): return ret +def _meshgrid_dispatcher(*xi, **kwargs): + return xi + + # Based on scitools meshgrid +@array_function_dispatch(_meshgrid_dispatcher) def meshgrid(*xi, **kwargs): """ Return coordinate matrices from coordinate vectors. @@ -4073,6 +4212,11 @@ def meshgrid(*xi, **kwargs): return output +def _delete_dispatcher(arr, obj, axis=None): + return (arr, obj) + + +@array_function_dispatch(_delete_dispatcher) def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. For a one @@ -4278,6 +4422,11 @@ def delete(arr, obj, axis=None): return new +def _insert_dispatcher(arr, obj, values, axis=None): + return (arr, obj, values) + + +@array_function_dispatch(_insert_dispatcher) def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. @@ -4484,6 +4633,11 @@ def insert(arr, obj, values, axis=None): return new +def _append_dispatcher(arr, values, axis=None): + return (arr, values) + + +@array_function_dispatch(_append_dispatcher) def append(arr, values, axis=None): """ Append values to the end of an array. @@ -4539,6 +4693,11 @@ def append(arr, values, axis=None): return concatenate((arr, values), axis=axis) +def _digitize_dispatcher(x, bins, right=None): + return (x, bins) + + +@array_function_dispatch(_digitize_dispatcher) def digitize(x, bins, right=False): """ Return the indices of the bins to which each value in input array belongs. diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py index 6a66e4a73..1ff25b81f 100644 --- a/numpy/lib/histograms.py +++ b/numpy/lib/histograms.py @@ -8,6 +8,7 @@ import warnings import numpy as np from numpy.compat.py3k import basestring +from numpy.core.overrides import array_function_dispatch __all__ = ['histogram', 'histogramdd', 'histogram_bin_edges'] @@ -400,6 +401,11 @@ def _search_sorted_inclusive(a, v): )) +def _histogram_bin_edges_dispatcher(a, bins=None, range=None, weights=None): + return (a, bins, weights) + + +@array_function_dispatch(_histogram_bin_edges_dispatcher) def histogram_bin_edges(a, bins=10, range=None, weights=None): r""" Function to calculate only the edges of the bins used by the `histogram` function. @@ -594,6 +600,12 @@ def histogram_bin_edges(a, bins=10, range=None, weights=None): return bin_edges +def _histogram_dispatcher( + a, bins=None, range=None, normed=None, weights=None, density=None): + return (a, bins, weights) + + +@array_function_dispatch(_histogram_dispatcher) def histogram(a, bins=10, range=None, normed=None, weights=None, density=None): r""" @@ -846,6 +858,12 @@ def histogram(a, bins=10, range=None, normed=None, weights=None, return n, bin_edges +def _histogramdd_dispatcher(sample, bins=None, range=None, normed=None, + weights=None, density=None): + return (sample, bins, weights) + + +@array_function_dispatch(_histogramdd_dispatcher) def histogramdd(sample, bins=10, range=None, normed=None, weights=None, density=None): """ diff --git a/numpy/lib/index_tricks.py b/numpy/lib/index_tricks.py index 009e6d229..06bb54bc1 100644 --- a/numpy/lib/index_tricks.py +++ b/numpy/lib/index_tricks.py @@ -13,6 +13,7 @@ from . import function_base import numpy.matrixlib as matrixlib from .function_base import diff from numpy.core.multiarray import ravel_multi_index, unravel_index +from numpy.core.overrides import array_function_dispatch from numpy.lib.stride_tricks import as_strided @@ -23,6 +24,11 @@ __all__ = [ ] +def _ix__dispatcher(*args): + return args + + +@array_function_dispatch(_ix__dispatcher) def ix_(*args): """ Construct an open mesh from multiple sequences. @@ -729,6 +735,12 @@ s_ = IndexExpression(maketuple=False) # The following functions complement those in twodim_base, but are # applicable to N-dimensions. + +def _fill_diagonal_dispatcher(a, val, wrap=None): + return (a,) + + +@array_function_dispatch(_fill_diagonal_dispatcher) def fill_diagonal(a, val, wrap=False): """Fill the main diagonal of the given array of any dimensionality. @@ -911,6 +923,11 @@ def diag_indices(n, ndim=2): return (idx,) * ndim +def _diag_indices_from(arr): + return (arr,) + + +@array_function_dispatch(_diag_indices_from) def diag_indices_from(arr): """ Return the indices to access the main diagonal of an n-dimensional array. diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py index 8d6b0f139..279c4c5c4 100644 --- a/numpy/lib/nanfunctions.py +++ b/numpy/lib/nanfunctions.py @@ -25,6 +25,7 @@ from __future__ import division, absolute_import, print_function import warnings import numpy as np from numpy.lib import function_base +from numpy.core.overrides import array_function_dispatch __all__ = [ @@ -188,6 +189,11 @@ def _divide_by_count(a, b, out=None): return np.divide(a, b, out=out, casting='unsafe') +def _nanmin_dispatcher(a, axis=None, out=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nanmin_dispatcher) def nanmin(a, axis=None, out=None, keepdims=np._NoValue): """ Return minimum of an array or minimum along an axis, ignoring any NaNs. @@ -296,6 +302,11 @@ def nanmin(a, axis=None, out=None, keepdims=np._NoValue): return res +def _nanmax_dispatcher(a, axis=None, out=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nanmax_dispatcher) def nanmax(a, axis=None, out=None, keepdims=np._NoValue): """ Return the maximum of an array or maximum along an axis, ignoring any @@ -404,6 +415,11 @@ def nanmax(a, axis=None, out=None, keepdims=np._NoValue): return res +def _nanargmin_dispatcher(a, axis=None): + return (a,) + + +@array_function_dispatch(_nanargmin_dispatcher) def nanargmin(a, axis=None): """ Return the indices of the minimum values in the specified axis ignoring @@ -448,6 +464,11 @@ def nanargmin(a, axis=None): return res +def _nanargmax_dispatcher(a, axis=None): + return (a,) + + +@array_function_dispatch(_nanargmax_dispatcher) def nanargmax(a, axis=None): """ Return the indices of the maximum values in the specified axis ignoring @@ -493,6 +514,11 @@ def nanargmax(a, axis=None): return res +def _nansum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nansum_dispatcher) def nansum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): """ Return the sum of array elements over a given axis treating Not a @@ -583,6 +609,11 @@ def nansum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): return np.sum(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) +def _nanprod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nanprod_dispatcher) def nanprod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): """ Return the product of array elements over a given axis treating Not a @@ -648,6 +679,11 @@ def nanprod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): return np.prod(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) +def _nancumsum_dispatcher(a, axis=None, dtype=None, out=None): + return (a, out) + + +@array_function_dispatch(_nancumsum_dispatcher) def nancumsum(a, axis=None, dtype=None, out=None): """ Return the cumulative sum of array elements over a given axis treating Not a @@ -713,6 +749,11 @@ def nancumsum(a, axis=None, dtype=None, out=None): return np.cumsum(a, axis=axis, dtype=dtype, out=out) +def _nancumprod_dispatcher(a, axis=None, dtype=None, out=None): + return (a, out) + + +@array_function_dispatch(_nancumprod_dispatcher) def nancumprod(a, axis=None, dtype=None, out=None): """ Return the cumulative product of array elements over a given axis treating Not a @@ -775,6 +816,11 @@ def nancumprod(a, axis=None, dtype=None, out=None): return np.cumprod(a, axis=axis, dtype=dtype, out=out) +def _nanmean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nanmean_dispatcher) def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue): """ Compute the arithmetic mean along the specified axis, ignoring NaNs. @@ -928,6 +974,12 @@ def _nanmedian_small(a, axis=None, out=None, overwrite_input=False): return m.filled(np.nan) +def _nanmedian_dispatcher( + a, axis=None, out=None, overwrite_input=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nanmedian_dispatcher) def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=np._NoValue): """ Compute the median along the specified axis, while ignoring NaNs. @@ -1026,6 +1078,12 @@ def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=np._NoValu return r +def _nanpercentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + interpolation=None, keepdims=None): + return (a, q, out) + + +@array_function_dispatch(_nanpercentile_dispatcher) def nanpercentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=np._NoValue): """ @@ -1146,6 +1204,12 @@ def nanpercentile(a, q, axis=None, out=None, overwrite_input=False, a, q, axis, out, overwrite_input, interpolation, keepdims) +def _nanquantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + interpolation=None, keepdims=None): + return (a, q, out) + + +@array_function_dispatch(_nanquantile_dispatcher) def nanquantile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=np._NoValue): """ @@ -1308,6 +1372,12 @@ def _nanquantile_1d(arr1d, q, overwrite_input=False, interpolation='linear'): arr1d, q, overwrite_input=overwrite_input, interpolation=interpolation) +def _nanvar_dispatcher( + a, axis=None, dtype=None, out=None, ddof=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nanvar_dispatcher) def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): """ Compute the variance along the specified axis, while ignoring NaNs. @@ -1449,6 +1519,12 @@ def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): return var +def _nanstd_dispatcher( + a, axis=None, dtype=None, out=None, ddof=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nanstd_dispatcher) def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue): """ Compute the standard deviation along the specified axis, while |