diff options
137 files changed, 5257 insertions, 3213 deletions
diff --git a/.github/ISSUE_TEMPLATE/bug-report.yml b/.github/ISSUE_TEMPLATE/bug-report.yml index b46225968..29d0d0dd0 100644 --- a/.github/ISSUE_TEMPLATE/bug-report.yml +++ b/.github/ISSUE_TEMPLATE/bug-report.yml @@ -1,6 +1,6 @@ name: Bug report description: Report a bug. For security vulnerabilities see Report a security vulnerability in the templates. -title: "BUG: " +title: "BUG: <Please write a comprehensive title after the 'BUG: ' prefix>" labels: [00 - Bug] body: @@ -35,10 +35,12 @@ body: attributes: label: "Error message:" description: > - Please include full error message, if any (starting from `Traceback: ...`). + Please include full error message, if any. If you are reporting a segfault please include a GDB traceback, which you can generate by following [these instructions](https://github.com/numpy/numpy/blob/main/doc/source/dev/development_environment.rst#debugging). + placeholder: | + << Full traceback starting from `Traceback: ...` >> render: shell - type: textarea diff --git a/.github/ISSUE_TEMPLATE/documentation.yml b/.github/ISSUE_TEMPLATE/documentation.yml index 1005d3ade..afff9ab5f 100644 --- a/.github/ISSUE_TEMPLATE/documentation.yml +++ b/.github/ISSUE_TEMPLATE/documentation.yml @@ -1,6 +1,6 @@ name: Documentation description: Report an issue related to the NumPy documentation. -title: "DOC: " +title: "DOC: <Please write a comprehensive title after the 'DOC: ' prefix>" labels: [04 - Documentation] body: diff --git a/.github/ISSUE_TEMPLATE/feature-request.yml b/.github/ISSUE_TEMPLATE/feature-request.yml index 5e2af4015..390c3d53b 100644 --- a/.github/ISSUE_TEMPLATE/feature-request.yml +++ b/.github/ISSUE_TEMPLATE/feature-request.yml @@ -1,6 +1,6 @@ name: Feature request description: Check instructions for submitting your idea on the mailing list first. -title: "ENH: " +title: "ENH: <Please write a comprehensive title after the 'ENH: ' prefix>" body: - type: markdown diff --git a/.github/ISSUE_TEMPLATE/post-install.yml b/.github/ISSUE_TEMPLATE/post-install.yml index 5831994d1..a5fa07be0 100644 --- a/.github/ISSUE_TEMPLATE/post-install.yml +++ b/.github/ISSUE_TEMPLATE/post-install.yml @@ -1,5 +1,6 @@ name: Post-install/importing issue description: Report an issue if you have trouble importing or using NumPy after installation. +title: "<Please write a comprehensive title here>" labels: [32 - Installation] body: @@ -16,10 +17,12 @@ body: attributes: label: "Error message:" description: > - Please include full error message, if any (starting from `Traceback: ...`). + Please include full error message, if any. If you are reporting a segfault please include a GDB traceback, which you can generate by following [these instructions](https://github.com/numpy/numpy/blob/main/doc/source/dev/development_environment.rst#debugging). + placeholder: | + << Full traceback starting from `Traceback: ...` >> render: shell - type: textarea diff --git a/.github/workflows/build_test.yml b/.github/workflows/build_test.yml index 239a18602..86fb094c6 100644 --- a/.github/workflows/build_test.yml +++ b/.github/workflows/build_test.yml @@ -277,3 +277,35 @@ jobs: docker run --rm --interactive -v $(pwd):/numpy the_build /bin/bash -c " cd /numpy && python3 runtests.py -n -v -- -k test_simd " + + sde_simd_avx512_test: + # Intel Software Development Emulator (SDE) is used to run a given program + # on a specific instruction set architecture and capture various performance details. + # see https://www.intel.com/content/www/us/en/developer/articles/tool/software-development-emulator.html + needs: [smoke_test] + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + with: + submodules: recursive + fetch-depth: 0 + - uses: actions/setup-python@v2 + with: + python-version: ${{ env.PYTHON_VERSION }} + - name: Install Intel SDE + run: | + curl -o /tmp/sde.tar.bz2 https://www.intel.com/content/dam/develop/external/us/en/documents/downloads/sde-external-8.69.1-2021-07-18-lin.tar.bz2 + mkdir /tmp/sde && tar -xvf /tmp/sde.tar.bz2 -C /tmp/sde/ + sudo mv /tmp/sde/* /opt/sde && sudo ln -s /opt/sde/sde64 /usr/bin/sde + - name: Install dependencies + run: python -m pip install -r test_requirements.txt + - name: Build + run: python setup.py build + --simd-test="\$werror AVX512F AVX512_KNL AVX512_KNM AVX512_SKX AVX512_CLX AVX512_CNL AVX512_ICL" + install + # KNM implies KNL + - name: Run SIMD tests (Xeon PHI) + run: sde -knm -- python runtests.py -n -v -- -k test_simd + # ICL implies SKX, CLX and CNL + - name: Run SIMD tests (Ice Lake) + run: sde -icl -- python runtests.py -n -v -- -k test_simd diff --git a/.github/workflows/wheels.yml b/.github/workflows/wheels.yml index 3da4fdfa9..3c382f8b3 100644 --- a/.github/workflows/wheels.yml +++ b/.github/workflows/wheels.yml @@ -40,9 +40,9 @@ jobs: name: Build wheel for cp${{ matrix.python }}-${{ matrix.platform }} needs: get_commit_message if: >- - contains(needs.get_commit_message.outputs.message, '[cd build]') || - github.event.name == 'schedule' || - github.event.name == 'workflow_dispatch' + contains(needs.get_commit_message.outputs.message, '[wheel build]') || + github.event_name == 'schedule' || + github.event_name == 'workflow_dispatch' runs-on: ${{ matrix.os }} strategy: # Ensure that a wheel builder finishes even if another fails diff --git a/azure-pipelines.yml b/azure-pipelines.yml index 7c21087e1..9d2973b59 100644 --- a/azure-pipelines.yml +++ b/azure-pipelines.yml @@ -109,7 +109,7 @@ stages: # the docs even though i.e., numba uses another in their # azure config for mac os -- Microsoft has indicated # they will patch this issue - vmImage: 'macOS-10.14' + vmImage: 'macOS-1015' strategy: maxParallel: 3 matrix: diff --git a/doc/changelog/1.21.4-changelog.rst b/doc/changelog/1.21.4-changelog.rst new file mode 100644 index 000000000..3452627c0 --- /dev/null +++ b/doc/changelog/1.21.4-changelog.rst @@ -0,0 +1,29 @@ + +Contributors +============ + +A total of 7 people contributed to this release. People with a "+" by their +names contributed a patch for the first time. + +* Bas van Beek +* Charles Harris +* Isuru Fernando +* Matthew Brett +* Sayed Adel +* Sebastian Berg +* 傅立业(Chris Fu) + + +Pull requests merged +==================== + +A total of 9 pull requests were merged for this release. + +* `#20278 <https://github.com/numpy/numpy/pull/20278>`__: BUG: Fix shadowed reference of ``dtype`` in type stub +* `#20293 <https://github.com/numpy/numpy/pull/20293>`__: BUG: Fix headers for universal2 builds +* `#20294 <https://github.com/numpy/numpy/pull/20294>`__: BUG: ``VOID_nonzero`` could sometimes mutate alignment flag +* `#20295 <https://github.com/numpy/numpy/pull/20295>`__: BUG: Do not use nonzero fastpath on unaligned arrays +* `#20296 <https://github.com/numpy/numpy/pull/20296>`__: BUG: Distutils patch to allow for 2 as a minor version (!) +* `#20297 <https://github.com/numpy/numpy/pull/20297>`__: BUG, SIMD: Fix 64-bit/8-bit integer division by a scalar +* `#20298 <https://github.com/numpy/numpy/pull/20298>`__: BUG, SIMD: Workaround broadcasting SIMD 64-bit integers on MSVC... +* `#20300 <https://github.com/numpy/numpy/pull/20300>`__: REL: Prepare for the NumPy 1.21.4 release. +* `#20302 <https://github.com/numpy/numpy/pull/20302>`__: TST: Fix a ``Arrayterator`` typing test failure diff --git a/doc/neps/nep-0013-ufunc-overrides.rst b/doc/neps/nep-0013-ufunc-overrides.rst index 2f455e9b4..c132113db 100644 --- a/doc/neps/nep-0013-ufunc-overrides.rst +++ b/doc/neps/nep-0013-ufunc-overrides.rst @@ -556,7 +556,7 @@ in turn immediately raises :exc:`TypeError`, because one of its operands ``arr.__array_ufunc__``, which will return :obj:`NotImplemented`, which we catch. -.. note :: the reason for not allowing in-place operations to return +.. note:: the reason for not allowing in-place operations to return :obj:`NotImplemented` is that these cannot generically be replaced by a simple reverse operation: most array operations assume the contents of the instance are changed in-place, and do not expect a new diff --git a/doc/neps/nep-0027-zero-rank-arrarys.rst b/doc/neps/nep-0027-zero-rank-arrarys.rst index 4515cf96f..eef4bcacc 100644 --- a/doc/neps/nep-0027-zero-rank-arrarys.rst +++ b/doc/neps/nep-0027-zero-rank-arrarys.rst @@ -10,7 +10,7 @@ NEP 27 — Zero rank arrays :Created: 2006-06-10 :Resolution: https://mail.python.org/pipermail/numpy-discussion/2018-October/078824.html -.. note :: +.. note:: NumPy has both zero rank arrays and scalars. This design document, adapted from a `2006 wiki entry`_, describes what zero rank arrays are and why they diff --git a/doc/neps/nep-0047-array-api-standard.rst b/doc/neps/nep-0047-array-api-standard.rst index 3e63602cc..53b8e35b0 100644 --- a/doc/neps/nep-0047-array-api-standard.rst +++ b/doc/neps/nep-0047-array-api-standard.rst @@ -338,9 +338,10 @@ the options already present in NumPy are: Adding support for DLPack to NumPy entails: -- Adding a ``ndarray.__dlpack__`` method. -- Adding a ``from_dlpack`` function, which takes as input an object - supporting ``__dlpack__``, and returns an ``ndarray``. +- Adding a ``ndarray.__dlpack__()`` method which returns a ``dlpack`` C + structure wrapped in a ``PyCapsule``. +- Adding a ``np._from_dlpack(obj)`` function, where ``obj`` supports + ``__dlpack__()``, and returns an ``ndarray``. DLPack is currently a ~200 LoC header, and is meant to be included directly, so no external dependency is needed. Implementation should be straightforward. diff --git a/doc/neps/nep-0049.rst b/doc/neps/nep-0049.rst index 4758edb35..3bd1d102c 100644 --- a/doc/neps/nep-0049.rst +++ b/doc/neps/nep-0049.rst @@ -109,6 +109,15 @@ The name of the handler will be exposed on the python level via a ``numpy.core.multiarray.get_handler_name()`` it will return the name of the handler that will be used to allocate data for the next new `ndarrray`. +The version of the handler will be exposed on the python level via a +``numpy.core.multiarray.get_handler_version(arr)`` function. If called as +``numpy.core.multiarray.get_handler_version()`` it will return the version of the +handler that will be used to allocate data for the next new `ndarrray`. + +The version, currently 1, allows for future enhancements to the +``PyDataMemAllocator``. If fields are added, they must be added to the end. + + NumPy C-API functions ===================== @@ -119,7 +128,8 @@ NumPy C-API functions .. code-block:: c typedef struct { - char name[128]; /* multiple of 64 to keep the struct aligned */ + char name[127]; /* multiple of 64 to keep the struct aligned */ + uint8_t version; /* currently 1 */ PyDataMemAllocator allocator; } PyDataMem_Handler; @@ -279,6 +289,7 @@ the ``sz`` argument is correct. static PyDataMem_Handler new_handler = { "secret_data_allocator", + 1, { &new_handler_ctx, shift_alloc, /* malloc */ diff --git a/doc/release/upcoming_changes/19083.new_feature.rst b/doc/release/upcoming_changes/19083.new_feature.rst new file mode 100644 index 000000000..92f00c0d6 --- /dev/null +++ b/doc/release/upcoming_changes/19083.new_feature.rst @@ -0,0 +1,6 @@ +Add NEP 47-compatible dlpack support +------------------------------------ + +Add a ``ndarray.__dlpack__()`` method which returns a ``dlpack`` C structure +wrapped in a ``PyCapsule``. Also add a ``np._from_dlpack(obj)`` function, where +``obj`` supports ``__dlpack__()``, and returns an ``ndarray``. diff --git a/doc/release/upcoming_changes/19857.improvement.rst b/doc/release/upcoming_changes/19857.improvement.rst new file mode 100644 index 000000000..e39d413cc --- /dev/null +++ b/doc/release/upcoming_changes/19857.improvement.rst @@ -0,0 +1,8 @@ +Add new linear interpolation methods for ``quantile`` and ``percentile`` +------------------------------------------------------------------------ + +``quantile`` and ``percentile`` now have 13 linear interpolation methods, +nine of which can be found in the scientific literature. +The remaining methods are NumPy specific and are kept for backwards +compatibility. The default is "inclusive" (method 7), whose behavior is equivalent +to the former default "linear". diff --git a/doc/source/reference/c-api/data_memory.rst b/doc/source/reference/c-api/data_memory.rst index 11a37adc4..b779026b4 100644 --- a/doc/source/reference/c-api/data_memory.rst +++ b/doc/source/reference/c-api/data_memory.rst @@ -62,7 +62,8 @@ reallocate or free the data memory of the instance. .. code-block:: c typedef struct { - char name[128]; /* multiple of 64 to keep the struct aligned */ + char name[127]; /* multiple of 64 to keep the struct aligned */ + uint8_t version; /* currently 1 */ PyDataMemAllocator allocator; } PyDataMem_Handler; diff --git a/doc/source/release.rst b/doc/source/release.rst index aa490b5f5..a4a5bde63 100644 --- a/doc/source/release.rst +++ b/doc/source/release.rst @@ -6,6 +6,7 @@ Release notes :maxdepth: 3 1.22.0 <release/1.22.0-notes> + 1.21.4 <release/1.21.4-notes> 1.21.3 <release/1.21.3-notes> 1.21.2 <release/1.21.2-notes> 1.21.1 <release/1.21.1-notes> diff --git a/doc/source/release/1.21.4-notes.rst b/doc/source/release/1.21.4-notes.rst new file mode 100644 index 000000000..e35d8c880 --- /dev/null +++ b/doc/source/release/1.21.4-notes.rst @@ -0,0 +1,46 @@ +.. currentmodule:: numpy + +========================== +NumPy 1.21.4 Release Notes +========================== + +The NumPy 1.21.4 is a maintenance release that fixes a few bugs discovered +after 1.21.3. The most important fix here is a fix for the NumPy header files +to make them work for both x86_64 and M1 hardware when included in the Mac +universal2 wheels. Previously, the header files only worked for M1 and this +caused problems for folks building x86_64 extensions. This problem was not seen +before Python 3.10 because there were thin wheels for x86_64 that had +precedence. This release also provides thin x86_64 Mac wheels for Python 3.10. + +The Python versions supported in this release are 3.7-3.10. If you want to +compile your own version using gcc-11, you will need to use gcc-11.2+ to avoid +problems. + +Contributors +============ + +A total of 7 people contributed to this release. People with a "+" by their +names contributed a patch for the first time. + +* Bas van Beek +* Charles Harris +* Isuru Fernando +* Matthew Brett +* Sayed Adel +* Sebastian Berg +* 傅立业(Chris Fu) + + +Pull requests merged +==================== + +A total of 9 pull requests were merged for this release. + +* `#20278 <https://github.com/numpy/numpy/pull/20278>`__: BUG: Fix shadowed reference of ``dtype`` in type stub +* `#20293 <https://github.com/numpy/numpy/pull/20293>`__: BUG: Fix headers for universal2 builds +* `#20294 <https://github.com/numpy/numpy/pull/20294>`__: BUG: ``VOID_nonzero`` could sometimes mutate alignment flag +* `#20295 <https://github.com/numpy/numpy/pull/20295>`__: BUG: Do not use nonzero fastpath on unaligned arrays +* `#20296 <https://github.com/numpy/numpy/pull/20296>`__: BUG: Distutils patch to allow for 2 as a minor version (!) +* `#20297 <https://github.com/numpy/numpy/pull/20297>`__: BUG, SIMD: Fix 64-bit/8-bit integer division by a scalar +* `#20298 <https://github.com/numpy/numpy/pull/20298>`__: BUG, SIMD: Workaround broadcasting SIMD 64-bit integers on MSVC... +* `#20300 <https://github.com/numpy/numpy/pull/20300>`__: REL: Prepare for the NumPy 1.21.4 release. +* `#20302 <https://github.com/numpy/numpy/pull/20302>`__: TST: Fix a ``Arrayterator`` typing test failure diff --git a/environment.yml b/environment.yml index 6a13499e0..1bc8b44a7 100644 --- a/environment.yml +++ b/environment.yml @@ -12,6 +12,7 @@ dependencies: - compilers - openblas - nomkl + - setuptools=58.4 # For testing - pytest - pytest-cov diff --git a/numpy/__init__.py b/numpy/__init__.py index a1b1005cb..e8d1820a1 100644 --- a/numpy/__init__.py +++ b/numpy/__init__.py @@ -234,6 +234,10 @@ else: __all__.extend(lib.__all__) __all__.extend(['linalg', 'fft', 'random', 'ctypeslib', 'ma']) + # Remove one of the two occurrences of `issubdtype`, which is exposed as + # both `numpy.core.issubdtype` and `numpy.lib.issubdtype`. + __all__.remove('issubdtype') + # These are exported by np.core, but are replaced by the builtins below # remove them to ensure that we don't end up with `np.long == np.int_`, # which would be a breaking change. diff --git a/numpy/__init__.pyi b/numpy/__init__.pyi index d510acaa5..e01df7c90 100644 --- a/numpy/__init__.pyi +++ b/numpy/__init__.pyi @@ -683,7 +683,7 @@ _DTypeScalar_co = TypeVar("_DTypeScalar_co", covariant=True, bound=generic) _ByteOrder = L["S", "<", ">", "=", "|", "L", "B", "N", "I"] class dtype(Generic[_DTypeScalar_co]): - names: None | Tuple[str, ...] + names: None | Tuple[builtins.str, ...] # Overload for subclass of generic @overload def __new__( @@ -710,7 +710,7 @@ class dtype(Generic[_DTypeScalar_co]): @overload def __new__(cls, dtype: Type[complex], align: bool = ..., copy: bool = ...) -> dtype[complex_]: ... @overload - def __new__(cls, dtype: Type[str], align: bool = ..., copy: bool = ...) -> dtype[str_]: ... + def __new__(cls, dtype: Type[builtins.str], align: bool = ..., copy: bool = ...) -> dtype[str_]: ... @overload def __new__(cls, dtype: Type[bytes], align: bool = ..., copy: bool = ...) -> dtype[bytes_]: ... @@ -824,7 +824,7 @@ class dtype(Generic[_DTypeScalar_co]): @overload def __new__( cls, - dtype: str, + dtype: builtins.str, align: bool = ..., copy: bool = ..., ) -> dtype[Any]: ... @@ -849,9 +849,9 @@ class dtype(Generic[_DTypeScalar_co]): def __class_getitem__(self, item: Any) -> GenericAlias: ... @overload - def __getitem__(self: dtype[void], key: List[str]) -> dtype[void]: ... + def __getitem__(self: dtype[void], key: List[builtins.str]) -> dtype[void]: ... @overload - def __getitem__(self: dtype[void], key: str | SupportsIndex) -> dtype[Any]: ... + def __getitem__(self: dtype[void], key: builtins.str | SupportsIndex) -> dtype[Any]: ... # NOTE: In the future 1-based multiplications will also yield `flexible` dtypes @overload @@ -885,15 +885,15 @@ class dtype(Generic[_DTypeScalar_co]): @property def base(self) -> dtype[Any]: ... @property - def byteorder(self) -> str: ... + def byteorder(self) -> builtins.str: ... @property - def char(self) -> str: ... + def char(self) -> builtins.str: ... @property - def descr(self) -> List[Tuple[str, str] | Tuple[str, str, _Shape]]: ... + def descr(self) -> List[Tuple[builtins.str, builtins.str] | Tuple[builtins.str, builtins.str, _Shape]]: ... @property def fields( self, - ) -> None | MappingProxyType[str, Tuple[dtype[Any], int] | Tuple[dtype[Any], int, Any]]: ... + ) -> None | MappingProxyType[builtins.str, Tuple[dtype[Any], int] | Tuple[dtype[Any], int, Any]]: ... @property def flags(self) -> int: ... @property @@ -907,11 +907,11 @@ class dtype(Generic[_DTypeScalar_co]): @property def itemsize(self) -> int: ... @property - def kind(self) -> str: ... + def kind(self) -> builtins.str: ... @property - def metadata(self) -> None | MappingProxyType[str, Any]: ... + def metadata(self) -> None | MappingProxyType[builtins.str, Any]: ... @property - def name(self) -> str: ... + def name(self) -> builtins.str: ... @property def num(self) -> int: ... @property @@ -921,8 +921,6 @@ class dtype(Generic[_DTypeScalar_co]): @property def subdtype(self) -> None | Tuple[dtype[Any], _Shape]: ... def newbyteorder(self: _DType, __new_order: _ByteOrder = ...) -> _DType: ... - # Leave str and type for end to avoid having to use `builtins.str` - # everywhere. See https://github.com/python/mypy/issues/3775 @property def str(self) -> builtins.str: ... @property @@ -1416,6 +1414,7 @@ _SupportsBuffer = Union[ _T = TypeVar("_T") _T_co = TypeVar("_T_co", covariant=True) +_T_contra = TypeVar("_T_contra", contravariant=True) _2Tuple = Tuple[_T, _T] _CastingKind = L["no", "equiv", "safe", "same_kind", "unsafe"] @@ -1432,6 +1431,13 @@ _ArrayComplex_co = NDArray[Union[bool_, integer[Any], floating[Any], complexfloa _ArrayNumber_co = NDArray[Union[bool_, number[Any]]] _ArrayTD64_co = NDArray[Union[bool_, integer[Any], timedelta64]] +# Introduce an alias for `dtype` to avoid naming conflicts. +_dtype = dtype + +# `builtins.PyCapsule` unfortunately lacks annotations as of the moment; +# use `Any` as a stopgap measure +_PyCapsule = Any + class _SupportsItem(Protocol[_T_co]): def item(self, args: Any, /) -> _T_co: ... @@ -1453,13 +1459,13 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @property def real( self: NDArray[_SupportsReal[_ScalarType]], # type: ignore[type-var] - ) -> ndarray[_ShapeType, dtype[_ScalarType]]: ... + ) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ... @real.setter def real(self, value: ArrayLike) -> None: ... @property def imag( self: NDArray[_SupportsImag[_ScalarType]], # type: