summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--numpy/core/_add_newdocs.py156
1 files changed, 0 insertions, 156 deletions
diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py
index 8ed6e431b..c6e051a04 100644
--- a/numpy/core/_add_newdocs.py
+++ b/numpy/core/_add_newdocs.py
@@ -3227,87 +3227,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('min',
"""))
-add_newdoc('numpy.core.multiarray', 'shares_memory',
- """
- shares_memory(a, b, max_work=None)
-
- Determine if two arrays share memory
-
- Parameters
- ----------
- a, b : ndarray
- Input arrays
- max_work : int, optional
- Effort to spend on solving the overlap problem (maximum number
- of candidate solutions to consider). The following special
- values are recognized:
-
- max_work=MAY_SHARE_EXACT (default)
- The problem is solved exactly. In this case, the function returns
- True only if there is an element shared between the arrays.
- max_work=MAY_SHARE_BOUNDS
- Only the memory bounds of a and b are checked.
-
- Raises
- ------
- numpy.TooHardError
- Exceeded max_work.
-
- Returns
- -------
- out : bool
-
- See Also
- --------
- may_share_memory
-
- Examples
- --------
- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
- False
-
- """)
-
-
-add_newdoc('numpy.core.multiarray', 'may_share_memory',
- """
- may_share_memory(a, b, max_work=None)
-
- Determine if two arrays might share memory
-
- A return of True does not necessarily mean that the two arrays
- share any element. It just means that they *might*.
-
- Only the memory bounds of a and b are checked by default.
-
- Parameters
- ----------
- a, b : ndarray
- Input arrays
- max_work : int, optional
- Effort to spend on solving the overlap problem. See
- `shares_memory` for details. Default for ``may_share_memory``
- is to do a bounds check.
-
- Returns
- -------
- out : bool
-
- See Also
- --------
- shares_memory
-
- Examples
- --------
- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
- False
- >>> x = np.zeros([3, 4])
- >>> np.may_share_memory(x[:,0], x[:,1])
- True
-
- """)
-
-
add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
"""
arr.newbyteorder(new_order='S')
@@ -3409,81 +3328,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('put',
"""))
-add_newdoc('numpy.core.multiarray', 'copyto',
- """
- copyto(dst, src, casting='same_kind', where=True)
-
- Copies values from one array to another, broadcasting as necessary.
-
- Raises a TypeError if the `casting` rule is violated, and if
- `where` is provided, it selects which elements to copy.
-
- .. versionadded:: 1.7.0
-
- Parameters
- ----------
- dst : ndarray
- The array into which values are copied.
- src : array_like
- The array from which values are copied.
- casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
- Controls what kind of data casting may occur when copying.
-
- * 'no' means the data types should not be cast at all.
- * 'equiv' means only byte-order changes are allowed.
- * 'safe' means only casts which can preserve values are allowed.
- * 'same_kind' means only safe casts or casts within a kind,
- like float64 to float32, are allowed.
- * 'unsafe' means any data conversions may be done.
- where : array_like of bool, optional
- A boolean array which is broadcasted to match the dimensions
- of `dst`, and selects elements to copy from `src` to `dst`
- wherever it contains the value True.
-
- """)
-
-add_newdoc('numpy.core.multiarray', 'putmask',
- """
- putmask(a, mask, values)
-
- Changes elements of an array based on conditional and input values.
-
- Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``.
-
- If `values` is not the same size as `a` and `mask` then it will repeat.
- This gives behavior different from ``a[mask] = values``.
-
- Parameters
- ----------
- a : array_like
- Target array.
- mask : array_like
- Boolean mask array. It has to be the same shape as `a`.
- values : array_like
- Values to put into `a` where `mask` is True. If `values` is smaller
- than `a` it will be repeated.
-
- See Also
- --------
- place, put, take, copyto
-
- Examples
- --------
- >>> x = np.arange(6).reshape(2, 3)
- >>> np.putmask(x, x>2, x**2)
- >>> x
- array([[ 0, 1, 2],
- [ 9, 16, 25]])
-
- If `values` is smaller than `a` it is repeated:
-
- >>> x = np.arange(5)
- >>> np.putmask(x, x>1, [-33, -44])
- >>> x
- array([ 0, 1, -33, -44, -33])
-
- """)
-
add_newdoc('numpy.core.multiarray', 'ndarray', ('ravel',
"""