ignore[type-var] - ) -> ndarray[_ShapeType, dtype[_ScalarType]]: ... + ) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ... @imag.setter def imag(self, value: ArrayLike) -> None: ... def __new__( @@ -1531,7 +1537,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __getitem__(self: NDArray[void], key: str) -> NDArray[Any]: ... @overload - def __getitem__(self: NDArray[void], key: list[str]) -> ndarray[_ShapeType, dtype[void]]: ... + def __getitem__(self: NDArray[void], key: list[str]) -> ndarray[_ShapeType, _dtype[void]]: ... @property def ctypes(self) -> _ctypes[int]: ... @@ -1551,12 +1557,12 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): # Use the same output type as that of the underlying `generic` @overload def item( - self: ndarray[Any, dtype[_SupportsItem[_T]]], # type: ignore[type-var] + self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var] *args: SupportsIndex, ) -> _T: ... @overload def item( - self: ndarray[Any, dtype[_SupportsItem[_T]]], # type: ignore[type-var] + self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var] args: Tuple[SupportsIndex, ...], /, ) -> _T: ... @@ -1597,7 +1603,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): axis: Optional[SupportsIndex] = ..., kind: _PartitionKind = ..., order: Union[None, str, Sequence[str]] = ..., - ) -> ndarray[Any, dtype[intp]]: ... + ) -> ndarray[Any, _dtype[intp]]: ... def diagonal( self, @@ -1616,7 +1622,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): def dot(self, b: ArrayLike, out: _NdArraySubClass) -> _NdArraySubClass: ... # `nonzero()` is deprecated for 0d arrays/generics - def nonzero(self) -> Tuple[ndarray[Any, dtype[intp]], ...]: ... + def nonzero(self) -> Tuple[ndarray[Any, _dtype[intp]], ...]: ... def partition( self, @@ -1648,7 +1654,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): v: ArrayLike, side: _SortSide = ..., sorter: Optional[_ArrayLikeInt_co] = ..., - ) -> ndarray[Any, dtype[intp]]: ... + ) -> ndarray[Any, _dtype[intp]]: ... def setfield( self, @@ -1685,7 +1691,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def take( # type: ignore[misc] - self: ndarray[Any, dtype[_ScalarType]], + self: ndarray[Any, _dtype[_ScalarType]], indices: _IntLike_co, axis: Optional[SupportsIndex] = ..., out: None = ..., @@ -1782,19 +1788,19 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): # Dispatch to the underlying `generic` via protocols def __int__( - self: ndarray[Any, dtype[SupportsInt]], # type: ignore[type-var] + self: ndarray[Any, _dtype[SupportsInt]], # type: ignore[type-var] ) -> int: ... def __float__( - self: ndarray[Any, dtype[SupportsFloat]], # type: ignore[type-var] + self: ndarray[Any, _dtype[SupportsFloat]], # type: ignore[type-var] ) -> float: ... def __complex__( - self: ndarray[Any, dtype[SupportsComplex]], # type: ignore[type-var] + self: ndarray[Any, _dtype[SupportsComplex]], # type: ignore[type-var] ) -> complex: ... def __index__( - self: ndarray[Any, dtype[SupportsIndex]], # type: ignore[type-var] + self: ndarray[Any, _dtype[SupportsIndex]], # type: ignore[type-var] ) -> int: ... def __len__(self) -> int: ... @@ -1926,7 +1932,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] @overload - def __mod__(self: _ArrayTD64_co, other: _SupportsArray[dtype[timedelta64]] | _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> NDArray[timedelta64]: ... + def __mod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ... @overload def __mod__(self: NDArray[object_], other: Any) -> Any: ... @overload @@ -1941,7 +1947,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] @overload - def __rmod__(self: _ArrayTD64_co, other: _SupportsArray[dtype[timedelta64]] | _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> NDArray[timedelta64]: ... + def __rmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ... @overload def __rmod__(self: NDArray[object_], other: Any) -> Any: ... @overload @@ -1956,7 +1962,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __divmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc] @overload - def __divmod__(self: _ArrayTD64_co, other: _SupportsArray[dtype[timedelta64]] | _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> Tuple[NDArray[int64], NDArray[timedelta64]]: ... + def __divmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> Tuple[NDArray[int64], NDArray[timedelta64]]: ... @overload def __rdivmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc] @@ -1967,7 +1973,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __rdivmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc] @overload - def __rdivmod__(self: _ArrayTD64_co, other: _SupportsArray[dtype[timedelta64]] | _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> Tuple[NDArray[int64], NDArray[timedelta64]]: ... + def __rdivmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> Tuple[NDArray[int64], NDArray[timedelta64]]: ... @overload def __add__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] @@ -2100,7 +2106,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] @overload - def __floordiv__(self: NDArray[timedelta64], other: _SupportsArray[dtype[timedelta64]] | _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> NDArray[int64]: ... + def __floordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ... @overload def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... @overload @@ -2119,7 +2125,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] @overload - def __rfloordiv__(self: NDArray[timedelta64], other: _SupportsArray[dtype[timedelta64]] | _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> NDArray[int64]: ... + def __rfloordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ... @overload def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ... @overload @@ -2166,7 +2172,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __truediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] @overload - def __truediv__(self: NDArray[timedelta64], other: _SupportsArray[dtype[timedelta64]] | _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> NDArray[float64]: ... + def __truediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ... @overload def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... @overload @@ -2183,7 +2189,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __rtruediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] @overload - def __rtruediv__(self: NDArray[timedelta64], other: _SupportsArray[dtype[timedelta64]] | _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> NDArray[float64]: ... + def __rtruediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ... @overload def __rtruediv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ... @overload @@ -2395,7 +2401,7 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): @overload def __imod__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... @overload - def __imod__(self: NDArray[timedelta64], other: _SupportsArray[dtype[timedelta64]] | _NestedSequence[_SupportsArray[dtype[timedelta64]]]) -> NDArray[timedelta64]: ... + def __imod__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ... @overload def __imod__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... @@ -2439,6 +2445,12 @@ class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): def __ior__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... @overload def __ior__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... + @overload + def __ior__(self: NDArray[_ScalarType], other: _RecursiveSequence) -> NDArray[_ScalarType]: ... + @overload + def __dlpack__(self: NDArray[number[Any]], *, stream: None = ...) -> _PyCapsule: ... + @overload + def __dlpack_device__(self) -> Tuple[int, L[0]]: ... # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` @property @@ -2460,7 +2472,7 @@ class generic(_ArrayOrScalarCommon): @abstractmethod def __init__(self, *args: Any, **kwargs: Any) -> None: ... @overload - def __array__(self: _ScalarType, dtype: None = ..., /) -> ndarray[Any, dtype[_ScalarType]]: ... + def __array__(self: _ScalarType, dtype: None = ..., /) -> ndarray[Any, _dtype[_ScalarType]]: ... @overload def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ... @property @@ -2475,7 +2487,7 @@ class generic(_ArrayOrScalarCommon): def strides(self) -> Tuple[()]: ... def byteswap(self: _ScalarType, inplace: L[False] = ...) -> _ScalarType: ... @property - def flat(self: _ScalarType) -> flatiter[ndarray[Any, dtype[_ScalarType]]]: ... + def flat(self: _ScalarType) -> flatiter[ndarray[Any, _dtype[_ScalarType]]]: ... @overload def astype( @@ -2548,7 +2560,7 @@ class generic(_ArrayOrScalarCommon): axis: Optional[SupportsIndex] = ..., out: None = ..., mode: _ModeKind = ..., - ) -> ndarray[Any, dtype[_ScalarType]]: ... + ) -> ndarray[Any, _dtype[_ScalarType]]: ... @overload def take( self, @@ -2562,26 +2574,26 @@ class generic(_ArrayOrScalarCommon): self: _ScalarType, repeats: _ArrayLikeInt_co, axis: Optional[SupportsIndex] = ..., - ) -> ndarray[Any, dtype[_ScalarType]]: ... + ) -> ndarray[Any, _dtype[_ScalarType]]: ... def flatten( self: _ScalarType, order: _OrderKACF = ..., - ) -> ndarray[Any, dtype[_ScalarType]]: ... + ) -> ndarray[Any, _dtype[_ScalarType]]: ... def ravel( self: _ScalarType, order: _OrderKACF = ..., - ) -> ndarray[Any, dtype[_ScalarType]]: ... + ) -> ndarray[Any, _dtype[_ScalarType]]: ... @overload def reshape( self: _ScalarType, shape: _ShapeLike, /, *, order: _OrderACF = ... - ) -> ndarray[Any, dtype[_ScalarType]]: ... + ) -> ndarray[Any, _dtype[_ScalarType]]: ... @overload def reshape( self: _ScalarType, *shape: SupportsIndex, order: _OrderACF = ... - ) -> ndarray[Any, dtype[_ScalarType]]: ... + ) -> ndarray[Any, _dtype[_ScalarType]]: ... def squeeze( self: _ScalarType, axis: Union[L[0], Tuple[()]] = ... @@ -2589,7 +2601,7 @@ class generic(_ArrayOrScalarCommon): def transpose(self: _ScalarType, axes: Tuple[()] = ..., /) -> _ScalarType: ... # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` @property - def dtype(self: _ScalarType) -> dtype[_ScalarType]: ... + def dtype(self: _ScalarType) -> _dtype[_ScalarType]: ... class number(generic, Generic[_NBit1]): # type: ignore @property @@ -4325,3 +4337,9 @@ class chararray(ndarray[_ShapeType, _CharDType]): # NOTE: Deprecated # class MachAr: ... + +class _SupportsDLPack(Protocol[_T_contra]): + def __dlpack__(self, *, stream: None | _T_contra = ...) -> _PyCapsule: ... + +def _from_dlpack(__obj: _SupportsDLPack[None]) -> NDArray[Any]: ... + diff --git a/numpy/array_api/__init__.py b/numpy/array_api/__init__.py index d8b29057e..36e3f3ed5 100644 --- a/numpy/array_api/__init__.py +++ b/numpy/array_api/__init__.py @@ -169,6 +169,7 @@ __all__ += [ ] from ._data_type_functions import ( + astype, broadcast_arrays, broadcast_to, can_cast, @@ -178,6 +179,7 @@ from ._data_type_functions import ( ) __all__ += [ + "astype", "broadcast_arrays", "broadcast_to", "can_cast", @@ -358,9 +360,9 @@ from ._searching_functions import argmax, argmin, nonzero, where __all__ += ["argmax", "argmin", "nonzero", "where"] -from ._set_functions import unique +from ._set_functions import unique_all, unique_counts, unique_inverse, unique_values -__all__ += ["unique"] +__all__ += ["unique_all", "unique_counts", "unique_inverse", "unique_values"] from ._sorting_functions import argsort, sort diff --git a/numpy/array_api/_array_object.py b/numpy/array_api/_array_object.py index ef66c5efd..dc74bb8c5 100644 --- a/numpy/array_api/_array_object.py +++ b/numpy/array_api/_array_object.py @@ -32,7 +32,7 @@ from ._dtypes import ( from typing import TYPE_CHECKING, Optional, Tuple, Union, Any if TYPE_CHECKING: - from ._typing import PyCapsule, Device, Dtype + from ._typing import Any, PyCapsule, Device, Dtype import numpy as np @@ -99,9 +99,13 @@ class Array: """ Performs the operation __repr__. """ - prefix = "Array(" suffix = f", dtype={self.dtype.name})" - mid = np.array2string(self._array, separator=', ', prefix=prefix, suffix=suffix) + if 0 in self.shape: + prefix = "empty(" + mid = str(self.shape) + else: + prefix = "Array(" + mid = np.array2string(self._array, separator=', ', prefix=prefix, suffix=suffix) return prefix + mid + suffix # These are various helper functions to make the array behavior match the @@ -244,6 +248,10 @@ class Array: The following cases are allowed by NumPy, but not specified by the array API specification: + - Indices to not include an implicit ellipsis at the end. That is, + every axis of an array must be explicitly indexed or an ellipsis + included. + - The start and stop of a slice may not be out of bounds. In particular, for a slice ``i:j:k`` on an axis of size ``n``, only the following are allowed: @@ -270,6 +278,10 @@ class Array: return key if shape == (): return key + if len(shape) > 1: + raise IndexError( + "Multidimensional arrays must include an index for every axis or use an ellipsis" + ) size = shape[0] # Ensure invalid slice entries are passed through. if key.start is not None: @@ -277,7 +289,7 @@ class Array: operator.index(key.start) except TypeError: return key - if not (-size <= key.start <= max(0, size - 1)): + if not (-size <= key.start <= size): raise IndexError( "Slices with out-of-bounds start are not allowed in the array API namespace" ) @@ -322,6 +334,10 @@ class Array: zip(key[:ellipsis_i:-1], shape[:ellipsis_i:-1]) ): Array._validate_index(idx, (size,)) + if n_ellipsis == 0 and len(key) < len(shape): + raise IndexError( + "Multidimensional arrays must include an index for every axis or use an ellipsis" + ) return key elif isinstance(key, bool): return key @@ -339,7 +355,12 @@ class Array: "newaxis indices are not allowed in the array API namespace" ) try: - return operator.index(key) + key = operator.index(key) + if shape is not None and len(shape) > 1: + raise IndexError( + "Multidimensional arrays must include an index for every axis or use an ellipsis" + ) + return key except TypeError: # Note: This also omits boolean arrays that are not already in # Array() form, like a list of booleans. @@ -403,16 +424,14 @@ class Array: """ Performs the operation __dlpack__. """ - res = self._array.__dlpack__(stream=stream) - return self.__class__._new(res) + return self._array.__dlpack__(stream=stream) def __dlpack_device__(self: Array, /) -> Tuple[IntEnum, int]: """ Performs the operation __dlpack_device__. """ # Note: device support is required for this - res = self._array.__dlpack_device__() - return self.__class__._new(res) + return self._array.__dlpack_device__() def __eq__(self: Array, other: Union[int, float, bool, Array], /) -> Array: """ @@ -527,13 +546,6 @@ class Array: res = self._array.__le__(other._array) return self.__class__._new(res) - # Note: __len__ may end up being removed from the array API spec. - def __len__(self, /) -> int: - """ - Performs the operation __len__. - """ - return self._array.__len__() - def __lshift__(self: Array, other: Union[int, Array], /) -> Array: """ Performs the operation __lshift__. @@ -995,7 +1007,9 @@ class Array: res = self._array.__rxor__(other._array) return self.__class__._new(res) - def to_device(self: Array, device: Device, /) -> Array: + def to_device(self: Array, device: Device, /, stream: None = None) -> Array: + if stream is not None: + raise ValueError("The stream argument to to_device() is not supported") if device == 'cpu': return self raise ValueError(f"Unsupported device {device!r}") diff --git a/numpy/array_api/_creation_functions.py b/numpy/array_api/_creation_functions.py index d760bf2fc..741498ff6 100644 --- a/numpy/array_api/_creation_functions.py +++ b/numpy/array_api/_creation_functions.py @@ -9,7 +9,6 @@ if TYPE_CHECKING: Device, Dtype, NestedSequence, - SupportsDLPack, SupportsBufferProtocol, ) from collections.abc import Sequence @@ -36,7 +35,6 @@ def asarray( int, float, NestedSequence[bool | int | float], - SupportsDLPack, SupportsBufferProtocol, ], /, @@ -60,7 +58,9 @@ def asarray( if copy in (False, np._CopyMode.IF_NEEDED): # Note: copy=False is not yet implemented in np.asarray raise NotImplementedError("copy=False is not yet implemented") - if isinstance(obj, Array) and (dtype is None or obj.dtype == dtype): + if isinstance(obj, Array): + if dtype is not None and obj.dtype != dtype: + copy = True if copy in (True, np._CopyMode.ALWAYS): return Array._new(np.array(obj._array, copy=True, dtype=dtype)) return obj @@ -152,8 +152,9 @@ def eye( def from_dlpack(x: object, /) -> Array: - # Note: dlpack support is not yet implemented on Array - raise NotImplementedError("DLPack support is not yet implemented") + from ._array_object import Array + + return Array._new(np._from_dlpack(x)) def full( @@ -240,6 +241,12 @@ def meshgrid(*arrays: Array, indexing: str = "xy") -> List[Array]: """ from ._array_object import Array + # Note: unlike np.meshgrid, only inputs with all the same dtype are + # allowed + + if len({a.dtype for a in arrays}) > 1: + raise ValueError("meshgrid inputs must all have the same dtype") + return [ Array._new(array) for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing) diff --git a/numpy/array_api/_data_type_functions.py b/numpy/array_api/_data_type_functions.py index 7ccbe9469..e4d6db61b 100644 --- a/numpy/array_api/_data_type_functions.py +++ b/numpy/array_api/_data_type_functions.py @@ -13,6 +13,13 @@ if TYPE_CHECKING: import numpy as np +# Note: astype is a function, not an array method as in NumPy. +def astype(x: Array, dtype: Dtype, /, *, copy: bool = True) -> Array: + if not copy and dtype == x.dtype: + return x + return Array._new(x._array.astype(dtype=dtype, copy=copy)) + + def broadcast_arrays(*arrays: Array) -> List[Array]: """ Array API compatible wrapper for :py:func:`np.broadcast_arrays <numpy.broadcast_arrays>`. diff --git a/numpy/array_api/_searching_functions.py b/numpy/array_api/_searching_functions.py index 3dcef61c3..40f5a4d2e 100644 --- a/numpy/array_api/_searching_functions.py +++ b/numpy/array_api/_searching_functions.py @@ -43,4 +43,5 @@ def where(condition: Array, x1: Array, x2: Array, /) -> Array: """ # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.where(condition._array, x1._array, x2._array)) diff --git a/numpy/array_api/_set_functions.py b/numpy/array_api/_set_functions.py index 357f238f5..05ee7e555 100644 --- a/numpy/array_api/_set_functions.py +++ b/numpy/array_api/_set_functions.py @@ -2,19 +2,82 @@ from __future__ import annotations from ._array_object import Array -from typing import Tuple, Union +from typing import NamedTuple import numpy as np +# Note: np.unique() is split into four functions in the array API: +# unique_all, unique_counts, unique_inverse, and unique_values (this is done +# to remove polymorphic return types). -def unique( - x: Array, - /, - *, - return_counts: bool = False, - return_index: bool = False, - return_inverse: bool = False, -) -> Union[Array, Tuple[Array, ...]]: +# Note: The various unique() functions are supposed to return multiple NaNs. +# This does not match the NumPy behavior, however, this is currently left as a +# TODO in this implementation as this behavior may be reverted in np.unique(). +# See https://github.com/numpy/numpy/issues/20326. + +# Note: The functions here return a namedtuple (np.unique() returns a normal +# tuple). + +class UniqueAllResult(NamedTuple): + values: Array + indices: Array + inverse_indices: Array + counts: Array + + +class UniqueCountsResult(NamedTuple): + values: Array + counts: Array + + +class UniqueInverseResult(NamedTuple): + values: Array + inverse_indices: Array + + +def unique_all(x: Array, /) -> UniqueAllResult: + """ + Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`. + + See its docstring for more information. + """ + res = np.unique( + x._array, + return_counts=True, + return_index=True, + return_inverse=True, + ) + + return UniqueAllResult(*[Array._new(i) for i in res]) + + +def unique_counts(x: Array, /) -> UniqueCountsResult: + res = np.unique( + x._array, + return_counts=True, + return_index=False, + return_inverse=False, + ) + + return UniqueCountsResult(*[Array._new(i) for i in res]) + + +def unique_inverse(x: Array, /) -> UniqueInverseResult: + """ + Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`. + + See its docstring for more information. + """ + res = np.unique( + x._array, + return_counts=False, + return_index=False, + return_inverse=True, + ) + return UniqueInverseResult(*[Array._new(i) for i in res]) + + +def unique_values(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`. @@ -22,10 +85,8 @@ def unique( """ res = np.unique( x._array, - return_counts=return_counts, - return_index=return_index, - return_inverse=return_inverse, + return_counts=False, + return_index=False, + return_inverse=False, ) - if isinstance(res, tuple): - return tuple(Array._new(i) for i in res) return Array._new(res) diff --git a/numpy/array_api/tests/test_array_object.py b/numpy/array_api/tests/test_array_object.py index 7959f92b4..12479d765 100644 --- a/numpy/array_api/tests/test_array_object.py +++ b/numpy/array_api/tests/test_array_object.py @@ -3,7 +3,7 @@ import operator from numpy.testing import assert_raises import numpy as np -from .. import ones, asarray, result_type +from .. import ones, asarray, result_type, all, equal from .._dtypes import ( _all_dtypes, _boolean_dtypes, @@ -39,18 +39,18 @@ def test_validate_index(): assert_raises(IndexError, lambda: a[:-4]) assert_raises(IndexError, lambda: a[:3:-1]) assert_raises(IndexError, lambda: a[:-5:-1]) - assert_raises(IndexError, lambda: a[3:]) + assert_raises(IndexError, lambda: a[4:]) assert_raises(IndexError, lambda: a[-4:]) - assert_raises(IndexError, lambda: a[3::-1]) + assert_raises(IndexError, lambda: a[4::-1]) assert_raises(IndexError, lambda: a[-4::-1]) assert_raises(IndexError, lambda: a[...,:5]) assert_raises(IndexError, lambda: a[...,:-5]) - assert_raises(IndexError, lambda: a[...,:4:-1]) + assert_raises(IndexError, lambda: a[...,:5:-1]) assert_raises(IndexError, lambda: a[...,:-6:-1]) - assert_raises(IndexError, lambda: a[...,4:]) + assert_raises(IndexError, lambda: a[...,5:]) assert_raises(IndexError, lambda: a[...,-5:]) - assert_raises(IndexError, lambda: a[...,4::-1]) + assert_raises(IndexError, lambda: a[...,5::-1]) assert_raises(IndexError, lambda: a[...,-5::-1]) # Boolean indices cannot be part of a larger tuple index @@ -74,6 +74,11 @@ def test_validate_index(): assert_raises(IndexError, lambda: a[None, ...]) assert_raises(IndexError, lambda: a[..., None]) + # Multiaxis indices must contain exactly as many indices as dimensions + assert_raises(IndexError, lambda: a[()]) + assert_raises(IndexError, lambda: a[0,]) + assert_raises(IndexError, lambda: a[0]) + assert_raises(IndexError, lambda: a[:]) def test_operators(): # For every operator, we test that it works for the required type @@ -285,3 +290,14 @@ def test_python_scalar_construtors(): assert_raises(TypeError, lambda: operator.index(b)) assert_raises(TypeError, lambda: operator.index(f)) + + +def test_device_property(): + a = ones((3, 4)) + assert a.device == 'cpu' + + assert all(equal(a.to_device('cpu'), a)) + assert_raises(ValueError, lambda: a.to_device('gpu')) + + assert all(equal(asarray(a, device='cpu'), a)) + assert_raises(ValueError, lambda: asarray(a, device='gpu')) diff --git a/numpy/array_api/tests/test_creation_functions.py b/numpy/array_api/tests/test_creation_functions.py index c13bc4262..be9eaa383 100644 --- a/numpy/array_api/tests/test_creation_functions.py +++ b/numpy/array_api/tests/test_creation_functions.py @@ -11,11 +11,13 @@ from .._creation_functions import ( full, full_like, linspace, + meshgrid, ones, ones_like, zeros, zeros_like, ) +from .._dtypes import float32, float64 from .._array_object import Array @@ -130,3 +132,11 @@ def test_zeros_like_errors(): assert_raises(ValueError, lambda: zeros_like(asarray(1), device="gpu")) assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype=int)) assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype="i")) + +def test_meshgrid_dtype_errors(): + # Doesn't raise + meshgrid() + meshgrid(asarray([1.], dtype=float32)) + meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float32)) + + assert_raises(ValueError, lambda: meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float64))) diff --git a/numpy/core/__init__.py b/numpy/core/__init__.py index 332f9940e..b89e27f0f 100644 --- a/numpy/core/__init__.py +++ b/numpy/core/__init__.py @@ -106,7 +106,6 @@ from . import _methods __all__ = ['char', 'rec', 'memmap'] __all__ += numeric.__all__ -__all__ += fromnumeric.__all__ __all__ += ['record', 'recarray', 'format_parser'] __all__ += ['chararray'] __all__ += function_base.__all__ diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py index c8a24db0c..078c58976 100644 --- a/numpy/core/_add_newdocs.py +++ b/numpy/core/_add_newdocs.py @@ -1573,6 +1573,19 @@ add_newdoc('numpy.core.multiarray', 'frombuffer', array_function_like_doc, )) +add_newdoc('numpy.core.multiarray', '_from_dlpack', + """ + _from_dlpack(x, /) + + Create a NumPy array from an object implementing the ``__dlpack__`` + protocol. + + See Also + -------- + `Array API documentation + <https://data-apis.org/array-api/latest/design_topics/data_interchange.html#syntax-for-data-interchange-with-dlpack>`_ + """) + add_newdoc('numpy.core', 'fastCopyAndTranspose', """_fastCopyAndTranspose(a)""") @@ -2263,6 +2276,15 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_priority__', add_newdoc('numpy.core.multiarray', 'ndarray', ('__array_struct__', """Array protocol: C-struct side.""")) +add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack__', + """a.__dlpack__(*, stream=None) + + DLPack Protocol: Part of the Array API.""")) + +add_newdoc('numpy.core.multiarray', 'ndarray', ('__dlpack_device__', + """a.__dlpack_device__() + + DLPack Protocol: Part of the Array API.""")) add_newdoc('numpy.core.multiarray', 'ndarray', ('base', """ @@ -4737,6 +4759,16 @@ add_newdoc('numpy.core.multiarray', 'get_handler_name', memory, in which case you can traverse ``a.base`` for a memory handler. """) +add_newdoc('numpy.core.multiarray', 'get_handler_version', + """ + get_handler_version(a: ndarray) -> int,None + + Return the version of the memory handler used by `a`. If not provided, + return the version of the memory handler that will be used to allocate data + for the next `ndarray` in this context. May return None if `a` does not own + its memory, in which case you can traverse ``a.base`` for a memory handler. + """) + add_newdoc('numpy.core.multiarray', '_set_madvise_hugepage', """ _set_madvise_hugepage(enabled: bool) -> bool diff --git a/numpy/core/code_generators/genapi.py b/numpy/core/code_generators/genapi.py index c2458c2b5..b401ee6a5 100644 --- a/numpy/core/code_generators/genapi.py +++ b/numpy/core/code_generators/genapi.py @@ -41,6 +41,7 @@ API_FILES = [join('multiarray', 'alloc.c'), join('multiarray', 'datetime_busdaycal.c'), join('multiarray', 'datetime_strings.c'), join('multiarray', 'descriptor.c'), + join('multiarray', 'dlpack.c'), join('multiarray', 'dtypemeta.c'), join('multiarray', 'einsum.c.src'), join('multiarray', 'flagsobject.c'), diff --git a/numpy/core/code_generators/generate_umath.py b/numpy/core/code_generators/generate_umath.py index 3a27a34cd..292d9e0d3 100644 --- a/numpy/core/code_generators/generate_umath.py +++ b/numpy/core/code_generators/generate_umath.py @@ -827,7 +827,7 @@ defdict = { docstrings.get('numpy.core.umath.ceil'), None, TD('e', f='ceil', astype={'e': 'f'}), - TD(inexactvec, simd=[('fma', 'fd'), ('avx512f', 'fd')]), + TD(inexactvec, dispatch=[('loops_unary_fp', 'fd')]), TD('fdg', f='ceil'), TD(O, f='npy_ObjectCeil'), ), diff --git a/numpy/core/code_generators/ufunc_docstrings.py b/numpy/core/code_generators/ufunc_docstrings.py index 8d9316f2c..c9be94569 100644 --- a/numpy/core/code_generators/ufunc_docstrings.py +++ b/numpy/core/code_generators/ufunc_docstrings.py @@ -1678,7 +1678,7 @@ add_newdoc('numpy.core.umath', 'invert', add_newdoc('numpy.core.umath', 'isfinite', """ - Test element-wise for finiteness (not infinity or not Not a Number). + Test element-wise for finiteness (not infinity and not Not a Number). The result is returned as a boolean array. diff --git a/numpy/core/include/numpy/ndarraytypes.h b/numpy/core/include/numpy/ndarraytypes.h index cc3b7c006..6f6a00b8f 100644 --- a/numpy/core/include/numpy/ndarraytypes.h +++ b/numpy/core/include/numpy/ndarraytypes.h @@ -680,10 +680,15 @@ typedef struct { void* (*calloc) (void *ctx, size_t nelem, size_t elsize); void* (*realloc) (void *ctx, void *ptr, size_t new_size); void (*free) (void *ctx, void *ptr, size_t size); + /* + * This is the end of the version=1 struct. Only add new fields after + * this line + */ } PyDataMemAllocator; typedef struct { - char name[128]; /* multiple of 64 to keep the struct aligned */ + char name[127]; /* multiple of 64 to keep the struct aligned */ + uint8_t version; /* currently 1 */ PyDataMemAllocator allocator; } PyDataMem_Handler; diff --git a/numpy/core/include/numpy/ufuncobject.h b/numpy/core/include/numpy/ufuncobject.h index 3f184bd45..1d7050bbe 100644 --- a/numpy/core/include/numpy/ufuncobject.h +++ b/numpy/core/include/numpy/ufuncobject.h @@ -173,11 +173,8 @@ typedef struct _tagPyUFuncObject { * but this was never implemented. (This is also why the above * selector is called the "legacy" selector.) */ - #if PY_VERSION_HEX >= 0x03080000 vectorcallfunc vectorcall; - #else - void *reserved2; - #endif + /* Was previously the `PyUFunc_MaskedInnerLoopSelectionFunc` */ void *_always_null_previously_masked_innerloop_selector; diff --git a/numpy/core/multiarray.py b/numpy/core/multiarray.py index 351cd3a1b..f88d75978 100644 --- a/numpy/core/multiarray.py +++ b/numpy/core/multiarray.py @@ -14,8 +14,9 @@ from ._multiarray_umath import * # noqa: F403 # do not change them. issue gh-15518 # _get_ndarray_c_version is semi-public, on purpose not added to __all__ from ._multiarray_umath import ( - _fastCopyAndTranspose, _flagdict, _insert, _reconstruct, _vec_string, - _ARRAY_API, _monotonicity, _get_ndarray_c_version, _set_madvise_hugepage, + _fastCopyAndTranspose, _flagdict, _from_dlpack, _insert, _reconstruct, + _vec_string, _ARRAY_API, _monotonicity, _get_ndarray_c_version, + _set_madvise_hugepage, ) __all__ = [ @@ -23,29 +24,30 @@ __all__ = [ 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS', 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI', 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP', '_fastCopyAndTranspose', - '_flagdict', '_insert', '_reconstruct', '_vec_string', '_monotonicity', - 'add_docstring', 'arange', 'array', 'asarray', 'asanyarray', - 'ascontiguousarray', 'asfortranarray', 'bincount', 'broadcast', - 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast', + '_flagdict', '_from_dlpack', '_insert', '_reconstruct', '_vec_string', + '_monotonicity', 'add_docstring', 'arange', 'array', 'asarray', + 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount', + 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast', 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2', 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data', 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype', 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat', - 'frombuffer', 'fromfile', 'fromiter', 'fromstring', 'get_handler_name', - 'inner', 'interp', 'interp_complex', 'is_busday', 'lexsort', - 'matmul', 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer', - 'nested_iters', 'normalize_axis_index', 'packbits', - 'promote_types', 'putmask', 'ravel_multi_index', 'result_type', 'scalar', - 'set_datetimeparse_function', 'set_legacy_print_mode', 'set_numeric_ops', - 'set_string_function', 'set_typeDict', 'shares_memory', - 'tracemalloc_domain', 'typeinfo', 'unpackbits', 'unravel_index', 'vdot', - 'where', 'zeros'] + 'frombuffer', 'fromfile', 'fromiter', 'fromstring', + 'get_handler_name', 'get_handler_version', 'inner', 'interp', + 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'may_share_memory', + 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters', + 'normalize_axis_index', 'packbits', 'promote_types', 'putmask', + 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function', + 'set_legacy_print_mode', 'set_numeric_ops', 'set_string_function', + 'set_typeDict', 'shares_memory', 'tracemalloc_domain', 'typeinfo', + 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros'] # For backward compatibility, make sure pickle imports these functions from here _reconstruct.__module__ = 'numpy.core.multiarray' scalar.__module__ = 'numpy.core.multiarray' +_from_dlpack.__module__ = 'numpy' arange.__module__ = 'numpy' array.__module__ = 'numpy' asarray.__module__ = 'numpy' diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py index 1654e8364..344d40d93 100644 --- a/numpy/core/numeric.py +++ b/numpy/core/numeric.py @@ -13,8 +13,8 @@ from .multiarray import ( WRAP, arange, array, asarray, asanyarray, ascontiguousarray, asfortranarray, broadcast, can_cast, compare_chararrays, concatenate, copyto, dot, dtype, empty, - empty_like, flatiter, frombuffer, fromfile, fromiter, fromstring, - inner, lexsort, matmul, may_share_memory, + empty_like, flatiter, frombuffer, _from_dlpack, fromfile, fromiter, + fromstring, inner, lexsort, matmul, may_share_memory, min_scalar_type, ndarray, nditer, nested_iters, promote_types, putmask, result_type, set_numeric_ops, shares_memory, vdot, where, zeros, normalize_axis_index) @@ -41,7 +41,7 @@ __all__ = [ 'newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc', 'arange', 'array', 'asarray', 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'zeros', 'count_nonzero', 'empty', 'broadcast', 'dtype', - 'fromstring', 'fromfile', 'frombuffer', 'where', + 'fromstring', 'fromfile', 'frombuffer', '_from_dlpack', 'where', 'argwhere', 'copyto', 'concatenate', 'fastCopyAndTranspose', 'lexsort', 'set_numeric_ops', 'can_cast', 'promote_types', 'min_scalar_type', 'result_type', 'isfortran', 'empty_like', 'zeros_like', 'ones_like', diff --git a/numpy/core/setup.py b/numpy/core/setup.py index 3e1ed4c9b..2c99060ec 100644 --- a/numpy/core/setup.py +++ b/numpy/core/setup.py @@ -740,6 +740,7 @@ def configuration(parent_package='',top_path=None): ####################################################################### common_deps = [ + join('src', 'common', 'dlpack', 'dlpack.h'), join('src', 'common', 'array_assign.h'), join('src', 'common', 'binop_override.h'), join('src', 'common', 'cblasfuncs.h'), @@ -749,6 +750,7 @@ def configuration(parent_package='',top_path=None): join('src', 'common', 'npy_cblas.h'), join('src', 'common', 'npy_config.h'), join('src', 'common', 'npy_ctypes.h'), + join('src', 'common', 'npy_dlpack.h'), join('src', 'common', 'npy_extint128.h'), join('src', 'common', 'npy_import.h'), join('src', 'common', 'npy_hashtable.h'), @@ -881,6 +883,7 @@ def configuration(parent_package='',top_path=None): join('src', 'multiarray', 'datetime_busday.c'), join('src', 'multiarray', 'datetime_busdaycal.c'), join('src', 'multiarray', 'descriptor.c'), + join('src', 'multiarray', 'dlpack.c'), join('src', 'multiarray', 'dtypemeta.c'), join('src', 'multiarray', 'dragon4.c'), join('src', 'multiarray', 'dtype_transfer.c'), diff --git a/numpy/core/src/_simd/_simd.dispatch.c.src b/numpy/core/src/_simd/_simd.dispatch.c.src index 54770959c..5c494ae7a 100644 --- a/numpy/core/src/_simd/_simd.dispatch.c.src +++ b/numpy/core/src/_simd/_simd.dispatch.c.src @@ -381,7 +381,7 @@ SIMD_IMPL_INTRIN_1(sumup_@sfx@, @esfx@, v@sfx@) ***************************/ #if @fp_only@ /**begin repeat1 - * #intrin = sqrt, recip, abs, square# + * #intrin = sqrt, recip, abs, square, ceil# */ SIMD_IMPL_INTRIN_1(@intrin@_@sfx@, v@sfx@, v@sfx@) /**end repeat1**/ @@ -615,7 +615,7 @@ SIMD_INTRIN_DEF(sumup_@sfx@) ***************************/ #if @fp_only@ /**begin repeat1 - * #intrin = sqrt, recip, abs, square# + * #intrin = sqrt, recip, abs, square, ceil# */ SIMD_INTRIN_DEF(@intrin@_@sfx@) /**end repeat1**/ diff --git a/numpy/core/src/common/dlpack/dlpack.h b/numpy/core/src/common/dlpack/dlpack.h new file mode 100644 index 000000000..29209aee1 --- /dev/null +++ b/numpy/core/src/common/dlpack/dlpack.h @@ -0,0 +1,201 @@ +// Taken from: +// https://github.com/dmlc/dlpack/blob/9b6176fdecb55e9bf39b16f08b96913ed3f275b4/include/dlpack/dlpack.h +/*! + * Copyright (c) 2017 by Contributors + * \file dlpack.h + * \brief The common header of DLPack. + */ +#ifndef DLPACK_DLPACK_H_ +#define DLPACK_DLPACK_H_ + +#ifdef __cplusplus +#define DLPACK_EXTERN_C extern "C" +#else +#define DLPACK_EXTERN_C +#endif + +/*! \brief The current version of dlpack */ +#define DLPACK_VERSION 050 + +/*! \brief DLPACK_DLL prefix for windows */ +#ifdef _WIN32 +#ifdef DLPACK_EXPORTS +#define DLPACK_DLL __declspec(dllexport) +#else +#define DLPACK_DLL __declspec(dllimport) +#endif +#else +#define DLPACK_DLL +#endif + +#include <stdint.h> +#include <stddef.h> + +#ifdef __cplusplus +extern "C" { +#endif +/*! + * \brief The device type in DLDevice. + */ +typedef enum { + /*! \brief CPU device */ + kDLCPU = 1, + /*! \brief CUDA GPU device */ + kDLCUDA = 2, + /*! + * \brief Pinned CUDA CPU memory by cudaMallocHost + */ + kDLCUDAHost = 3, + /*! \brief OpenCL devices. */ + kDLOpenCL = 4, + /*! \brief Vulkan buffer for next generation graphics. */ + kDLVulkan = 7, + /*! \brief Metal for Apple GPU. */ + kDLMetal = 8, + /*! \brief Verilog simulator buffer */ + kDLVPI = 9, + /*! \brief ROCm GPUs for AMD GPUs */ + kDLROCM = 10, + /*! + * \brief Pinned ROCm CPU memory allocated by hipMallocHost + */ + kDLROCMHost = 11, + /*! + * \brief Reserved extension device type, + * used for quickly test extension device + * The semantics can differ depending on the implementation. + */ + kDLExtDev = 12, + /*! + * \brief CUDA managed/unified memory allocated by cudaMallocManaged + */ + kDLCUDAManaged = 13, +} DLDeviceType; + +/*! + * \brief A Device for Tensor and operator. + */ +typedef struct { + /*! \brief The device type used in the device. */ + DLDeviceType device_type; + /*! + * \brief The device index. + * For vanilla CPU memory, pinned memory, or managed memory, this is set to 0. + */ + int device_id; +} DLDevice; + +/*! + * \brief The type code options DLDataType. + */ +typedef enum { + /*! \brief signed integer */ + kDLInt = 0U, + /*! \brief unsigned integer */ + kDLUInt = 1U, + /*! \brief IEEE floating point */ + kDLFloat = 2U, + /*! + * \brief Opaque handle type, reserved for testing purposes. + * Frameworks need to agree on the handle data type for the exchange to be well-defined. + */ + kDLOpaqueHandle = 3U, + /*! \brief bfloat16 */ + kDLBfloat = 4U, + /*! + * \brief complex number + * (C/C++/Python layout: compact struct per complex number) + */ + kDLComplex = 5U, +} DLDataTypeCode; + +/*! + * \brief The data type the tensor can hold. + * + * Examples + * - float: type_code = 2, bits = 32, lanes=1 + * - float4(vectorized 4 float): type_code = 2, bits = 32, lanes=4 + * - int8: type_code = 0, bits = 8, lanes=1 + * - std::complex<float>: type_code = 5, bits = 64, lanes = 1 + */ +typedef struct { + /*! + * \brief Type code of base types. + * We keep it uint8_t instead of DLDataTypeCode for minimal memory + * footprint, but the value should be one of DLDataTypeCode enum values. + * */ + uint8_t code; + /*! + * \brief Number of bits, common choices are 8, 16, 32. + */ + uint8_t bits; + /*! \brief Number of lanes in the type, used for vector types. */ + uint16_t lanes; +} DLDataType; + +/*! + * \brief Plain C Tensor object, does not manage memory. + */ +typedef struct { + /*! + * \brief The opaque data pointer points to the allocated data. This will be + * CUDA device pointer or cl_mem handle in OpenCL. This pointer is always + * aligned to 256 bytes as in CUDA. + * + * For given DLTensor, the size of memory required to store the contents of + * data is calculated as follows: + * + * \code{.c} + * static inline size_t GetDataSize(const DLTensor* t) { + * size_t size = 1; + * for (tvm_index_t i = 0; i < t->ndim; ++i) { + * size *= t->shape[i]; + * } + * size *= (t->dtype.bits * t->dtype.lanes + 7) / 8; + * return size; + * } + * \endcode + */ + void* data; + /*! \brief The device of the tensor */ + DLDevice device; + /*! \brief Number of dimensions */ + int ndim; + /*! \brief The data type of the pointer*/ + DLDataType dtype; + /*! \brief The shape of the tensor */ + int64_t* shape; + /*! + * \brief strides of the tensor (in number of elements, not bytes) + * can be NULL, indicating tensor is compact and row-majored. + */ + int64_t* strides; + /*! \brief The offset in bytes to the beginning pointer to data */ + uint64_t byte_offset; +} DLTensor; + +/*! + * \brief C Tensor object, manage memory of DLTensor. This data structure is + * intended to facilitate the borrowing of DLTensor by another framework. It is + * not meant to transfer the tensor. When the borrowing framework doesn't need + * the tensor, it should call the deleter to notify the host that the resource + * is no longer needed. + */ +typedef struct DLManagedTensor { + /*! \brief DLTensor which is being memory managed */ + DLTensor dl_tensor; + /*! \brief the context of the original host framework of DLManagedTensor in + * which DLManagedTensor is used in the framework. It can also be NULL. + */ + void * manager_ctx; + /*! \brief Destructor signature void (*)(void*) - this should be called + * to destruct manager_ctx which holds the DLManagedTensor. It can be NULL + * if there is no way for the caller to provide a reasonable destructor. + * The destructors deletes the argument self as well. + */ + void (*deleter)(struct DLManagedTensor * self); +} DLManagedTensor; +#ifdef __cplusplus +} // DLPACK_EXTERN_C +#endif +#endif // DLPACK_DLPACK_H_ diff --git a/numpy/core/src/common/npy_dlpack.h b/numpy/core/src/common/npy_dlpack.h new file mode 100644 index 000000000..14ca352c0 --- /dev/null +++ b/numpy/core/src/common/npy_dlpack.h @@ -0,0 +1,28 @@ +#include "Python.h" +#include "dlpack/dlpack.h" + +#ifndef NPY_DLPACK_H +#define NPY_DLPACK_H + +// Part of the Array API specification. +#define NPY_DLPACK_CAPSULE_NAME "dltensor" +#define NPY_DLPACK_USED_CAPSULE_NAME "used_dltensor" + +// Used internally by NumPy to store a base object +// as it has to release a reference to the original +// capsule. +#define NPY_DLPACK_INTERNAL_CAPSULE_NAME "numpy_dltensor" + +PyObject * +array_dlpack(PyArrayObject *self, PyObject *const *args, Py_ssize_t len_args, + PyObject *kwnames); + + +PyObject * +array_dlpack_device(PyArrayObject *self, PyObject *NPY_UNUSED(args)); + + +NPY_NO_EXPORT PyObject * +_from_dlpack(PyObject *NPY_UNUSED(self), PyObject *obj); + +#endif diff --git a/numpy/core/src/common/simd/avx2/math.h b/numpy/core/src/common/simd/avx2/math.h index 9460183df..b1f3915a6 100644 --- a/numpy/core/src/common/simd/avx2/math.h +++ b/numpy/core/src/common/simd/avx2/math.h @@ -105,4 +105,8 @@ NPY_FINLINE npyv_s64 npyv_min_s64(npyv_s64 a, npyv_s64 b) return _mm256_blendv_epi8(a, b, _mm256_cmpgt_epi64(a, b)); } +// ceil +#define npyv_ceil_f32 _mm256_ceil_ps +#define npyv_ceil_f64 _mm256_ceil_pd + #endif // _NPY_SIMD_AVX2_MATH_H diff --git a/numpy/core/src/common/simd/avx512/math.h b/numpy/core/src/common/simd/avx512/math.h index 0949b2b06..c4f8d3410 100644 --- a/numpy/core/src/common/simd/avx512/math.h +++ b/numpy/core/src/common/simd/avx512/math.h @@ -112,4 +112,8 @@ NPY_FINLINE npyv_f64 npyv_minp_f64(npyv_f64 a, npyv_f64 b) #define npyv_min_u64 _mm512_min_epu64 #define npyv_min_s64 _mm512_min_epi64 +// ceil +#define npyv_ceil_f32(A) _mm512_roundscale_ps(A, _MM_FROUND_TO_POS_INF) +#define npyv_ceil_f64(A) _mm512_roundscale_pd(A, _MM_FROUND_TO_POS_INF) + #endif // _NPY_SIMD_AVX512_MATH_H diff --git a/numpy/core/src/common/simd/avx512/utils.h b/numpy/core/src/common/simd/avx512/utils.h index 8066283c6..c3079283f 100644 --- a/numpy/core/src/common/simd/avx512/utils.h +++ b/numpy/core/src/common/simd/avx512/utils.h @@ -26,7 +26,7 @@ #define npyv512_combine_ps256(A, B) _mm512_insertf32x8(_mm512_castps256_ps512(A), B, 1) #else #define npyv512_combine_ps256(A, B) \ - _mm512_castsi512_ps(npyv512_combine_si256(_mm512_castps_si512(A), _mm512_castps_si512(B))) + _mm512_castsi512_ps(npyv512_combine_si256(_mm256_castps_si256(A), _mm256_castps_si256(B))) #endif #define NPYV_IMPL_AVX512_FROM_AVX2_1ARG(FN_NAME, INTRIN) \ @@ -39,6 +39,26 @@ return npyv512_combine_si256(l_a, h_a); \ } +#define NPYV_IMPL_AVX512_FROM_AVX2_PS_1ARG(FN_NAME, INTRIN) \ + NPY_FINLINE __m512 FN_NAME(__m512 a) \ + { \ + __m256 l_a = npyv512_lower_ps256(a); \ + __m256 h_a = npyv512_higher_ps256(a); \ + l_a = INTRIN(l_a); \ + h_a = INTRIN(h_a); \ + return npyv512_combine_ps256(l_a, h_a); \ + } + +#define NPYV_IMPL_AVX512_FROM_AVX2_PD_1ARG(FN_NAME, INTRIN) \ + NPY_FINLINE __m512d FN_NAME(__m512d a) \ + { \ + __m256d l_a = npyv512_lower_pd256(a); \ + __m256d h_a = npyv512_higher_pd256(a); \ + l_a = INTRIN(l_a); \ + h_a = INTRIN(h_a); \ + return npyv512_combine_pd256(l_a, h_a); \ + } + #define NPYV_IMPL_AVX512_FROM_AVX2_2ARG(FN_NAME, INTRIN) \ NPY_FINLINE __m512i FN_NAME(__m512i a, __m512i b) \ { \ diff --git a/numpy/core/src/common/simd/neon/math.h b/numpy/core/src/common/simd/neon/math.h index 19ea6f22f..38c3899e4 100644 --- a/numpy/core/src/common/simd/neon/math.h +++ b/numpy/core/src/common/simd/neon/math.h @@ -88,16 +88,16 @@ NPY_FINLINE npyv_f32 npyv_recip_f32(npyv_f32 a) #define npyv_max_f64 vmaxq_f64 // Maximum, supports IEEE floating-point arithmetic (IEC 60559), // - If one of the two vectors contains NaN, the equivalent element of the other vector is set -// - Only if both corresponded elements are NaN, NaN is set. +// - Only if both corresponded elements are NaN, NaN is set. #ifdef NPY_HAVE_ASIMD #define npyv_maxp_f32 vmaxnmq_f32 #else NPY_FINLINE npyv_f32 npyv_maxp_f32(npyv_f32 a, npyv_f32 b) - { + { npyv_u32 nn_a = vceqq_f32(a, a); npyv_u32 nn_b = vceqq_f32(b, b); return vmaxq_f32(vbslq_f32(nn_a, a, b), vbslq_f32(nn_b, b, a)); - } + } #endif #if NPY_SIMD_F64 #define npyv_maxp_f64 vmaxnmq_f64 @@ -123,16 +123,16 @@ NPY_FINLINE npyv_s64 npyv_max_s64(npyv_s64 a, npyv_s64 b) #define npyv_min_f64 vminq_f64 // Minimum, supports IEEE floating-point arithmetic (IEC 60559), // - If one of the two vectors contains NaN, the equivalent element of the other vector is set -// - Only if both corresponded elements are NaN, NaN is set. +// - Only if both corresponded elements are NaN, NaN is set. #ifdef NPY_HAVE_ASIMD #define npyv_minp_f32 vminnmq_f32 #else NPY_FINLINE npyv_f32 npyv_minp_f32(npyv_f32 a, npyv_f32 b) - { + { npyv_u32 nn_a = vceqq_f32(a, a); npyv_u32 nn_b = vceqq_f32(b, b); return vminq_f32(vbslq_f32(nn_a, a, b), vbslq_f32(nn_b, b, a)); - } + } #endif #if NPY_SIMD_F64 #define npyv_minp_f64 vminnmq_f64 @@ -153,4 +153,41 @@ NPY_FINLINE npyv_s64 npyv_min_s64(npyv_s64 a, npyv_s64 b) return vbslq_s64(npyv_cmplt_s64(a, b), a, b); } +// ceil +#ifdef NPY_HAVE_ASIMD + #define npyv_ceil_f32 vrndpq_f32 +#else + NPY_FINLINE npyv_f32 npyv_ceil_f32(npyv_f32 a) + { + const npyv_s32 szero = vreinterpretq_s32_f32(vdupq_n_f32(-0.0f)); + const npyv_u32 one = vreinterpretq_u32_f32(vdupq_n_f32(1.0f)); + const npyv_s32 max_int = vdupq_n_s32(0x7fffffff); + /** + * On armv7, vcvtq.f32 handles special cases as follows: + * NaN return 0 + * +inf or +outrange return 0x80000000(-0.0f) + * -inf or -outrange return 0x7fffffff(nan) + */ + npyv_s32 roundi = vcvtq_s32_f32(a); + npyv_f32 round = vcvtq_f32_s32(roundi); + npyv_f32 ceil = vaddq_f32(round, vreinterpretq_f32_u32( + vandq_u32(vcltq_f32(round, a), one)) + ); + // respect signed zero, e.g. -0.5 -> -0.0 + npyv_f32 rzero = vreinterpretq_f32_s32(vorrq_s32( + vreinterpretq_s32_f32(ceil), + vandq_s32(vreinterpretq_s32_f32(a), szero) + )); + // if nan or overflow return a + npyv_u32 nnan = npyv_notnan_f32(a); + npyv_u32 overflow = vorrq_u32( + vceqq_s32(roundi, szero), vceqq_s32(roundi, max_int) + ); + return vbslq_f32(vbicq_u32(nnan, overflow), rzero, a); + } +#endif +#if NPY_SIMD_F64 + #define npyv_ceil_f64 vrndpq_f64 +#endif // NPY_SIMD_F64 + #endif // _NPY_SIMD_NEON_MATH_H diff --git a/numpy/core/src/common/simd/sse/math.h b/numpy/core/src/common/simd/sse/math.h index 97d35afc5..02eb06a29 100644 --- a/numpy/core/src/common/simd/sse/math.h +++ b/numpy/core/src/common/simd/sse/math.h @@ -143,4 +143,35 @@ NPY_FINLINE npyv_s64 npyv_min_s64(npyv_s64 a, npyv_s64 b) return npyv_select_s64(npyv_cmplt_s64(a, b), a, b); } +// ceil +#ifdef NPY_HAVE_SSE41 + #define npyv_ceil_f32 _mm_ceil_ps + #define npyv_ceil_f64 _mm_ceil_pd +#else + NPY_FINLINE npyv_f32 npyv_ceil_f32(npyv_f32 a) + { + const npyv_f32 szero = _mm_set1_ps(-0.0f); + const npyv_f32 one = _mm_set1_ps(1.0f); + npyv_s32 roundi = _mm_cvttps_epi32(a); + npyv_f32 round = _mm_cvtepi32_ps(roundi); + npyv_f32 ceil = _mm_add_ps(round, _mm_and_ps(_mm_cmplt_ps(round, a), one)); + // respect signed zero, e.g. -0.5 -> -0.0 + npyv_f32 rzero = _mm_or_ps(ceil, _mm_and_ps(a, szero)); + // if overflow return a + return npyv_select_f32(_mm_cmpeq_epi32(roundi, _mm_castps_si128(szero)), a, rzero); + } + NPY_FINLINE npyv_f64 npyv_ceil_f64(npyv_f64 a) + { + const npyv_f64 szero = _mm_set1_pd(-0.0); + const npyv_f64 one = _mm_set1_pd(1.0); + const npyv_f64 two_power_52 = _mm_set1_pd(0x10000000000000); + npyv_f64 sign_two52 = _mm_or_pd(two_power_52, _mm_and_pd(a, szero)); + // round by add magic number 2^52 + npyv_f64 round = _mm_sub_pd(_mm_add_pd(a, sign_two52), sign_two52); + npyv_f64 ceil = _mm_add_pd(round, _mm_and_pd(_mm_cmplt_pd(round, a), one)); + // respect signed zero, e.g. -0.5 -> -0.0 + return _mm_or_pd(ceil, _mm_and_pd(a, szero)); + } +#endif + #endif // _NPY_SIMD_SSE_MATH_H diff --git a/numpy/core/src/common/simd/vsx/math.h b/numpy/core/src/common/simd/vsx/math.h index b2e393c7c..f387dac4d 100644 --- a/numpy/core/src/common/simd/vsx/math.h +++ b/numpy/core/src/common/simd/vsx/math.h @@ -69,4 +69,8 @@ NPY_FINLINE npyv_f64 npyv_square_f64(npyv_f64 a) #define npyv_min_u64 vec_min #define npyv_min_s64 vec_min +// ceil +#define npyv_ceil_f32 vec_ceil +#define npyv_ceil_f64 vec_ceil + #endif // _NPY_SIMD_VSX_MATH_H diff --git a/numpy/core/src/multiarray/alloc.c b/numpy/core/src/multiarray/alloc.c index e4756264d..d1173410d 100644 --- a/numpy/core/src/multiarray/alloc.c +++ b/numpy/core/src/multiarray/alloc.c @@ -370,6 +370,7 @@ default_free(void *NPY_UNUSED(ctx), void *ptr, size_t size) /* Memory handler global default */ PyDataMem_Handler default_handler = { "default_allocator", + 1, { NULL, /* ctx */ default_malloc, /* malloc */ @@ -395,7 +396,6 @@ PyDataMem_UserNEW(size_t size, PyObject *mem_handler) if (handler == NULL) { return NULL; } - assert(size != 0); result = handler->allocator.malloc(handler->allocator.ctx, size); if (_PyDataMem_eventhook != NULL) { @@ -639,3 +639,40 @@ get_handler_name(PyObject *NPY_UNUSED(self), PyObject *args) Py_DECREF(mem_handler); return name; } + +NPY_NO_EXPORT PyObject * +get_handler_version(PyObject *NPY_UNUSED(self), PyObject *args) +{ + PyObject *arr=NULL; + if (!PyArg_ParseTuple(args, "|O:get_handler_version", &arr)) { + return NULL; + } + if (arr != NULL && !PyArray_Check(arr)) { + PyErr_SetString(PyExc_ValueError, "if supplied, argument must be an ndarray"); + return NULL; + } + PyObject *mem_handler; + PyDataMem_Handler *handler; + PyObject *version; + if (arr != NULL) { + mem_handler = PyArray_HANDLER((PyArrayObject *) arr); + if (mem_handler == NULL) { + Py_RETURN_NONE; + } + Py_INCREF(mem_handler); + } + else { + mem_handler = PyDataMem_GetHandler(); + if (mem_handler == NULL) { + return NULL; + } + } + handler = (PyDataMem_Handler *) PyCapsule_GetPointer(mem_handler, "mem_handler"); + if (handler == NULL) { + Py_DECREF(mem_handler); + return NULL; + } + version = PyLong_FromLong(handler->version); + Py_DECREF(mem_handler); + return version; +} diff --git a/numpy/core/src/multiarray/alloc.h b/numpy/core/src/multiarray/alloc.h index 4f7df1f84..f1ccf0bcd 100644 --- a/numpy/core/src/multiarray/alloc.h +++ b/numpy/core/src/multiarray/alloc.h @@ -47,5 +47,7 @@ extern PyDataMem_Handler default_handler; NPY_NO_EXPORT PyObject * get_handler_name(PyObject *NPY_UNUSED(self), PyObject *obj); +NPY_NO_EXPORT PyObject * +get_handler_version(PyObject *NPY_UNUSED(self), PyObject *obj); #endif /* NUMPY_CORE_SRC_MULTIARRAY_ALLOC_H_ */ diff --git a/numpy/core/src/multiarray/array_coercion.c b/numpy/core/src/multiarray/array_coercion.c index 8778ec20c..d58dd5d21 100644 --- a/numpy/core/src/multiarray/array_coercion.c +++ b/numpy/core/src/multiarray/array_coercion.c @@ -555,6 +555,7 @@ npy_new_coercion_cache( cache = PyMem_Malloc(sizeof(coercion_cache_obj)); } if (cache == NULL) { + Py_DECREF(arr_or_sequence); PyErr_NoMemory(); return -1; } diff --git a/numpy/core/src/multiarray/compiled_base.c b/numpy/core/src/multiarray/compiled_base.c index 9910fffe6..5853e068b 100644 --- a/numpy/core/src/multiarray/compiled_base.c +++ b/numpy/core/src/multiarray/compiled_base.c @@ -1393,7 +1393,7 @@ arr_add_docstring(PyObject *NPY_UNUSED(dummy), PyObject *args) { PyObject *obj; PyObject *str; - #if PY_VERSION_HEX >= 0x030700A2 && (!defined(PYPY_VERSION_NUM) || PYPY_VERSION_NUM > 0x07030300) + #if !defined(PYPY_VERSION_NUM) || PYPY_VERSION_NUM > 0x07030300 const char *docstr; #else char *docstr; diff --git a/numpy/core/src/multiarray/descriptor.c b/numpy/core/src/multiarray/descriptor.c index 6a09f92ac..fd2577bc6 100644 --- a/numpy/core/src/multiarray/descriptor.c +++ b/numpy/core/src/multiarray/descriptor.c @@ -2305,8 +2305,9 @@ arraydescr_new(PyTypeObject *subtype, { if (subtype != &PyArrayDescr_Type) { if (Py_TYPE(subtype) == &PyArrayDTypeMeta_Type && - !(PyType_GetFlags(Py_TYPE(subtype)) & Py_TPFLAGS_HEAPTYPE) && - (NPY_DT_SLOTS((PyArray_DTypeMeta *)subtype)) != NULL) { + (NPY_DT_SLOTS((PyArray_DTypeMeta *)subtype)) != NULL && + !NPY_DT_is_legacy((PyArray_DTypeMeta *)subtype) && + subtype->tp_new != PyArrayDescr_Type.tp_new) { /* * Appears to be a properly initialized user DType. Allocate * it and initialize the main part as best we can. @@ -2333,7 +2334,9 @@ arraydescr_new(PyTypeObject *subtype, } /* The DTypeMeta class should prevent this from happening. */ PyErr_Format(PyExc_SystemError, - "'%S' must not inherit np.dtype.__new__().", subtype); + "'%S' must not inherit np.dtype.__new__(). User DTypes should " + "currently call `PyArrayDescr_Type.tp_new` from their new.", + subtype); return NULL; } diff --git a/numpy/core/src/multiarray/dlpack.c b/numpy/core/src/multiarray/dlpack.c new file mode 100644 index 000000000..291e60a22 --- /dev/null +++ b/numpy/core/src/multiarray/dlpack.c @@ -0,0 +1,408 @@ +#define NPY_NO_DEPRECATED_API NPY_API_VERSION +#define _MULTIARRAYMODULE + +#define PY_SSIZE_T_CLEAN +#include <Python.h> +#include <dlpack/dlpack.h> + +#include "numpy/arrayobject.h" +#include "common/npy_argparse.h" + +#include "common/dlpack/dlpack.h" +#include "common/npy_dlpack.h" + +static void +array_dlpack_deleter(DLManagedTensor *self) +{ + PyArrayObject *array = (PyArrayObject *)self->manager_ctx; + // This will also free the strides as it's one allocation. + PyMem_Free(self->dl_tensor.shape); + PyMem_Free(self); + Py_XDECREF(array); +} + +/* This is exactly as mandated by dlpack */ +static void dlpack_capsule_deleter(PyObject *self) { + if (PyCapsule_IsValid(self, NPY_DLPACK_USED_CAPSULE_NAME)) { + return; + } + + /* an exception may be in-flight, we must save it in case we create another one */ + PyObject *type, *value, *traceback; + PyErr_Fetch(&type, &value, &traceback); + + DLManagedTensor *managed = + (DLManagedTensor *)PyCapsule_GetPointer(self, NPY_DLPACK_CAPSULE_NAME); + if (managed == NULL) { + PyErr_WriteUnraisable(self); + goto done; + } + /* + * the spec says the deleter can be NULL if there is no way for the caller + * to provide a reasonable destructor. + */ + if (managed->deleter) { + managed->deleter(managed); + /* TODO: is the deleter allowed to set a python exception? */ + assert(!PyErr_Occurred()); + } + +done: + PyErr_Restore(type, value, traceback); +} + +/* used internally, almost identical to dlpack_capsule_deleter() */ +static void array_dlpack_internal_capsule_deleter(PyObject *self) +{ + /* an exception may be in-flight, we must save it in case we create another one */ + PyObject *type, *value, *traceback; + PyErr_Fetch(&type, &value, &traceback); + + DLManagedTensor *managed = + (DLManagedTensor *)PyCapsule_GetPointer(self, NPY_DLPACK_INTERNAL_CAPSULE_NAME); + if (managed == NULL) { + PyErr_WriteUnraisable(self); + goto done; + } + /* + * the spec says the deleter can be NULL if there is no way for the caller + * to provide a reasonable destructor. + */ + if (managed->deleter) { + managed->deleter(managed); + /* TODO: is the deleter allowed to set a python exception? */ + assert(!PyErr_Occurred()); + } + +done: + PyErr_Restore(type, value, traceback); +} + + +// This function cannot return NULL, but it can fail, +// So call PyErr_Occurred to check if it failed after +// calling it. +static DLDevice +array_get_dl_device(PyArrayObject *self) { + DLDevice ret; + ret.device_type = kDLCPU; + ret.device_id = 0; + PyObject *base = PyArray_BASE(self); + // The outer if is due to the fact that NumPy arrays are on the CPU + // by default (if not created from DLPack). + if (PyCapsule_IsValid(base, NPY_DLPACK_INTERNAL_CAPSULE_NAME)) { + DLManagedTensor *managed = PyCapsule_GetPointer( + base, NPY_DLPACK_INTERNAL_CAPSULE_NAME); + if (managed == NULL) { + return ret; + } + return managed->dl_tensor.device; + } + return ret; +} + + +PyObject * +array_dlpack(PyArrayObject *self, + PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) +{ + PyObject *stream = Py_None; + NPY_PREPARE_ARGPARSER; + if (npy_parse_arguments("__dlpack__", args, len_args, kwnames, + "$stream", NULL, &stream, NULL, NULL, NULL)) { + return NULL; + } + + if (stream != Py_None) { + PyErr_SetString(PyExc_RuntimeError, "NumPy only supports " + "stream=None."); + return NULL; + } + + if ( !(PyArray_FLAGS(self) & NPY_ARRAY_WRITEABLE)) { + PyErr_SetString(PyExc_TypeError, "NumPy currently only supports " + "dlpack for writeable arrays"); + return NULL; + } + + npy_intp itemsize = PyArray_ITEMSIZE(self); + int ndim = PyArray_NDIM(self); + npy_intp *strides = PyArray_STRIDES(self); + npy_intp *shape = PyArray_SHAPE(self); + + if (!PyArray_IS_C_CONTIGUOUS(self) && PyArray_SIZE(self) != 1) { + for (int i = 0; i < ndim; ++i) { + if (strides[i] % itemsize != 0) { + PyErr_SetString(PyExc_RuntimeError, + "DLPack only supports strides which are a multiple of " + "itemsize."); + return NULL; + } + } + } + + DLDataType managed_dtype; + PyArray_Descr *dtype = PyArray_DESCR(self); + + if (PyDataType_ISBYTESWAPPED(dtype)) { + PyErr_SetString(PyExc_TypeError, "DLPack only supports native " + "byte swapping."); + return NULL; + } + + managed_dtype.bits = 8 * itemsize; + managed_dtype.lanes = 1; + + if (PyDataType_ISSIGNED(dtype)) { + managed_dtype.code = kDLInt; + } + else if (PyDataType_ISUNSIGNED(dtype)) { + managed_dtype.code = kDLUInt; + } + else if (PyDataType_ISFLOAT(dtype)) { + // We can't be sure that the dtype is + // IEEE or padded. + if (itemsize > 8) { + PyErr_SetString(PyExc_TypeError, "DLPack only supports IEEE " + "floating point types without padding."); + return NULL; + } + managed_dtype.code = kDLFloat; + } + else if (PyDataType_ISCOMPLEX(dtype)) { + // We can't be sure that the dtype is + // IEEE or padded. + if (itemsize > 16) { + PyErr_SetString(PyExc_TypeError, "DLPack only supports IEEE " + "complex point types without padding."); + return NULL; + } + managed_dtype.code = kDLComplex; + } + else { + PyErr_SetString(PyExc_TypeError, + "DLPack only supports signed/unsigned integers, float " + "and complex dtypes."); + return NULL; + } + + DLDevice device = array_get_dl_device(self); + if (PyErr_Occurred()) { + return NULL; + } + + DLManagedTensor *managed = PyMem_Malloc(sizeof(DLManagedTensor)); + if (managed == NULL) { + PyErr_NoMemory(); + return NULL; + } + + /* + * Note: the `dlpack.h` header suggests/standardizes that `data` must be + * 256-byte aligned. We ignore this intentionally, because `__dlpack__` + * standardizes that `byte_offset` must be 0 (for now) to not break pytorch: + * https://github.com/data-apis/array-api/issues/293#issuecomment-964111413 + * + * We further assume that exporting fully unaligned data is OK even without + * `byte_offset` since the standard does not reject it. + * Presumably, pytorch will support importing `byte_offset != 0` and NumPy + * can choose to use it starting about 2023. At that point, it may be + * that NumPy MUST use `byte_offset` to adhere to the standard (as + * specified in the header)! + */ + managed->dl_tensor.data = PyArray_DATA(self); + managed->dl_tensor.byte_offset = 0; + managed->dl_tensor.device = device; + managed->dl_tensor.dtype = managed_dtype; + + int64_t *managed_shape_strides = PyMem_Malloc(sizeof(int64_t) * ndim * 2); + if (managed_shape_strides == NULL) { + PyErr_NoMemory(); + PyMem_Free(managed); + return NULL; + } + + int64_t *managed_shape = managed_shape_strides; + int64_t *managed_strides = managed_shape_strides + ndim; + for (int i = 0; i < ndim; ++i) { + managed_shape[i] = shape[i]; + // Strides in DLPack are items; in NumPy are bytes. + managed_strides[i] = strides[i] / itemsize; + } + + managed->dl_tensor.ndim = ndim; + managed->dl_tensor.shape = managed_shape; + managed->dl_tensor.strides = NULL; + if (PyArray_SIZE(self) != 1 && !PyArray_IS_C_CONTIGUOUS(self)) { + managed->dl_tensor.strides = managed_strides; + } + managed->dl_tensor.byte_offset = 0; + managed->manager_ctx = self; + managed->deleter = array_dlpack_deleter; + + PyObject *capsule = PyCapsule_New(managed, NPY_DLPACK_CAPSULE_NAME, + dlpack_capsule_deleter); + if (capsule == NULL) { + PyMem_Free(managed); + PyMem_Free(managed_shape_strides); + return NULL; + } + + // the capsule holds a reference + Py_INCREF(self); + return capsule; +} + +PyObject * +array_dlpack_device(PyArrayObject *self, PyObject *NPY_UNUSED(args)) +{ + DLDevice device = array_get_dl_device(self); + if (PyErr_Occurred()) { + return NULL; + } + return Py_BuildValue("ii", device.device_type, device.device_id); +} + +NPY_NO_EXPORT PyObject * +_from_dlpack(PyObject *NPY_UNUSED(self), PyObject *obj) { + PyObject *capsule = PyObject_CallMethod((PyObject *)obj->ob_type, + "__dlpack__", "O", obj); + if (capsule == NULL) { + return NULL; + } + + DLManagedTensor *managed = + (DLManagedTensor *)PyCapsule_GetPointer(capsule, + NPY_DLPACK_CAPSULE_NAME); + + if (managed == NULL) { + Py_DECREF(capsule); + return NULL; + } + + const int ndim = managed->dl_tensor.ndim; + if (ndim > NPY_MAXDIMS) { + PyErr_SetString(PyExc_RuntimeError, + "maxdims of DLPack tensor is higher than the supported " + "maxdims."); + Py_DECREF(capsule); + return NULL; + } + + DLDeviceType device_type = managed->dl_tensor.device.device_type; + if (device_type != kDLCPU && + device_type != kDLCUDAHost && + device_type != kDLROCMHost && + device_type != kDLCUDAManaged) { + PyErr_SetString(PyExc_RuntimeError, + "Unsupported device in DLTensor."); + Py_DECREF(capsule); + return NULL; + } + + if (managed->dl_tensor.dtype.lanes != 1) { + PyErr_SetString(PyExc_RuntimeError, + "Unsupported lanes in DLTensor dtype."); + Py_DECREF(capsule); + return NULL; + } + + int typenum = -1; + const uint8_t bits = managed->dl_tensor.dtype.bits; + const npy_intp itemsize = bits / 8; + switch (managed->dl_tensor.dtype.code) { + case kDLInt: + switch (bits) + { + case 8: typenum = NPY_INT8; break; + case 16: typenum = NPY_INT16; break; + case 32: typenum = NPY_INT32; break; + case 64: typenum = NPY_INT64; break; + } + break; + case kDLUInt: + switch (bits) + { + case 8: typenum = NPY_UINT8; break; + case 16: typenum = NPY_UINT16; break; + case 32: typenum = NPY_UINT32; break; + case 64: typenum = NPY_UINT64; break; + } + break; + case kDLFloat: + switch (bits) + { + case 16: typenum = NPY_FLOAT16; break; + case 32: typenum = NPY_FLOAT32; break; + case 64: typenum = NPY_FLOAT64; break; + } + break; + case kDLComplex: + switch (bits) + { + case 64: typenum = NPY_COMPLEX64; break; + case 128: typenum = NPY_COMPLEX128; break; + } + break; + } + + if (typenum == -1) { + PyErr_SetString(PyExc_RuntimeError, + "Unsupported dtype in DLTensor."); + Py_DECREF(capsule); + return NULL; + } + + npy_intp shape[NPY_MAXDIMS]; + npy_intp strides[NPY_MAXDIMS]; + + for (int i = 0; i < ndim; ++i) { + shape[i] = managed->dl_tensor.shape[i]; + // DLPack has elements as stride units, NumPy has bytes. + if (managed->dl_tensor.strides != NULL) { + strides[i] = managed->dl_tensor.strides[i] * itemsize; + } + } + + char *data = (char *)managed->dl_tensor.data + + managed->dl_tensor.byte_offset; + + PyArray_Descr *descr = PyArray_DescrFromType(typenum); + if (descr == NULL) { + Py_DECREF(capsule); + return NULL; + } + + PyObject *ret = PyArray_NewFromDescr(&PyArray_Type, descr, ndim, shape, + managed->dl_tensor.strides != NULL ? strides : NULL, data, 0, NULL); + if (ret == NULL) { + Py_DECREF(capsule); + return NULL; + } + + PyObject *new_capsule = PyCapsule_New(managed, + NPY_DLPACK_INTERNAL_CAPSULE_NAME, + array_dlpack_internal_capsule_deleter); + if (new_capsule == NULL) { + Py_DECREF(capsule); + Py_DECREF(ret); + return NULL; + } + + if (PyArray_SetBaseObject((PyArrayObject *)ret, new_capsule) < 0) { + Py_DECREF(capsule); + Py_DECREF(ret); + return NULL; + } + + if (PyCapsule_SetName(capsule, NPY_DLPACK_USED_CAPSULE_NAME) < 0) { + Py_DECREF(capsule); + Py_DECREF(ret); + return NULL; + } + + Py_DECREF(capsule); + return ret; +} + + diff --git a/numpy/core/src/multiarray/experimental_public_dtype_api.c b/numpy/core/src/multiarray/experimental_public_dtype_api.c index ef5030471..4b9c7199b 100644 --- a/numpy/core/src/multiarray/experimental_public_dtype_api.c +++ b/numpy/core/src/multiarray/experimental_public_dtype_api.c @@ -131,6 +131,14 @@ PyArrayInitDTypeMeta_FromSpec( return -1; } + if (((PyTypeObject *)DType)->tp_repr == PyArrayDescr_Type.tp_repr + || ((PyTypeObject *)DType)->tp_str == PyArrayDescr_Type.tp_str) { + PyErr_SetString(PyExc_TypeError, + "A custom DType must implement `__repr__` and `__str__` since " + "the default inherited version (currently) fails."); + return -1; + } + if (spec->typeobj == NULL || !PyType_Check(spec->typeobj)) { PyErr_SetString(PyExc_TypeError, "Not giving a type object is currently not supported, but " diff --git a/numpy/core/src/multiarray/methods.c b/numpy/core/src/multiarray/methods.c index dddfb35f6..0a471da92 100644 --- a/numpy/core/src/multiarray/methods.c +++ b/numpy/core/src/multiarray/methods.c @@ -26,6 +26,7 @@ #include "shape.h" #include "strfuncs.h" #include "array_assign.h" +#include "npy_dlpack.h" #include "methods.h" #include "alloc.h" @@ -1831,22 +1832,8 @@ array_reduce_ex_picklebuffer(PyArrayObject *self, int protocol) descr = PyArray_DESCR(self); - /* if the python version is below 3.8, the pickle module does not provide - * built-in support for protocol 5. We try importing the pickle5 - * backport instead */ -#if PY_VERSION_HEX >= 0x03080000 /* we expect protocol 5 to be available in Python 3.8 */ pickle_module = PyImport_ImportModule("pickle"); -#else - pickle_module = PyImport_ImportModule("pickle5"); - if (pickle_module == NULL) { - /* for protocol 5, raise a clear ImportError if pickle5 is not found - */ - PyErr_SetString(PyExc_ImportError, "Using pickle protocol 5 " - "requires the pickle5 module for Python >=3.6 and <3.8"); - return NULL; - } -#endif if (pickle_module == NULL){ return NULL; } @@ -2999,5 +2986,13 @@ NPY_NO_EXPORT PyMethodDef array_methods[] = { {"view", (PyCFunction)array_view, METH_FASTCALL | METH_KEYWORDS, NULL}, + // For data interchange between libraries + {"__dlpack__", + (PyCFunction)array_dlpack, + METH_FASTCALL | METH_KEYWORDS, NULL}, + + {"__dlpack_device__", + (PyCFunction)array_dlpack_device, + METH_NOARGS, NULL}, {NULL, NULL, 0, NULL} /* sentinel */ }; diff --git a/numpy/core/src/multiarray/multiarraymodule.c b/numpy/core/src/multiarray/multiarraymodule.c index 5f72674fe..d9dce2517 100644 --- a/numpy/core/src/multiarray/multiarraymodule.c +++ b/numpy/core/src/multiarray/multiarraymodule.c @@ -70,6 +70,8 @@ NPY_NO_EXPORT int NPY_NUMUSERTYPES = 0; #include "get_attr_string.h" #include "experimental_public_dtype_api.h" /* _get_experimental_dtype_api */ +#include "npy_dlpack.h" + /* ***************************************************************************** ** INCLUDE GENERATED CODE ** @@ -4246,7 +4248,6 @@ _reload_guard(PyObject *NPY_UNUSED(self)) { Py_RETURN_NONE; } - static struct PyMethodDef array_module_methods[] = { {"_get_implementing_args", (PyCFunction)array__get_implementing_args, @@ -4451,6 +4452,9 @@ static struct PyMethodDef array_module_methods[] = { {"get_handler_name", (PyCFunction) get_handler_name, METH_VARARGS, NULL}, + {"get_handler_version", + (PyCFunction) get_handler_version, + METH_VARARGS, NULL}, {"_add_newdoc_ufunc", (PyCFunction)add_newdoc_ufunc, METH_VARARGS, NULL}, {"_get_sfloat_dtype", @@ -4460,6 +4464,8 @@ static struct PyMethodDef array_module_methods[] = { {"_reload_guard", (PyCFunction)_reload_guard, METH_NOARGS, "Give a warning on reload and big warning in sub-interpreters."}, + {"_from_dlpack", (PyCFunction)_from_dlpack, + METH_O, NULL}, {NULL, NULL, 0, NULL} /* sentinel */ }; @@ -4690,14 +4696,14 @@ PyMODINIT_FUNC PyInit__multiarray_umath(void) { PyObject *m, *d, *s; PyObject *c_api; - /* Initialize CPU features */ - if (npy_cpu_init() < 0) { - goto err; - } - /* Create the module and add the functions */ m = PyModule_Create(&moduledef); if (!m) { + return NULL; + } + + /* Initialize CPU features */ + if (npy_cpu_init() < 0) { goto err; } @@ -4949,5 +4955,6 @@ PyMODINIT_FUNC PyInit__multiarray_umath(void) { PyErr_SetString(PyExc_RuntimeError, "cannot load multiarray module."); } + Py_DECREF(m); return NULL; } diff --git a/numpy/core/src/multiarray/scalarapi.c b/numpy/core/src/multiarray/scalarapi.c index e409e9874..564352f1f 100644 --- a/numpy/core/src/multiarray/scalarapi.c +++ b/numpy/core/src/multiarray/scalarapi.c @@ -233,8 +233,12 @@ PyArray_CastScalarToCtype(PyObject *scalar, void *ctypeptr, PyArray_VectorUnaryFunc* castfunc; descr = PyArray_DescrFromScalar(scalar); + if (descr == NULL) { + return -1; + } castfunc = PyArray_GetCastFunc(descr, outcode->type_num); if (castfunc == NULL) { + Py_DECREF(descr); return -1; } if (PyTypeNum_ISEXTENDED(descr->type_num) || @@ -254,6 +258,7 @@ PyArray_CastScalarToCtype(PyObject *scalar, void *ctypeptr, NPY_ARRAY_CARRAY, NULL); if (aout == NULL) { Py_DECREF(ain); + Py_DECREF(descr); return -1; } castfunc(PyArray_DATA(ain), PyArray_DATA(aout), 1, ain, aout); diff --git a/numpy/core/src/umath/loops.c.src b/numpy/core/src/umath/loops.c.src index 7c0710819..aaa694f34 100644 --- a/numpy/core/src/umath/loops.c.src +++ b/numpy/core/src/umath/loops.c.src @@ -1532,8 +1532,8 @@ TIMEDELTA_mm_qm_divmod(char **args, npy_intp const *dimensions, npy_intp const * */ /**begin repeat - * #func = rint, ceil, floor, trunc# - * #scalarf = npy_rint, npy_ceil, npy_floor, npy_trunc# + * #func = rint, floor, trunc# + * #scalarf = npy_rint, npy_floor, npy_trunc# */ /**begin repeat1 @@ -1568,8 +1568,8 @@ NPY_NO_EXPORT NPY_GCC_OPT_3 void */ /**begin repeat2 - * #func = rint, ceil, floor, trunc# - * #scalarf = npy_rint, npy_ceil, npy_floor, npy_trunc# + * #func = rint, floor, trunc# + * #scalarf = npy_rint, npy_floor, npy_trunc# */ NPY_NO_EXPORT NPY_GCC_OPT_3 void diff --git a/numpy/core/src/umath/loops.h.src b/numpy/core/src/umath/loops.h.src index 0938cd050..081ca9957 100644 --- a/numpy/core/src/umath/loops.h.src +++ b/numpy/core/src/umath/loops.h.src @@ -187,7 +187,7 @@ NPY_NO_EXPORT void * #TYPE = FLOAT, DOUBLE# */ /**begin repeat1 - * #kind = sqrt, absolute, square, reciprocal# + * #kind = ceil, sqrt, absolute, square, reciprocal# */ NPY_CPU_DISPATCH_DECLARE(NPY_NO_EXPORT void @TYPE@_@kind@, (char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(data))) @@ -228,7 +228,7 @@ NPY_CPU_DISPATCH_DECLARE(NPY_NO_EXPORT void @TYPE@_@func@, /**end repeat**/ /**begin repeat - * #func = sin, cos# + * #func = sin, cos# */ NPY_CPU_DISPATCH_DECLARE(NPY_NO_EXPORT void DOUBLE_@func@, @@ -275,7 +275,7 @@ NPY_CPU_DISPATCH_DECLARE(NPY_NO_EXPORT void @TYPE@_@kind@, ( /**end repeat**/ /**begin repeat - * #func = rint, ceil, floor, trunc# + * #func = rint, floor, trunc# */ /**begin repeat1 diff --git a/numpy/core/src/umath/loops_unary_fp.dispatch.c.src b/numpy/core/src/umath/loops_unary_fp.dispatch.c.src index 2d5917282..789733fb6 100644 --- a/numpy/core/src/umath/loops_unary_fp.dispatch.c.src +++ b/numpy/core/src/umath/loops_unary_fp.dispatch.c.src @@ -1,6 +1,8 @@ /*@targets ** $maxopt baseline - ** sse2 vsx2 neon + ** sse2 sse41 + ** vsx2 + ** neon asimd **/ /** * Force use SSE only on x86, even if AVX2 or AVX512F are enabled @@ -65,6 +67,9 @@ NPY_FINLINE double c_square_f64(double a) #define c_sqrt_f64 npy_sqrt #endif +#define c_ceil_f32 npy_ceilf +#define c_ceil_f64 npy_ceil + /******************************************************************************** ** Defining the SIMD kernels ********************************************************************************/ @@ -134,10 +139,10 @@ NPY_FINLINE double c_square_f64(double a) */ #if @VCHK@ /**begin repeat1 - * #kind = sqrt, absolute, square, reciprocal# - * #intr = sqrt, abs, square, recip# - * #repl_0w1 = 0, 0, 0, 1# - * #RECIP_WORKAROUND = 0, 0, 0, WORKAROUND_CLANG_RECIPROCAL_BUG# + * #kind = ceil, sqrt, absolute, square, reciprocal# + * #intr = ceil, sqrt, abs, square, recip# + * #repl_0w1 = 0, 0, 0, 0, 1# + * #RECIP_WORKAROUND = 0, 0, 0, 0, WORKAROUND_CLANG_RECIPROCAL_BUG# */ /**begin repeat2 * #STYPE = CONTIG, NCONTIG, CONTIG, NCONTIG# @@ -245,9 +250,9 @@ static void simd_@TYPE@_@kind@_@STYPE@_@DTYPE@ * #VCHK = NPY_SIMD, NPY_SIMD_F64# */ /**begin repeat1 - * #kind = sqrt, absolute, square, reciprocal# - * #intr = sqrt, abs, square, recip# - * #clear = 0, 1, 0, 0# + * #kind = ceil, sqrt, absolute, square, reciprocal# + * #intr = ceil, sqrt, abs, square, recip# + * #clear = 0, 0, 1, 0, 0# */ NPY_NO_EXPORT void NPY_CPU_DISPATCH_CURFX(@TYPE@_@kind@) (char **args, npy_intp const *dimensions, npy_intp const *steps, void *NPY_UNUSED(func)) diff --git a/numpy/core/src/umath/simd.inc.src b/numpy/core/src/umath/simd.inc.src index d47be9a30..0e2c1ab8b 100644 --- a/numpy/core/src/umath/simd.inc.src +++ b/numpy/core/src/umath/simd.inc.src @@ -169,7 +169,7 @@ run_@func@_avx512_skx_@TYPE@(char **args, npy_intp const *dimensions, npy_intp c */ /**begin repeat2 - * #func = rint, floor, ceil, trunc# + * #func = rint, floor, trunc# */ #if defined @CHK@ && defined NPY_HAVE_SSE2_INTRINSICS @@ -850,12 +850,6 @@ fma_floor_@vsub@(@vtype@ x) } NPY_FINLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA @vtype@ -fma_ceil_@vsub@(@vtype@ x) -{ - return _mm256_round_@vsub@(x, _MM_FROUND_TO_POS_INF); -} - -NPY_FINLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_FMA @vtype@ fma_trunc_@vsub@(@vtype@ x) { return _mm256_round_@vsub@(x, _MM_FROUND_TO_ZERO); @@ -988,12 +982,6 @@ avx512_floor_@vsub@(@vtype@ x) } NPY_FINLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX512F @vtype@ -avx512_ceil_@vsub@(@vtype@ x) -{ - return _mm512_roundscale_@vsub@(x, 0x0A); -} - -NPY_FINLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_AVX512F @vtype@ avx512_trunc_@vsub@(@vtype@ x) { return _mm512_roundscale_@vsub@(x, 0x0B); @@ -1327,8 +1315,8 @@ AVX512F_@func@_@TYPE@(char **args, npy_intp const *dimensions, npy_intp const *s */ /**begin repeat1 - * #func = rint, ceil, floor, trunc# - * #vectorf = rint, ceil, floor, trunc# + * #func = rint, floor, trunc# + * #vectorf = rint, floor, trunc# */ #if defined @CHK@ @@ -1398,8 +1386,8 @@ static NPY_INLINE NPY_GCC_OPT_3 NPY_GCC_TARGET_@ISA@ void */ /**begin repeat1 - * #func = rint, ceil, floor, trunc# - * #vectorf = rint, ceil, floor, trunc# + * #func = rint, floor, trunc# + * #vectorf = rint, floor, trunc# */ #if defined @CHK@ diff --git a/numpy/core/src/umath/ufunc_object.c b/numpy/core/src/umath/ufunc_object.c index 237af81b2..186f18a62 100644 --- a/numpy/core/src/umath/ufunc_object.c +++ b/numpy/core/src/umath/ufunc_object.c @@ -4926,65 +4926,6 @@ fail: /* - * TODO: The implementation below can be replaced with PyVectorcall_Call - * when available (should be Python 3.8+). - */ -static PyObject * -ufunc_generic_call( - PyUFuncObject *ufunc, PyObject *args, PyObject *kwds) -{ - Py_ssize_t len_args = PyTuple_GET_SIZE(args); - /* - * Wrapper for tp_call to tp_fastcall, to support both on older versions - * of Python. (and generally simplifying support of both versions in the - * same codebase. - */ - if (kwds == NULL) { - return ufunc_generic_fastcall(ufunc, - PySequence_Fast_ITEMS(args), len_args, NULL, NPY_FALSE); - } - - PyObject *new_args[NPY_MAXARGS]; - Py_ssize_t len_kwds = PyDict_Size(kwds); - - if (NPY_UNLIKELY(len_args + len_kwds > NPY_MAXARGS)) { - /* - * We do not have enough scratch-space, so we have to abort; - * In practice this error should not be seen by users. - */ - PyErr_Format(PyExc_ValueError, - "%s() takes from %d to %d positional arguments but " - "%zd were given", - ufunc_get_name_cstr(ufunc) , ufunc->nin, ufunc->nargs, len_args); - return NULL; - } - - /* Copy args into the scratch space */ - for (Py_ssize_t i = 0; i < len_args; i++) { - new_args[i] = PyTuple_GET_ITEM(args, i); - } - - PyObject *kwnames = PyTuple_New(len_kwds); - - PyObject *key, *value; - Py_ssize_t pos = 0; - Py_ssize_t i = 0; - while (PyDict_Next(kwds, &pos, &key, &value)) { - Py_INCREF(key); - PyTuple_SET_ITEM(kwnames, i, key); - new_args[i + len_args] = value; - i++; - } - - PyObject *res = ufunc_generic_fastcall(ufunc, - new_args, len_args, kwnames, NPY_FALSE); - Py_DECREF(kwnames); - return res; -} - - -#if PY_VERSION_HEX >= 0x03080000 -/* * Implement vectorcallfunc which should be defined with Python 3.8+. * In principle this could be backported, but the speed gain seems moderate * since ufunc calls often do not have keyword arguments and always have @@ -5001,7 +4942,6 @@ ufunc_generic_vectorcall(PyObject *ufunc, return ufunc_generic_fastcall((PyUFuncObject *)ufunc, args, PyVectorcall_NARGS(len_args), kwnames, NPY_FALSE); } -#endif /* PY_VERSION_HEX >= 0x03080000 */ NPY_NO_EXPORT PyObject * @@ -5178,11 +5118,7 @@ PyUFunc_FromFuncAndDataAndSignatureAndIdentity(PyUFuncGenericFunction *func, voi ufunc->core_dim_flags = NULL; ufunc->userloops = NULL; ufunc->ptr = NULL; -#if PY_VERSION_HEX >= 0x03080000 ufunc->vectorcall = &ufunc_generic_vectorcall; -#else - ufunc->reserved2 = NULL; -#endif ufunc->reserved1 = 0; ufunc->iter_flags = 0; @@ -6437,19 +6373,15 @@ NPY_NO_EXPORT PyTypeObject PyUFunc_Type = { .tp_basicsize = sizeof(PyUFuncObject), .tp_dealloc = (destructor)ufunc_dealloc, .tp_repr = (reprfunc)ufunc_repr, - .tp_call = (ternaryfunc)ufunc_generic_call, + .tp_call = &PyVectorcall_Call, .tp_str = (reprfunc)ufunc_repr, .tp_flags = Py_TPFLAGS_DEFAULT | -#if PY_VERSION_HEX >= 0x03080000 _Py_TPFLAGS_HAVE_VECTORCALL | -#endif Py_TPFLAGS_HAVE_GC, .tp_traverse = (traverseproc)ufunc_traverse, .tp_methods = ufunc_methods, .tp_getset = ufunc_getset, -#if PY_VERSION_HEX >= 0x03080000 .tp_vectorcall_offset = offsetof(PyUFuncObject, vectorcall), -#endif }; /* End of code for ufunc objects */ diff --git a/numpy/core/tests/test_dlpack.py b/numpy/core/tests/test_dlpack.py new file mode 100644 index 000000000..f848b2008 --- /dev/null +++ b/numpy/core/tests/test_dlpack.py @@ -0,0 +1,109 @@ +import sys +import pytest + +import numpy as np +from numpy.testing import assert_array_equal, IS_PYPY + + +class TestDLPack: + @pytest.mark.skipif(IS_PYPY, reason="PyPy can't get refcounts.") + def test_dunder_dlpack_refcount(self): + x = np.arange(5) + y = x.__dlpack__() + assert sys.getrefcount(x) == 3 + del y + assert sys.getrefcount(x) == 2 + + def test_dunder_dlpack_stream(self): + x = np.arange(5) + x.__dlpack__(stream=None) + + with pytest.raises(RuntimeError): + x.__dlpack__(stream=1) + + def test_strides_not_multiple_of_itemsize(self): + dt = np.dtype([('int', np.int32), ('char', np.int8)]) + y = np.zeros((5,), dtype=dt) + z = y['int'] + + with pytest.raises(RuntimeError): + np._from_dlpack(z) + + @pytest.mark.skipif(IS_PYPY, reason="PyPy can't get refcounts.") + def test_from_dlpack_refcount(self): + x = np.arange(5) + y = np._from_dlpack(x) + assert sys.getrefcount(x) == 3 + del y + assert sys.getrefcount(x) == 2 + + @pytest.mark.parametrize("dtype", [ + np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64, + np.float16, np.float32, np.float64, + np.complex64, np.complex128 + ]) + def test_dtype_passthrough(self, dtype): + x = np.arange(5, dtype=dtype) + y = np._from_dlpack(x) + + assert y.dtype == x.dtype + assert_array_equal(x, y) + + def test_invalid_dtype(self): + x = np.asarray(np.datetime64('2021-05-27')) + + with pytest.raises(TypeError): + np._from_dlpack(x) + + def test_invalid_byte_swapping(self): + dt = np.dtype('=i8').newbyteorder() + x = np.arange(5, dtype=dt) + + with pytest.raises(TypeError): + np._from_dlpack(x) + + def test_non_contiguous(self): + x = np.arange(25).reshape((5, 5)) + + y1 = x[0] + assert_array_equal(y1, np._from_dlpack(y1)) + + y2 = x[:, 0] + assert_array_equal(y2, np._from_dlpack(y2)) + + y3 = x[1, :] + assert_array_equal(y3, np._from_dlpack(y3)) + + y4 = x[1] + assert_array_equal(y4, np._from_dlpack(y4)) + + y5 = np.diagonal(x).copy() + assert_array_equal(y5, np._from_dlpack(y5)) + + @pytest.mark.parametrize("ndim", range(33)) + def test_higher_dims(self, ndim): + shape = (1,) * ndim + x = np.zeros(shape, dtype=np.float64) + + assert shape == np._from_dlpack(x).shape + + def test_dlpack_device(self): + x = np.arange(5) + assert x.__dlpack_device__() == (1, 0) + assert np._from_dlpack(x).__dlpack_device__() == (1, 0) + + def dlpack_deleter_exception(self): + x = np.arange(5) + _ = x.__dlpack__() + raise RuntimeError + + def test_dlpack_destructor_exception(self): + with pytest.raises(RuntimeError): + self.dlpack_deleter_exception() + + def test_readonly(self): + x = np.arange(5) + x.flags.writeable = False + with pytest.raises(TypeError): + x.__dlpack__() diff --git a/numpy/core/tests/test_mem_policy.py b/numpy/core/tests/test_mem_policy.py index 7fec8897f..abf340062 100644 --- a/numpy/core/tests/test_mem_policy.py +++ b/numpy/core/tests/test_mem_policy.py @@ -179,6 +179,7 @@ def get_module(tmp_path): }; static PyDataMem_Handler secret_data_handler = { "secret_data_allocator", + 1, { &secret_data_handler_ctx, /* ctx */ shift_alloc, /* malloc */ @@ -212,17 +213,22 @@ def get_module(tmp_path): def test_set_policy(get_module): get_handler_name = np.core.multiarray.get_handler_name + get_handler_version = np.core.multiarray.get_handler_version orig_policy_name = get_handler_name() a = np.arange(10).reshape((2, 5)) # a doesn't own its own data assert get_handler_name(a) is None + assert get_handler_version(a) is None assert get_handler_name(a.base) == orig_policy_name + assert get_handler_version(a.base) == 1 orig_policy = get_module.set_secret_data_policy() b = np.arange(10).reshape((2, 5)) # b doesn't own its own data assert get_handler_name(b) is None + assert get_handler_version(b) is None assert get_handler_name(b.base) == 'secret_data_allocator' + assert get_handler_version(b.base) == 1 if orig_policy_name == 'default_allocator': get_module.set_old_policy(None) # tests PyDataMem_SetHandler(NULL) diff --git a/numpy/core/tests/test_simd.py b/numpy/core/tests/test_simd.py index 0270ad901..379fef8af 100644 --- a/numpy/core/tests/test_simd.py +++ b/numpy/core/tests/test_simd.py @@ -330,6 +330,33 @@ class _SIMD_FP(_Test_Utility): square = self.square(vdata) assert square == data_square + @pytest.mark.parametrize("intrin, func", [("self.ceil", math.ceil)]) + def test_rounding(self, intrin, func): + """ + Test intrinsics: + npyv_ceil_##SFX + """ + intrin = eval(intrin) + pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan() + # special cases + round_cases = ((nan, nan), (pinf, pinf), (ninf, ninf)) + for case, desired in round_cases: + data_round = [desired]*self.nlanes + _round = intrin(self.setall(case)) + assert _round == pytest.approx(data_round, nan_ok=True) + for x in range(0, 2**20, 256**2): + for w in (-1.05, -1.10, -1.15, 1.05, 1.10, 1.15): + data = [x*w+a for a in range(self.nlanes)] + vdata = self.load(data) + data_round = [func(x) for x in data] + _round = intrin(vdata) + assert _round == data_round + # signed zero + for w in (-0.25, -0.30, -0.45): + _round = self._to_unsigned(intrin(self.setall(w))) + data_round = self._to_unsigned(self.setall(-0.0)) + assert _round == data_round + def test_max(self): """ Test intrinsics: diff --git a/numpy/distutils/mingw32ccompiler.py b/numpy/distutils/mingw32ccompiler.py index 82d296434..fbe3655c9 100644 --- a/numpy/distutils/mingw32ccompiler.py +++ b/numpy/distutils/mingw32ccompiler.py @@ -24,7 +24,6 @@ from numpy.distutils import log # 3. Force windows to use g77 import distutils.cygwinccompiler -from distutils.version import StrictVersion from distutils.unixccompiler import UnixCCompiler from distutils.msvccompiler import get_build_version as get_build_msvc_version from distutils.errors import UnknownFileError @@ -62,35 +61,6 @@ class Mingw32CCompiler(distutils.cygwinccompiler.CygwinCCompiler): distutils.cygwinccompiler.CygwinCCompiler.__init__ (self, verbose, dry_run, force) - # we need to support 3.2 which doesn't match the standard - # get_versions methods regex - if self.gcc_version is None: - try: - out_string = subprocess.check_output(['gcc', '-dumpversion']) - except (OSError, CalledProcessError): - out_string = "" # ignore failures to match old behavior - result = re.search(r'(\d+\.\d+)', out_string) - if result: - self.gcc_version = StrictVersion(result.group(1)) - - # A real mingw32 doesn't need to specify a different entry point, - # but cygwin 2.91.57 in no-cygwin-mode needs it. - if self.gcc_version <= "2.91.57": - entry_point = '--entry _DllMain@12' - else: - entry_point = '' - - if self.linker_dll == 'dllwrap': - # Commented out '--driver-name g++' part that fixes weird - # g++.exe: g++: No such file or directory - # error (mingw 1.0 in Enthon24 tree, gcc-3.4.5). - # If the --driver-name part is required for some environment - # then make the inclusion of this part specific to that - # environment. - self.linker = 'dllwrap' # --driver-name g++' - elif self.linker_dll == 'gcc': - self.linker = 'g++' - # **changes: eric jones 4/11/01 # 1. Check for import library on Windows. Build if it doesn't exist. @@ -113,42 +83,18 @@ class Mingw32CCompiler(distutils.cygwinccompiler.CygwinCCompiler): # kind of bad consequences, like using Py_ModuleInit4 instead of # Py_ModuleInit4_64, etc... So we add it here if get_build_architecture() == 'AMD64': - if self.gcc_version < "4.0": - self.set_executables( - compiler='gcc -g -DDEBUG -DMS_WIN64 -mno-cygwin -O0 -Wall', - compiler_so='gcc -g -DDEBUG -DMS_WIN64 -mno-cygwin -O0' - ' -Wall -Wstrict-prototypes', - linker_exe='gcc -g -mno-cygwin', - linker_so='gcc -g -mno-cygwin -shared') - else: - # gcc-4 series releases do not support -mno-cygwin option - self.set_executables( - compiler='gcc -g -DDEBUG -DMS_WIN64 -O0 -Wall', - compiler_so='gcc -g -DDEBUG -DMS_WIN64 -O0 -Wall -Wstrict-prototypes', - linker_exe='gcc -g', - linker_so='gcc -g -shared') + self.set_executables( + compiler='gcc -g -DDEBUG -DMS_WIN64 -O0 -Wall', + compiler_so='gcc -g -DDEBUG -DMS_WIN64 -O0 -Wall ' + '-Wstrict-prototypes', + linker_exe='gcc -g', + linker_so='gcc -g -shared') else: - if self.gcc_version <= "3.0.0": - self.set_executables( - compiler='gcc -mno-cygwin -O2 -w', - compiler_so='gcc -mno-cygwin -mdll -O2 -w' - ' -Wstrict-prototypes', - linker_exe='g++ -mno-cygwin', - linker_so='%s -mno-cygwin -mdll -static %s' % - (self.linker, entry_point)) - elif self.gcc_version < "4.0": - self.set_executables( - compiler='gcc -mno-cygwin -O2 -Wall', - compiler_so='gcc -mno-cygwin -O2 -Wall' - ' -Wstrict-prototypes', - linker_exe='g++ -mno-cygwin', - linker_so='g++ -mno-cygwin -shared') - else: - # gcc-4 series releases do not support -mno-cygwin option - self.set_executables(compiler='gcc -O2 -Wall', - compiler_so='gcc -O2 -Wall -Wstrict-prototypes', - linker_exe='g++ ', - linker_so='g++ -shared') + self.set_executables( + compiler='gcc -O2 -Wall', + compiler_so='gcc -O2 -Wall -Wstrict-prototypes', + linker_exe='g++ ', + linker_so='g++ -shared') # added for python2.3 support # we can't pass it through set_executables because pre 2.2 would fail self.compiler_cxx = ['g++'] @@ -198,10 +144,7 @@ class Mingw32CCompiler(distutils.cygwinccompiler.CygwinCCompiler): extra_postargs, build_temp, target_lang) - if self.gcc_version < "3.0.0": - func = distutils.cygwinccompiler.CygwinCCompiler.link - else: - func = UnixCCompiler.link + func = UnixCCompiler.link func(*args[:func.__code__.co_argcount]) return diff --git a/numpy/distutils/unixccompiler.py b/numpy/distutils/unixccompiler.py index 733a9fc50..4884960fd 100644 --- a/numpy/distutils/unixccompiler.py +++ b/numpy/distutils/unixccompiler.py @@ -5,6 +5,7 @@ unixccompiler - can handle very long argument lists for ar. import os import sys import subprocess +import shlex from distutils.errors import CompileError, DistutilsExecError, LibError from distutils.unixccompiler import UnixCCompiler @@ -30,15 +31,15 @@ def UnixCCompiler__compile(self, obj, src, ext, cc_args, extra_postargs, pp_opts if 'OPT' in os.environ: # XXX who uses this? from sysconfig import get_config_vars - opt = " ".join(os.environ['OPT'].split()) - gcv_opt = " ".join(get_config_vars('OPT')[0].split()) - ccomp_s = " ".join(self.compiler_so) + opt = shlex.join(shlex.split(os.environ['OPT'])) + gcv_opt = shlex.join(shlex.split(get_config_vars('OPT')[0])) + ccomp_s = shlex.join(self.compiler_so) if opt not in ccomp_s: ccomp_s = ccomp_s.replace(gcv_opt, opt) - self.compiler_so = ccomp_s.split() - llink_s = " ".join(self.linker_so) + self.compiler_so = shlex.split(ccomp_s) + llink_s = shlex.join(self.linker_so) if opt not in llink_s: - self.linker_so = llink_s.split() + opt.split() + self.linker_so = self.linker_so + shlex.split(opt) display = '%s: %s' % (os.path.basename(self.compiler_so[0]), src) diff --git a/numpy/fft/__init__.pyi b/numpy/fft/__init__.pyi index 648b0bf79..510e576d3 100644 --- a/numpy/fft/__init__.pyi +++ b/numpy/fft/__init__.pyi @@ -2,25 +2,30 @@ from typing import Any, List from numpy._pytesttester import PytestTester +from numpy.fft._pocketfft import ( + fft as fft, + ifft as ifft, + rfft as rfft, + irfft as irfft, + hfft as hfft, + ihfft as ihfft, + rfftn as rfftn, + irfftn as irfftn, + rfft2 as rfft2, + irfft2 as irfft2, + fft2 as fft2, + ifft2 as ifft2, + fftn as fftn, + ifftn as ifftn, +) + +from numpy.fft.helper import ( + fftshift as fftshift, + ifftshift as ifftshift, + fftfreq as fftfreq, + rfftfreq as rfftfreq, +) + __all__: List[str] __path__: List[str] test: PytestTester - -def fft(a, n=..., axis=..., norm=...): ... -def ifft(a, n=..., axis=..., norm=...): ... -def rfft(a, n=..., axis=..., norm=...): ... -def irfft(a, n=..., axis=..., norm=...): ... -def hfft(a, n=..., axis=..., norm=...): ... -def ihfft(a, n=..., axis=..., norm=...): ... -def fftn(a, s=..., axes=..., norm=...): ... -def ifftn(a, s=..., axes=..., norm=...): ... -def rfftn(a, s=..., axes=..., norm=...): ... -def irfftn(a, s=..., axes=..., norm=...): ... -def fft2(a, s=..., axes=..., norm=...): ... -def ifft2(a, s=..., axes=..., norm=...): ... -def rfft2(a, s=..., axes=..., norm=...): ... -def irfft2(a, s=..., axes=..., norm=...): ... -def fftshift(x, axes=...): ... -def ifftshift(x, axes=...): ... -def fftfreq(n, d=...): ... -def rfftfreq(n, d=...): ... diff --git a/numpy/fft/_pocketfft.pyi b/numpy/fft/_pocketfft.pyi new file mode 100644 index 000000000..86cf6a60d --- /dev/null +++ b/numpy/fft/_pocketfft.pyi @@ -0,0 +1,111 @@ +from typing import ( + Literal as L, + List, + Sequence, +) + +from numpy import complex128, float64 +from numpy.typing import ArrayLike, NDArray, _ArrayLikeNumber_co + +_NormKind = L[None, "backward", "ortho", "forward"] + +__all__: List[str] + +def fft( + a: ArrayLike, + n: None | int = ..., + axis: int = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def ifft( + a: ArrayLike, + n: None | int = ..., + axis: int = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def rfft( + a: ArrayLike, + n: None | int = ..., + axis: int = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def irfft( + a: ArrayLike, + n: None | int = ..., + axis: int = ..., + norm: _NormKind = ..., +) -> NDArray[float64]: ... + +# Input array must be compatible with `np.conjugate` +def hfft( + a: _ArrayLikeNumber_co, + n: None | int = ..., + axis: int = ..., + norm: _NormKind = ..., +) -> NDArray[float64]: ... + +def ihfft( + a: ArrayLike, + n: None | int = ..., + axis: int = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def fftn( + a: ArrayLike, + s: None | Sequence[int] = ..., + axes: None | Sequence[int] = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def ifftn( + a: ArrayLike, + s: None | Sequence[int] = ..., + axes: None | Sequence[int] = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def rfftn( + a: ArrayLike, + s: None | Sequence[int] = ..., + axes: None | Sequence[int] = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def irfftn( + a: ArrayLike, + s: None | Sequence[int] = ..., + axes: None | Sequence[int] = ..., + norm: _NormKind = ..., +) -> NDArray[float64]: ... + +def fft2( + a: ArrayLike, + s: None | Sequence[int] = ..., + axes: None | Sequence[int] = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def ifft2( + a: ArrayLike, + s: None | Sequence[int] = ..., + axes: None | Sequence[int] = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def rfft2( + a: ArrayLike, + s: None | Sequence[int] = ..., + axes: None | Sequence[int] = ..., + norm: _NormKind = ..., +) -> NDArray[complex128]: ... + +def irfft2( + a: ArrayLike, + s: None | Sequence[int] = ..., + axes: None | Sequence[int] = ..., + norm: _NormKind = ..., +) -> NDArray[float64]: ... diff --git a/numpy/fft/helper.pyi b/numpy/fft/helper.pyi new file mode 100644 index 000000000..d75826f4e --- /dev/null +++ b/numpy/fft/helper.pyi @@ -0,0 +1,50 @@ +from typing import List, Any, TypeVar, overload + +from numpy import generic, dtype, integer, floating, complexfloating +from numpy.typing import ( + NDArray, + ArrayLike, + _ShapeLike, + _SupportsArray, + _FiniteNestedSequence, + _ArrayLikeFloat_co, + _ArrayLikeComplex_co, +) + +_SCT = TypeVar("_SCT", bound=generic) + +_ArrayLike = _FiniteNestedSequence[_SupportsArray[dtype[_SCT]]] + +__all__: List[str] + +@overload +def fftshift(x: _ArrayLike[_SCT], axes: None | _ShapeLike = ...) -> NDArray[_SCT]: ... +@overload +def fftshift(x: ArrayLike, axes: None | _ShapeLike = ...) -> NDArray[Any]: ... + +@overload +def ifftshift(x: _ArrayLike[_SCT], axes: None | _ShapeLike = ...) -> NDArray[_SCT]: ... +@overload +def ifftshift(x: ArrayLike, axes: None | _ShapeLike = ...) -> NDArray[Any]: ... + +@overload +def fftfreq( + n: int | integer[Any], + d: _ArrayLikeFloat_co, +) -> NDArray[floating[Any]]: ... +@overload +def fftfreq( + n: int | integer[Any], + d: _ArrayLikeComplex_co, +) -> NDArray[complexfloating[Any, Any]]: ... + +@overload +def rfftfreq( + n: int | integer[Any], + d: _ArrayLikeFloat_co, +) -> NDArray[floating[Any]]: ... +@overload +def rfftfreq( + n: int | integer[Any], + d: _ArrayLikeComplex_co, +) -> NDArray[complexfloating[Any, Any]]: ... diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 20e32a78d..3c9983edf 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -9,8 +9,7 @@ import numpy.core.numeric as _nx from numpy.core import transpose from numpy.core.numeric import ( ones, zeros_like, arange, concatenate, array, asarray, asanyarray, empty, - ndarray, around, floor, ceil, take, dot, where, intp, - integer, isscalar, absolute + ndarray, take, dot, where, intp, integer, isscalar, absolute ) from numpy.core.umath import ( pi, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin, @@ -51,6 +50,106 @@ __all__ = [ 'quantile' ] +# _QuantileInterpolation is a dictionary listing all the supported +# interpolation methods to compute quantile/percentile. +# +# Below virtual_index refer to the index of the element where the percentile +# would be found in the sorted sample. +# When the sample contains exactly the percentile wanted, the virtual_index is +# an integer to the index of this element. +# When the percentile wanted is in between two elements, the virtual_index +# is made of a integer part (a.k.a 'i' or 'left') and a fractional part +# (a.k.a 'g' or 'gamma') +# +# Each _QuantileInterpolation have two properties +# get_virtual_index : Callable +# The function used to compute the virtual_index. +# fix_gamma : Callable +# A function used for discret methods to force the index to a specific value. +_QuantileInterpolation = dict( + # --- HYNDMAN AND FAN METHODS + # Discrete methods + inverted_cdf=dict( + get_virtual_index=lambda n, quantiles: _inverted_cdf(n, quantiles), + fix_gamma=lambda gamma, _: gamma, # should never be called + ), + averaged_inverted_cdf=dict( + get_virtual_index=lambda n, quantiles: (n * quantiles) - 1, + fix_gamma=lambda gamma, _: _get_gamma_mask( + shape=gamma.shape, + default_value=1., + conditioned_value=0.5, + where=gamma == 0), + ), + closest_observation=dict( + get_virtual_index=lambda n, quantiles: _closest_observation(n, + quantiles), + fix_gamma=lambda gamma, _: gamma, # should never be called + ), + # Continuous methods + interpolated_inverted_cdf=dict( + get_virtual_index=lambda n, quantiles: + _compute_virtual_index(n, quantiles, 0, 1), + fix_gamma=lambda gamma, _: gamma, + ), + hazen=dict( + get_virtual_index=lambda n, quantiles: + _compute_virtual_index(n, quantiles, 0.5, 0.5), + fix_gamma=lambda gamma, _: gamma, + ), + weibull=dict( + get_virtual_index=lambda n, quantiles: + _compute_virtual_index(n, quantiles, 0, 0), + fix_gamma=lambda gamma, _: gamma, + ), + # Default method. + # To avoid some rounding issues, `(n-1) * quantiles` is preferred to + # `_compute_virtual_index(n, quantiles, 1, 1)`. + # They are mathematically equivalent. + linear=dict( + get_virtual_index=lambda n, quantiles: (n - 1) * quantiles, + fix_gamma=lambda gamma, _: gamma, + ), + median_unbiased=dict( + get_virtual_index=lambda n, quantiles: + _compute_virtual_index(n, quantiles, 1 / 3.0, 1 / 3.0), + fix_gamma=lambda gamma, _: gamma, + ), + normal_unbiased=dict( + get_virtual_index=lambda n, quantiles: + _compute_virtual_index(n, quantiles, 3 / 8.0, 3 / 8.0), + fix_gamma=lambda gamma, _: gamma, + ), + # --- OTHER METHODS + lower=dict( + get_virtual_index=lambda n, quantiles: np.floor( + (n - 1) * quantiles).astype(np.intp), + fix_gamma=lambda gamma, _: gamma, + # should never be called, index dtype is int + ), + higher=dict( + get_virtual_index=lambda n, quantiles: np.ceil( + (n - 1) * quantiles).astype(np.intp), + fix_gamma=lambda gamma, _: gamma, + # should never be called, index dtype is int + ), + midpoint=dict( + get_virtual_index=lambda n, quantiles: 0.5 * ( + np.floor((n - 1) * quantiles) + + np.ceil((n - 1) * quantiles)), + fix_gamma=lambda gamma, index: _get_gamma_mask( + shape=gamma.shape, + default_value=0.5, + conditioned_value=0., + where=index % 1 == 0), + ), + nearest=dict( + get_virtual_index=lambda n, quantiles: np.around( + (n - 1) * quantiles).astype(np.intp), + fix_gamma=lambda gamma, _: gamma, + # should never be called, index dtype is int + )) + def _rot90_dispatcher(m, k=None, axes=None): return (m,) @@ -3760,8 +3859,13 @@ def _percentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, @array_function_dispatch(_percentile_dispatcher) -def percentile(a, q, axis=None, out=None, - overwrite_input=False, interpolation='linear', keepdims=False): +def percentile(a, + q, + axis=None, + out=None, + overwrite_input=False, + interpolation="linear", + keepdims=False): """ Compute the q-th percentile of the data along the specified axis. @@ -3789,21 +3893,32 @@ def percentile(a, q, axis=None, out=None, If True, then allow the input array `a` to be modified by intermediate calculations, to save memory. In this case, the contents of the input `a` after this function completes is undefined. - - interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} - This optional parameter specifies the interpolation method to + interpolation : str, optional + This parameter specifies the interpolation method to use when the desired percentile lies between two data points - ``i < j``: + There are many different methods, some unique to NumPy. See the + notes for explanation. Options - * 'linear': ``i + (j - i) * fraction``, where ``fraction`` - is the fractional part of the index surrounded by ``i`` - and ``j``. - * 'lower': ``i``. - * 'higher': ``j``. - * 'nearest': ``i`` or ``j``, whichever is nearest. - * 'midpoint': ``(i + j) / 2``. + * (NPY 1): 'lower' + * (NPY 2): 'higher', + * (NPY 3): 'midpoint' + * (NPY 4): 'nearest' + * (NPY 5): 'linear' + + New options: + + * (H&F 1): 'inverted_cdf' + * (H&F 2): 'averaged_inverted_cdf' + * (H&F 3): 'closest_observation' + * (H&F 4): 'interpolated_inverted_cdf' + * (H&F 5): 'hazen' + * (H&F 6): 'weibull' + * (H&F 7): 'linear' (default) + * (H&F 8): 'median_unbiased' + * (H&F 9): 'normal_unbiased' + + .. versionchanged:: 1.22.0 - .. versionadded:: 1.9.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the @@ -3828,18 +3943,109 @@ def percentile(a, q, axis=None, out=None, mean median : equivalent to ``percentile(..., 50)`` nanpercentile - quantile : equivalent to percentile, except with q in the range [0, 1]. + quantile : equivalent to percentile, except q in the range [0, 1]. Notes ----- - Given a vector ``V`` of length ``N``, the q-th percentile of - ``V`` is the value ``q/100`` of the way from the minimum to the - maximum in a sorted copy of ``V``. The values and distances of - the two nearest neighbors as well as the `interpolation` parameter - will determine the percentile if the normalized ranking does not - match the location of ``q`` exactly. This function is the same as - the median if ``q=50``, the same as the minimum if ``q=0`` and the - same as the maximum if ``q=100``. + Given a vector ``V`` of length ``N``, the q-th percentile of ``V`` is + the value ``q/100`` of the way from the minimum to the maximum in a + sorted copy of ``V``. The values and distances of the two nearest + neighbors as well as the `interpolation` parameter will determine the + percentile if the normalized ranking does not match the location of + ``q`` exactly. This function is the same as the median if ``q=50``, the + same as the minimum if ``q=0`` and the same as the maximum if + ``q=100``. + + This optional `interpolation` parameter specifies the interpolation + method to use when the desired quantile lies between two data points + ``i < j``. If ``g`` is the fractional part of the index surrounded by + ``i`` and alpha and beta are correction constants modifying i and j. + + Below, 'q' is the quantile value, 'n' is the sample size and + alpha and beta are constants. + The following formula gives an interpolation "i + g" of where the quantile + would be in the sorted sample. + With 'i' being the floor and 'g' the fractional part of the result. + + .. math:: + i + g = (q - alpha) / ( n - alpha - beta + 1 ) + + The different interpolation methods then work as follows + + inverted_cdf: + method 1 of H&F [1]_. + This method gives discontinuous results: + * if g > 0 ; then take j + * if g = 0 ; then take i + + averaged_inverted_cdf: + method 2 of H&F [1]_. + This method give discontinuous results: + * if g > 0 ; then take j + * if g = 0 ; then average between bounds + + closest_observation: + method 3 of H&F [1]_. + This method give discontinuous results: + * if g > 0 ; then take j + * if g = 0 and index is odd ; then take j + * if g = 0 and index is even ; then take i + + interpolated_inverted_cdf: + method 4 of H&F [1]_. + This method give continuous results using: + * alpha = 0 + * beta = 1 + + hazen: + method 5 of H&F [1]_. + This method give continuous results using: + * alpha = 1/2 + * beta = 1/2 + + weibull: + method 6 of H&F [1]_. + This method give continuous results using: + * alpha = 0 + * beta = 0 + + linear: + method 7 of H&F [1]_. + This method give continuous results using: + * alpha = 1 + * beta = 1 + + median_unbiased: + method 8 of H&F [1]_. + This method is probably the best method if the sample + distribution function is unknown (see reference). + This method give continuous results using: + * alpha = 1/3 + * beta = 1/3 + + normal_unbiased: + method 9 of H&F [1]_. + This method is probably the best method if the sample + distribution function is known to be normal. + This method give continuous results using: + * alpha = 3/8 + * beta = 3/8 + + lower: + NumPy method kept for backwards compatibility. + Takes ``i`` as the interpolation point. + + higher: + NumPy method kept for backwards compatibility. + Takes ``j`` as the interpolation point. + + nearest: + NumPy method kept for backwards compatibility. + Takes ``i`` or ``j``, whichever is nearest. + + midpoint: + NumPy method kept for backwards compatibility. + Uses ``(i + j) / 2``. Examples -------- @@ -3897,6 +4103,12 @@ def percentile(a, q, axis=None, out=None, ax.legend() plt.show() + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + """ q = np.true_divide(q, 100) q = asanyarray(q) # undo any decay that the ufunc performed (see gh-13105) @@ -3912,8 +4124,13 @@ def _quantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, @array_function_dispatch(_quantile_dispatcher) -def quantile(a, q, axis=None, out=None, - overwrite_input=False, interpolation='linear', keepdims=False): +def quantile(a, + q, + axis=None, + out=None, + overwrite_input=False, + interpolation="linear", + keepdims=False): """ Compute the q-th quantile of the data along the specified axis. @@ -3927,29 +4144,43 @@ def quantile(a, q, axis=None, out=None, Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive. axis : {int, tuple of int, None}, optional - Axis or axes along which the quantiles are computed. The - default is to compute the quantile(s) along a flattened - version of the array. + Axis or axes along which the quantiles are computed. The default is + to compute the quantile(s) along a flattened version of the array. out : ndarray, optional - Alternative output array in which to place the result. It must - have the same shape and buffer length as the expected output, - but the type (of the output) will be cast if necessary. + Alternative output array in which to place the result. It must have + the same shape and buffer length as the expected output, but the + type (of the output) will be cast if necessary. overwrite_input : bool, optional - If True, then allow the input array `a` to be modified by intermediate - calculations, to save memory. In this case, the contents of the input - `a` after this function completes is undefined. - interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} - This optional parameter specifies the interpolation method to - use when the desired quantile lies between two data points - ``i < j``: - - * linear: ``i + (j - i) * fraction``, where ``fraction`` - is the fractional part of the index surrounded by ``i`` - and ``j``. - * lower: ``i``. - * higher: ``j``. - * nearest: ``i`` or ``j``, whichever is nearest. - * midpoint: ``(i + j) / 2``. + If True, then allow the input array `a` to be modified by + intermediate calculations, to save memory. In this case, the + contents of the input `a` after this function completes is + undefined. + interpolation : str, optional + This parameter specifies the interpolation method to use when the + desired quantile lies between two data points There are many + different methods, some unique to NumPy. See the notes for + explanation. Options: + + * (NPY 1): 'lower' + * (NPY 2): 'higher', + * (NPY 3): 'midpoint' + * (NPY 4): 'nearest' + * (NPY 5): 'linear' + + New options: + + * (H&F 1): 'inverted_cdf' + * (H&F 2): 'averaged_inverted_cdf' + * (H&F 3): 'closest_observation' + * (H&F 4): 'interpolated_inverted_cdf' + * (H&F 5): 'hazen' + * (H&F 6): 'weibull' + * (H&F 7): 'linear' (default) + * (H&F 8): 'median_unbiased' + * (H&F 9): 'normal_unbiased' + + .. versionadded:: 1.22.0 + keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the @@ -3976,14 +4207,98 @@ def quantile(a, q, axis=None, out=None, Notes ----- - Given a vector ``V`` of length ``N``, the q-th quantile of - ``V`` is the value ``q`` of the way from the minimum to the - maximum in a sorted copy of ``V``. The values and distances of - the two nearest neighbors as well as the `interpolation` parameter - will determine the quantile if the normalized ranking does not - match the location of ``q`` exactly. This function is the same as - the median if ``q=0.5``, the same as the minimum if ``q=0.0`` and the - same as the maximum if ``q=1.0``. + Given a vector ``V`` of length ``N``, the q-th quantile of ``V`` is the + value ``q`` of the way from the minimum to the maximum in a sorted copy of + ``V``. The values and distances of the two nearest neighbors as well as the + `interpolation` parameter will determine the quantile if the normalized + ranking does not match the location of ``q`` exactly. This function is the + same as the median if ``q=0.5``, the same as the minimum if ``q=0.0`` and + the same as the maximum if ``q=1.0``. + + This optional `interpolation` parameter specifies the interpolation method + to use when the desired quantile lies between two data points ``i < j``. If + ``g`` is the fractional part of the index surrounded by ``i`` and alpha + and beta are correction constants modifying i and j. + + .. math:: + i + g = (q - alpha) / ( n - alpha - beta + 1 ) + + The different interpolation methods then work as follows + + inverted_cdf: + method 1 of H&F [1]_. + This method gives discontinuous results: + * if g > 0 ; then take j + * if g = 0 ; then take i + + averaged_inverted_cdf: + method 2 of H&F [1]_. + This method give discontinuous results: + * if g > 0 ; then take j + * if g = 0 ; then average between bounds + + closest_observation: + method 3 of H&F [1]_. + This method give discontinuous results: + * if g > 0 ; then take j + * if g = 0 and index is odd ; then take j + * if g = 0 and index is even ; then take i + + interpolated_inverted_cdf: + method 4 of H&F [1]_. + This method give continuous results using: + * alpha = 0 + * beta = 1 + + hazen: + method 5 of H&F [1]_. + This method give continuous results using: + * alpha = 1/2 + * beta = 1/2 + + weibull: + method 6 of H&F [1]_. + This method give continuous results using: + * alpha = 0 + * beta = 0 + + linear: + method 7 of H&F [1]_. + This method give continuous results using: + * alpha = 1 + * beta = 1 + + median_unbiased: + method 8 of H&F [1]_. + This method is probably the best method if the sample + distribution function is unknown (see reference). + This method give continuous results using: + * alpha = 1/3 + * beta = 1/3 + + normal_unbiased: + method 9 of H&F [1]_. + This method is probably the best method if the sample + distribution function is known to be normal. + This method give continuous results using: + * alpha = 3/8 + * beta = 3/8 + + lower: + NumPy method kept for backwards compatibility. + Takes ``i`` as the interpolation point. + + higher: + NumPy method kept for backwards compatibility. + Takes ``j`` as the interpolation point. + + nearest: + NumPy method kept for backwards compatibility. + Takes ``i`` or ``j``, whichever is nearest. + + midpoint: + NumPy method kept for backwards compatibility. + Uses ``(i + j) / 2``. Examples -------- @@ -4010,6 +4325,13 @@ def quantile(a, q, axis=None, out=None, >>> np.quantile(b, 0.5, axis=1, overwrite_input=True) array([7., 2.]) >>> assert not np.all(a == b) + + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + """ q = np.asanyarray(q) if not _quantile_is_valid(q): @@ -4018,10 +4340,19 @@ def quantile(a, q, axis=None, out=None, a, q, axis, out, overwrite_input, interpolation, keepdims) -def _quantile_unchecked(a, q, axis=None, out=None, overwrite_input=False, - interpolation='linear', keepdims=False): +def _quantile_unchecked(a, + q, + axis=None, + out=None, + overwrite_input=False, + interpolation="linear", + keepdims=False): """Assumes that q is in [0, 1], and is an ndarray""" - r, k = _ureduce(a, func=_quantile_ureduce_func, q=q, axis=axis, out=out, + r, k = _ureduce(a, + func=_quantile_ureduce_func, + q=q, + axis=axis, + out=out, overwrite_input=overwrite_input, interpolation=interpolation) if keepdims: @@ -4042,122 +4373,263 @@ def _quantile_is_valid(q): return True +def _compute_virtual_index(n, quantiles, alpha: float, beta: float): + """ + Compute the floating point indexes of an array for the linear + interpolation of quantiles. + n : array_like + The sample sizes. + quantiles : array_like + The quantiles values. + alpha : float + A constant used to correct the index computed. + beta : float + A constant used to correct the index computed. + + alpha and beta values depend on the chosen method + (see quantile documentation) + + Reference: + Hyndman&Fan paper "Sample Quantiles in Statistical Packages", + DOI: 10.1080/00031305.1996.10473566 + """ + return n * quantiles + ( + alpha + quantiles * (1 - alpha - beta) + ) - 1 + + +def _get_gamma(virtual_indexes, + previous_indexes, + interpolation: _QuantileInterpolation): + """ + Compute gamma (a.k.a 'm' or 'weight') for the linear interpolation + of quantiles. + + virtual_indexes : array_like + The indexes where the percentile is supposed to be found in the sorted + sample. + previous_indexes : array_like + The floor values of virtual_indexes. + interpolation : _QuantileInterpolation + The interpolation method chosen, which may have a specific rule + modifying gamma. + + gamma is usually the fractional part of virtual_indexes but can be modified + by the interpolation method. + """ + gamma = np.asanyarray(virtual_indexes - previous_indexes) + gamma = interpolation["fix_gamma"](gamma, virtual_indexes) + return np.asanyarray(gamma) + + def _lerp(a, b, t, out=None): - """ Linearly interpolate from a to b by a factor of t """ + """ + Compute the linear interpolation weighted by gamma on each point of + two same shape array. + + a : array_like + Left bound. + b : array_like + Right bound. + t : array_like + The interpolation weight. + out : array_like + Output array. + """ diff_b_a = subtract(b, a) # asanyarray is a stop-gap until gh-13105 - lerp_interpolation = asanyarray(add(a, diff_b_a*t, out=out)) - subtract(b, diff_b_a * (1 - t), out=lerp_interpolation, where=t>=0.5) + lerp_interpolation = asanyarray(add(a, diff_b_a * t, out=out)) + subtract(b, diff_b_a * (1 - t), out=lerp_interpolation, where=t >= 0.5) if lerp_interpolation.ndim == 0 and out is None: lerp_interpolation = lerp_interpolation[()] # unpack 0d arrays return lerp_interpolation -def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False, - interpolation='linear', keepdims=False): - a = asarray(a) +def _get_gamma_mask(shape, default_value, conditioned_value, where): + out = np.full(shape, default_value) + out[where] = conditioned_value + return out - # ufuncs cause 0d array results to decay to scalars (see gh-13105), which - # makes them problematic for __setitem__ and attribute access. As a - # workaround, we call this on the result of every ufunc on a possibly-0d - # array. - not_scalar = np.asanyarray - # prepare a for partitioning - if overwrite_input: - if axis is None: - ap = a.ravel() - else: - ap = a - else: - if axis is None: - ap = a.flatten() - else: - ap = a.copy() +def _discret_interpolation_to_boundaries(index, gamma_condition_fun): + previous = np.floor(index) + next = previous + 1 + gamma = index - previous + return _get_gamma_mask(shape=index.shape, + default_value=next, + conditioned_value=previous, + where=gamma_condition_fun(gamma, index) + ).astype(np.intp) - if axis is None: - axis = 0 +def _closest_observation(n, quantiles): + gamma_fun = lambda gamma, index: (gamma == 0) & (np.floor(index) % 2 == 0) + return _discret_interpolation_to_boundaries((n * quantiles) - 1 - 0.5, + gamma_fun) + + +def _inverted_cdf(n, quantiles): + gamma_fun = lambda gamma, _: (gamma == 0) + return _discret_interpolation_to_boundaries((n * quantiles) - 1, + gamma_fun) + + +def _quantile_ureduce_func( + a: np.array, + q: np.array, + axis: int = None, + out=None, + overwrite_input: bool = False, + interpolation="linear", +) -> np.array: if q.ndim > 2: # The code below works fine for nd, but it might not have useful # semantics. For now, keep the supported dimensions the same as it was # before. raise ValueError("q must be a scalar or 1d") - - Nx = ap.shape[axis] - indices = not_scalar(q * (Nx - 1)) - # round fractional indices according to interpolation method - if interpolation == 'lower': - indices = floor(indices).astype(intp) - elif interpolation == 'higher': - indices = ceil(indices).astype(intp) - elif interpolation == 'midpoint': - indices = 0.5 * (floor(indices) + ceil(indices)) - elif interpolation == 'nearest': - indices = around(indices).astype(intp) - elif interpolation == 'linear': - pass # keep index as fraction and interpolate + if overwrite_input: + if axis is None: + axis = 0 + arr = a.ravel() + else: + arr = a else: - raise ValueError( - "interpolation can only be 'linear', 'lower' 'higher', " - "'midpoint', or 'nearest'") + if axis is None: + axis = 0 + arr = a.flatten() + else: + arr = a.copy() + result = _quantile(arr, + quantiles=q, + axis=axis, + interpolation=interpolation, + out=out) + return result - # The dimensions of `q` are prepended to the output shape, so we need the - # axis being sampled from `ap` to be first. - ap = np.moveaxis(ap, axis, 0) - del axis - if np.issubdtype(indices.dtype, np.integer): - # take the points along axis +def _get_indexes(arr, virtual_indexes, valid_values_count): + """ + Get the valid indexes of arr neighbouring virtual_indexes. + Note + This is a companion function to linear interpolation of + Quantiles - if np.issubdtype(a.dtype, np.inexact): + Returns + ------- + (previous_indexes, next_indexes): Tuple + A Tuple of virtual_indexes neighbouring indexes + """ + previous_indexes = np.asanyarray(np.floor(virtual_indexes)) + next_indexes = np.asanyarray(previous_indexes + 1) + indexes_above_bounds = virtual_indexes >= valid_values_count - 1 + # When indexes is above max index, take the max value of the array + if indexes_above_bounds.any(): + previous_indexes[indexes_above_bounds] = -1 + next_indexes[indexes_above_bounds] = -1 + # When indexes is below min index, take the min value of the array + indexes_below_bounds = virtual_indexes < 0 + if indexes_below_bounds.any(): + previous_indexes[indexes_below_bounds] = 0 + next_indexes[indexes_below_bounds] = 0 + if np.issubdtype(arr.dtype, np.inexact): + # After the sort, slices having NaNs will have for last element a NaN + virtual_indexes_nans = np.isnan(virtual_indexes) + if virtual_indexes_nans.any(): + previous_indexes[virtual_indexes_nans] = -1 + next_indexes[virtual_indexes_nans] = -1 + previous_indexes = previous_indexes.astype(np.intp) + next_indexes = next_indexes.astype(np.intp) + return previous_indexes, next_indexes + + +def _quantile( + arr: np.array, + quantiles: np.array, + axis: int = -1, + interpolation="linear", + out=None, +): + """ + Private function that doesn't support extended axis or keepdims. + These methods are extended to this function using _ureduce + See nanpercentile for parameter usage + It computes the quantiles of the array for the given axis. + A linear interpolation is performed based on the `interpolation`. + + By default, the interpolation is "linear" where + alpha == beta == 1 which performs the 7th method of Hyndman&Fan. + With "median_unbiased" we get alpha == beta == 1/3 + thus the 8th method of Hyndman&Fan. + """ + # --- Setup + arr = np.asanyarray(arr) + values_count = arr.shape[axis] + # The dimensions of `q` are prepended to the output shape, so we need the + # axis being sampled from `arr` to be last. + DATA_AXIS = 0 + if axis != DATA_AXIS: # But moveaxis is slow, so only call it if axis!=0. + arr = np.moveaxis(arr, axis, destination=DATA_AXIS) + # --- Computation of indexes + # Index where to find the value in the sorted array. + # Virtual because it is a floating point value, not an valid index. + # The nearest neighbours are used for interpolation + try: + interpolation = _QuantileInterpolation[interpolation] + except KeyError: + raise ValueError( + f"{interpolation!r} is not a valid interpolation. Use one of: " + f"{_QuantileInterpolation.keys()}") from None + virtual_indexes = interpolation["get_virtual_index"](values_count, + quantiles) + virtual_indexes = np.asanyarray(virtual_indexes) + if np.issubdtype(virtual_indexes.dtype, np.integer): + # No interpolation needed, take the points along axis + if np.issubdtype(arr.dtype, np.inexact): # may contain nan, which would sort to the end - ap.partition(concatenate((indices.ravel(), [-1])), axis=0) - n = np.isnan(ap[-1]) + arr.partition(concatenate((virtual_indexes.ravel(), [-1])), axis=0) + slices_having_nans = np.isnan(arr[-1]) else: # cannot contain nan - ap.partition(indices.ravel(), axis=0) - n = np.array(False, dtype=bool) - - r = take(ap, indices, axis=0, out=out) - + arr.partition(virtual_indexes.ravel(), axis=0) + slices_having_nans = np.array(False, dtype=bool) + result = take(arr, virtual_indexes, axis=0, out=out) else: - # weight the points above and below the indices - - indices_below = not_scalar(floor(indices)).astype(intp) - indices_above = not_scalar(indices_below + 1) - indices_above[indices_above > Nx - 1] = Nx - 1 - - if np.issubdtype(a.dtype, np.inexact): - # may contain nan, which would sort to the end - ap.partition(concatenate(( - indices_below.ravel(), indices_above.ravel(), [-1] - )), axis=0) - n = np.isnan(ap[-1]) + previous_indexes, next_indexes = _get_indexes(arr, + virtual_indexes, + values_count) + # --- Sorting + arr.partition( + np.unique(np.concatenate(([0, -1], + previous_indexes.ravel(), + next_indexes.ravel(), + ))), + axis=DATA_AXIS) + if np.issubdtype(arr.dtype, np.inexact): + slices_having_nans = np.isnan( + take(arr, indices=-1, axis=DATA_AXIS) + ) else: - # cannot contain nan - ap.partition(concatenate(( - indices_below.ravel(), indices_above.ravel() - )), axis=0) - n = np.array(False, dtype=bool) - - weights_shape = indices.shape + (1,) * (ap.ndim - 1) - weights_above = not_scalar(indices - indices_below).reshape(weights_shape) - - x_below = take(ap, indices_below, axis=0) - x_above = take(ap, indices_above, axis=0) - - r = _lerp(x_below, x_above, weights_above, out=out) - - # if any slice contained a nan, then all results on that slice are also nan - if np.any(n): - if r.ndim == 0 and out is None: + slices_having_nans = None + # --- Get values from indexes + previous = np.take(arr, previous_indexes, axis=DATA_AXIS) + next = np.take(arr, next_indexes, axis=DATA_AXIS) + # --- Linear interpolation + gamma = _get_gamma(virtual_indexes, + previous_indexes, + interpolation) + result_shape = virtual_indexes.shape + (1,) * (arr.ndim - 1) + gamma = gamma.reshape(result_shape) + result = _lerp(previous, + next, + gamma, + out=out) + if np.any(slices_having_nans): + if result.ndim == 0 and out is None: # can't write to a scalar - r = a.dtype.type(np.nan) + result = arr.dtype.type(np.nan) else: - r[..., n] = a.dtype.type(np.nan) - - return r + result[..., slices_having_nans] = np.nan + return result def _trapz_dispatcher(y, x=None, dx=None, axis=None): diff --git a/numpy/lib/function_base.pyi b/numpy/lib/function_base.pyi index 9a53b24f2..82c625fed 100644 --- a/numpy/lib/function_base.pyi +++ b/numpy/lib/function_base.pyi @@ -501,11 +501,19 @@ def median( ) -> _ArrayType: ... _InterpolationKind = L[ + "inverted_cdf", + "averaged_inverted_cdf", + "closest_observation", + "interpolated_inverted_cdf", + "hazen", + "weibull", + "linear", + "median_unbiased", + "normal_unbiased", "lower", "higher", "midpoint", "nearest", - "linear", ] @overload diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py index 08d9b42bb..7e953be03 100644 --- a/numpy/lib/nanfunctions.py +++ b/numpy/lib/nanfunctions.py @@ -1229,8 +1229,15 @@ def _nanpercentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, @array_function_dispatch(_nanpercentile_dispatcher) -def nanpercentile(a, q, axis=None, out=None, overwrite_input=False, - interpolation='linear', keepdims=np._NoValue): +def nanpercentile( + a, + q, + axis=None, + out=None, + overwrite_input=False, + interpolation="linear", + keepdims=np._NoValue, +): """ Compute the qth percentile of the data along the specified axis, while ignoring nan values. @@ -1245,32 +1252,47 @@ def nanpercentile(a, q, axis=None, out=None, overwrite_input=False, Input array or object that can be converted to an array, containing nan values to be ignored. q : array_like of float - Percentile or sequence of percentiles to compute, which must be between - 0 and 100 inclusive. + Percentile or sequence of percentiles to compute, which must be + between 0 and 100 inclusive. axis : {int, tuple of int, None}, optional - Axis or axes along which the percentiles are computed. The - default is to compute the percentile(s) along a flattened - version of the array. + Axis or axes along which the percentiles are computed. The default + is to compute the percentile(s) along a flattened version of the + array. out : ndarray, optional - Alternative output array in which to place the result. It must - have the same shape and buffer length as the expected output, - but the type (of the output) will be cast if necessary. + Alternative output array in which to place the result. It must have + the same shape and buffer length as the expected output, but the + type (of the output) will be cast if necessary. overwrite_input : bool, optional - If True, then allow the input array `a` to be modified by intermediate - calculations, to save memory. In this case, the contents of the input - `a` after this function completes is undefined. - interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} - This optional parameter specifies the interpolation method to - use when the desired percentile lies between two data points - ``i < j``: - - * 'linear': ``i + (j - i) * fraction``, where ``fraction`` - is the fractional part of the index surrounded by ``i`` - and ``j``. - * 'lower': ``i``. - * 'higher': ``j``. - * 'nearest': ``i`` or ``j``, whichever is nearest. - * 'midpoint': ``(i + j) / 2``. + If True, then allow the input array `a` to be modified by + intermediate calculations, to save memory. In this case, the + contents of the input `a` after this function completes is + undefined. + interpolation : str, optional + This parameter specifies the interpolation method to use when the + desired percentile lies between two data points There are many + different methods, some unique to NumPy. See the notes for + explanation. Options: + + * (NPY 1): 'lower' + * (NPY 2): 'higher', + * (NPY 3): 'midpoint' + * (NPY 4): 'nearest' + * (NPY 5): 'linear' (default) + + New options: + + * (H&F 1): 'inverted_cdf' + * (H&F 2): 'averaged_inverted_cdf' + * (H&F 3): 'closest_observation' + * (H&F 4): 'interpolated_inverted_cdf' + * (H&F 5): 'hazen' + * (H&F 6): 'weibull' + * (H&F 7): 'linear' (default) + * (H&F 8): 'median_unbiased' + * (H&F 9): 'normal_unbiased' + + .. versionadded:: 1.22.0 + keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the @@ -1299,18 +1321,11 @@ def nanpercentile(a, q, axis=None, out=None, overwrite_input=False, nanmean nanmedian : equivalent to ``nanpercentile(..., 50)`` percentile, median, mean - nanquantile : equivalent to nanpercentile, but with q in the range [0, 1]. + nanquantile : equivalent to nanpercentile, except q in range [0, 1]. Notes ----- - Given a vector ``V`` of length ``N``, the ``q``-th percentile of - ``V`` is the value ``q/100`` of the way from the minimum to the - maximum in a sorted copy of ``V``. The values and distances of - the two nearest neighbors as well as the `interpolation` parameter - will determine the percentile if the normalized ranking does not - match the location of ``q`` exactly. This function is the same as - the median if ``q=50``, the same as the minimum if ``q=0`` and the - same as the maximum if ``q=100``. + For more information please see `numpy.percentile` Examples -------- @@ -1342,7 +1357,9 @@ def nanpercentile(a, q, axis=None, out=None, overwrite_input=False, """ a = np.asanyarray(a) - q = np.true_divide(q, 100.0) # handles the asarray for us too + q = np.true_divide(q, 100.0) + # undo any decay that the ufunc performed (see gh-13105) + q = np.asanyarray(q) if not function_base._quantile_is_valid(q): raise ValueError("Percentiles must be in the range [0, 100]") return _nanquantile_unchecked( @@ -1355,8 +1372,15 @@ def _nanquantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, @array_function_dispatch(_nanquantile_dispatcher) -def nanquantile(a, q, axis=None, out=None, overwrite_input=False, - interpolation='linear', keepdims=np._NoValue): +def nanquantile( + a, + q, + axis=None, + out=None, + overwrite_input=False, + interpolation="linear", + keepdims=np._NoValue, +): """ Compute the qth quantile of the data along the specified axis, while ignoring nan values. @@ -1384,18 +1408,31 @@ def nanquantile(a, q, axis=None, out=None, overwrite_input=False, If True, then allow the input array `a` to be modified by intermediate calculations, to save memory. In this case, the contents of the input `a` after this function completes is undefined. - interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} - This optional parameter specifies the interpolation method to + interpolation : str, optional + This parameter specifies the interpolation method to use when the desired quantile lies between two data points - ``i < j``: + There are many different methods, some unique to NumPy. See the + notes for explanation. Options: + + * (NPY 1): 'lower' + * (NPY 2): 'higher', + * (NPY 3): 'midpoint' + * (NPY 4): 'nearest' + * (NPY 5): 'linear' (default) + + New options: - * linear: ``i + (j - i) * fraction``, where ``fraction`` - is the fractional part of the index surrounded by ``i`` - and ``j``. - * lower: ``i``. - * higher: ``j``. - * nearest: ``i`` or ``j``, whichever is nearest. - * midpoint: ``(i + j) / 2``. + * (H&F 1): 'inverted_cdf' + * (H&F 2): 'averaged_inverted_cdf' + * (H&F 3): 'closest_observation' + * (H&F 4): 'interpolated_inverted_cdf' + * (H&F 5): 'hazen' + * (H&F 6): 'weibull' + * (H&F 7): 'linear' (default) + * (H&F 8): 'median_unbiased' + * (H&F 9): 'normal_unbiased' + + .. versionchanged:: 1.22.0 keepdims : bool, optional If this is set to True, the axes which are reduced are left in @@ -1427,6 +1464,10 @@ def nanquantile(a, q, axis=None, out=None, overwrite_input=False, nanmedian : equivalent to ``nanquantile(..., 0.5)`` nanpercentile : same as nanquantile, but with q in the range [0, 100]. + Notes + ----- + For more information please see `numpy.quantile` + Examples -------- >>> a = np.array([[10., 7., 4.], [3., 2., 1.]]) @@ -1453,6 +1494,7 @@ def nanquantile(a, q, axis=None, out=None, overwrite_input=False, >>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True) array([7., 2.]) >>> assert not np.all(a==b) + """ a = np.asanyarray(a) q = np.asanyarray(q) @@ -1462,18 +1504,27 @@ def nanquantile(a, q, axis=None, out=None, overwrite_input=False, a, q, axis, out, overwrite_input, interpolation, keepdims) -def _nanquantile_unchecked(a, q, axis=None, out=None, overwrite_input=False, - interpolation='linear', keepdims=np._NoValue): +def _nanquantile_unchecked( + a, + q, + axis=None, + out=None, + overwrite_input=False, + interpolation="linear", + keepdims=np._NoValue, +): """Assumes that q is in [0, 1], and is an ndarray""" # apply_along_axis in _nanpercentile doesn't handle empty arrays well, # so deal them upfront if a.size == 0: return np.nanmean(a, axis, out=out, keepdims=keepdims) - - r, k = function_base._ureduce( - a, func=_nanquantile_ureduce_func, q=q, axis=axis, out=out, - overwrite_input=overwrite_input, interpolation=interpolation - ) + r, k = function_base._ureduce(a, + func=_nanquantile_ureduce_func, + q=q, + axis=axis, + out=out, + overwrite_input=overwrite_input, + interpolation=interpolation) if keepdims and keepdims is not np._NoValue: return r.reshape(q.shape + k) else: @@ -1481,7 +1532,7 @@ def _nanquantile_unchecked(a, q, axis=None, out=None, overwrite_input=False, def _nanquantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False, - interpolation='linear'): + interpolation="linear"): """ Private function that doesn't support extended axis or keepdims. These methods are extended to this function using _ureduce @@ -1504,7 +1555,7 @@ def _nanquantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False, return result -def _nanquantile_1d(arr1d, q, overwrite_input=False, interpolation='linear'): +def _nanquantile_1d(arr1d, q, overwrite_input=False, interpolation="linear"): """ Private function for rank 1 arrays. Compute quantile ignoring NaNs. See nanpercentile for parameter usage diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py index 1cbb3cd88..f824c4c5e 100644 --- a/numpy/lib/polynomial.py +++ b/numpy/lib/polynomial.py @@ -550,7 +550,7 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): ----- The solution minimizes the squared error - .. math :: + .. math:: E = \\sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py index c7dfe5673..1c274afae 100644 --- a/numpy/lib/tests/test_function_base.py +++ b/numpy/lib/tests/test_function_base.py @@ -2903,36 +2903,95 @@ class TestPercentile: [1, 1, 1]]) assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1]) - def test_linear(self): - - # Test defaults - assert_equal(np.percentile(range(10), 50), 4.5) - - # explicitly specify interpolation_method 'linear' (the default) - assert_equal(np.percentile(range(10), 50, - interpolation='linear'), 4.5) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_linear_nan_1D(self, dtype): + # METHOD 1 of H&F + arr = np.asarray([15.0, np.NAN, 35.0, 40.0, 50.0], dtype=dtype) + res = np.percentile( + arr, + 40.0, + interpolation="linear") + np.testing.assert_equal(res, np.NAN) + np.testing.assert_equal(res.dtype, arr.dtype) + + H_F_TYPE_CODES = [(int_type, np.float64) + for int_type in np.typecodes["AllInteger"] + ] + [(np.float16, np.float64), + (np.float32, np.float64), + (np.float64, np.float64), + (np.longdouble, np.longdouble), + (np.complex64, np.complex128), + (np.complex128, np.complex128), + (np.clongdouble, np.clongdouble), + (np.dtype("O"), np.float64)] + + @pytest.mark.parametrize(["input_dtype", "expected_dtype"], H_F_TYPE_CODES) + @pytest.mark.parametrize(["interpolation", "expected"], + [("inverted_cdf", 20), + ("averaged_inverted_cdf", 27.5), + ("closest_observation", 20), + ("interpolated_inverted_cdf", 20), + ("hazen", 27.5), + ("weibull", 26), + ("linear", 29), + ("median_unbiased", 27), + ("normal_unbiased", 27.125), + ]) + def test_linear_interpolation(self, + interpolation, + expected, + input_dtype, + expected_dtype): + arr = np.asarray([15.0, 20.0, 35.0, 40.0, 50.0], dtype=input_dtype) + actual = np.percentile(arr, 40.0, interpolation=interpolation) + + np.testing.assert_almost_equal(actual, expected, 14) + + if interpolation in ["inverted_cdf", "closest_observation"]: + if input_dtype == "O": + np.testing.assert_equal(np.asarray(actual).dtype, np.float64) + else: + np.testing.assert_equal(np.asarray(actual).dtype, + np.dtype(input_dtype)) + else: + np.testing.assert_equal(np.asarray(actual).dtype, + np.dtype(expected_dtype)) - def test_lower_higher(self): + TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O" - # interpolation_method 'lower'/'higher' - assert_equal(np.percentile(range(10), 50, + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_lower_higher(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 50, interpolation='lower'), 4) - assert_equal(np.percentile(range(10), 50, + assert_equal(np.percentile(np.arange(10, dtype=dtype), 50, interpolation='higher'), 5) - def test_midpoint(self): - assert_equal(np.percentile(range(10), 51, + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_midpoint(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 51, interpolation='midpoint'), 4.5) - assert_equal(np.percentile(range(11), 51, + assert_equal(np.percentile(np.arange(9, dtype=dtype) + 1, 50, + interpolation='midpoint'), 5) + assert_equal(np.percentile(np.arange(11, dtype=dtype), 51, interpolation='midpoint'), 5.5) - assert_equal(np.percentile(range(11), 50, + assert_equal(np.percentile(np.arange(11, dtype=dtype), 50, interpolation='midpoint'), 5) - def test_nearest(self): - assert_equal(np.percentile(range(10), 51, + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_nearest(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 51, interpolation='nearest'), 5) - assert_equal(np.percentile(range(10), 49, - interpolation='nearest'), 4) + assert_equal(np.percentile(np.arange(10, dtype=dtype), 49, + interpolation='nearest'), 4) + + def test_linear_interpolation_extrapolation(self): + arr = np.random.rand(5) + + actual = np.percentile(arr, 100) + np.testing.assert_equal(actual, arr.max()) + + actual = np.percentile(arr, 0) + np.testing.assert_equal(actual, arr.min()) def test_sequence(self): x = np.arange(8) * 0.5 @@ -3038,18 +3097,18 @@ class TestPercentile: y = np.zeros((3,)) p = (1, 2, 3) np.percentile(x, p, out=y) - assert_equal(y, np.percentile(x, p)) + assert_equal(np.percentile(x, p), y) x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.zeros((3, 3)) np.percentile(x, p, axis=0, out=y) - assert_equal(y, np.percentile(x, p, axis=0)) + assert_equal(np.percentile(x, p, axis=0), y) y = np.zeros((3, 2)) np.percentile(x, p, axis=1, out=y) - assert_equal(y, np.percentile(x, p, axis=1)) + assert_equal(np.percentile(x, p, axis=1), y) x = np.arange(12).reshape(3, 4) # q.dim > 1, float @@ -3293,15 +3352,25 @@ class TestPercentile: with pytest.raises(ValueError, match="Percentiles must be in"): np.percentile([1, 2, 3, 4.0], q) + class TestQuantile: # most of this is already tested by TestPercentile + def test_max_ulp(self): + x = [0.0, 0.2, 0.4] + a = np.quantile(x, 0.45) + # The default linear method would result in 0 + 0.2 * (0.45/2) = 0.18. + # 0.18 is not exactly representable and the formula leads to a 1 ULP + # different result. Ensure it is this exact within 1 ULP, see gh-20331. + np.testing.assert_array_max_ulp(a, 0.18, maxulp=1) + def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.quantile(x, 0), 0.) assert_equal(np.quantile(x, 1), 3.5) assert_equal(np.quantile(x, 0.5), 1.75) + @pytest.mark.xfail(reason="See gh-19154") def test_correct_quantile_value(self): a = np.array([True]) tf_quant = np.quantile(True, False) @@ -3310,12 +3379,11 @@ class TestQuantile: a = np.array([False, True, True]) quant_res = np.quantile(a, a) assert_array_equal(quant_res, a) - assert_equal(a.dtype, quant_res.dtype) + assert_equal(quant_res.dtype, a.dtype) def test_fraction(self): # fractional input, integral quantile x = [Fraction(i, 2) for i in range(8)] - q = np.quantile(x, 0) assert_equal(q, 0) assert_equal(type(q), Fraction) @@ -3352,6 +3420,12 @@ class TestQuantile: np.quantile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, p0) + @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) + def test_quantile_preserve_int_type(self, dtype): + res = np.quantile(np.array([1, 2], dtype=dtype), [0.5], + interpolation="nearest") + assert res.dtype == dtype + def test_quantile_monotonic(self): # GH 14685 # test that the return value of quantile is monotonic if p0 is ordered @@ -3370,6 +3444,12 @@ class TestQuantile: quantile = np.quantile(arr, p0) assert_equal(np.sort(quantile), quantile) + def test_quantile_scalar_nan(self): + a = np.array([[10., 7., 4.], [3., 2., 1.]]) + a[0][1] = np.nan + actual = np.quantile(a, 0.5) + assert np.isscalar(actual) + assert_equal(np.quantile(a, 0.5), np.nan) class TestLerp: @hypothesis.given(t0=st.floats(allow_nan=False, allow_infinity=False, @@ -3380,9 +3460,9 @@ class TestLerp: min_value=-1e300, max_value=1e300), b = st.floats(allow_nan=False, allow_infinity=False, min_value=-1e300, max_value=1e300)) - def test_lerp_monotonic(self, t0, t1, a, b): - l0 = np.lib.function_base._lerp(a, b, t0) - l1 = np.lib.function_base._lerp(a, b, t1) + def test_linear_interpolation_formula_monotonic(self, t0, t1, a, b): + l0 = nfb._lerp(a, b, t0) + l1 = nfb._lerp(a, b, t1) if t0 == t1 or a == b: assert l0 == l1 # uninteresting elif (t0 < t1) == (a < b): @@ -3396,11 +3476,11 @@ class TestLerp: min_value=-1e300, max_value=1e300), b=st.floats(allow_nan=False, allow_infinity=False, min_value=-1e300, max_value=1e300)) - def test_lerp_bounded(self, t, a, b): + def test_linear_interpolation_formula_bounded(self, t, a, b): if a <= b: - assert a <= np.lib.function_base._lerp(a, b, t) <= b + assert a <= nfb._lerp(a, b, t) <= b else: - assert b <= np.lib.function_base._lerp(a, b, t) <= a + assert b <= nfb._lerp(a, b, t) <= a @hypothesis.given(t=st.floats(allow_nan=False, allow_infinity=False, min_value=0, max_value=1), @@ -3408,17 +3488,17 @@ class TestLerp: min_value=-1e300, max_value=1e300), b=st.floats(allow_nan=False, allow_infinity=False, min_value=-1e300, max_value=1e300)) - def test_lerp_symmetric(self, t, a, b): + def test_linear_interpolation_formula_symmetric(self, t, a, b): # double subtraction is needed to remove the extra precision of t < 0.5 - left = np.lib.function_base._lerp(a, b, 1 - (1 - t)) - right = np.lib.function_base._lerp(b, a, 1 - t) + left = nfb._lerp(a, b, 1 - (1 - t)) + right = nfb._lerp(b, a, 1 - t) assert left == right - def test_lerp_0d_inputs(self): + def test_linear_interpolation_formula_0d_inputs(self): a = np.array(2) b = np.array(5) t = np.array(0.2) - assert np.lib.function_base._lerp(a, b, t) == 2.6 + assert nfb._lerp(a, b, t) == 2.6 class TestMedian: diff --git a/numpy/lib/tests/test_twodim_base.py b/numpy/lib/tests/test_twodim_base.py index cce683bfe..c1c5a1615 100644 --- a/numpy/lib/tests/test_twodim_base.py +++ b/numpy/lib/tests/test_twodim_base.py @@ -18,6 +18,9 @@ import numpy as np from numpy.core.tests.test_overrides import requires_array_function +import pytest + + def get_mat(n): data = arange(n) data = add.outer(data, data) @@ -295,6 +298,13 @@ class TestHistogram2d: r = histogram2d(xy, xy, weights=s_d) assert_(r, ((ShouldDispatch,), (xy, xy), dict(weights=s_d))) + @pytest.mark.parametrize(("x_len", "y_len"), [(10, 11), (20, 19)]) + def test_bad_length(self, x_len, y_len): + x, y = np.ones(x_len), np.ones(y_len) + with pytest.raises(ValueError, + match='x and y must have the same length.'): + histogram2d(x, y) + class TestTri: def test_dtype(self): diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py index 811faff79..3e5ad31ff 100644 --- a/numpy/lib/twodim_base.py +++ b/numpy/lib/twodim_base.py @@ -804,6 +804,9 @@ def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, >>> plt.show() """ from numpy import histogramdd + + if len(x) != len(y): + raise ValueError('x and y must have the same length.') try: N = len(bins) diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py index 2b3268aeb..89ce815d5 100644 --- a/numpy/polynomial/chebyshev.py +++ b/numpy/polynomial/chebyshev.py @@ -88,13 +88,13 @@ Notes The implementations of multiplication, division, integration, and differentiation use the algebraic identities [1]_: -.. math :: +.. math:: T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\ z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}. where -.. math :: x = \\frac{z + z^{-1}}{2}. +.. math:: x = \\frac{z + z^{-1}}{2}. These identities allow a Chebyshev series to be expressed as a finite, symmetric Laurent series. In this module, this sort of Laurent series diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py index 2fead88ab..3c2663b6c 100644 --- a/numpy/polynomial/polynomial.py +++ b/numpy/polynomial/polynomial.py @@ -1304,12 +1304,12 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None): The solution is the coefficients of the polynomial `p` that minimizes the sum of the weighted squared errors - .. math :: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, + .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, where the :math:`w_j` are the weights. This problem is solved by setting up the (typically) over-determined matrix equation: - .. math :: V(x) * c = w * y, + .. math:: V(x) * c = w * y, where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the coefficients to be solved for, `w` are the weights, and `y` are the diff --git a/numpy/polynomial/polyutils.py b/numpy/polynomial/polyutils.py index 3b0f0a9e5..a2bc75a4d 100644 --- a/numpy/polynomial/polyutils.py +++ b/numpy/polynomial/polyutils.py @@ -330,12 +330,12 @@ def mapdomain(x, old, new): ----- Effectively, this implements: - .. math :: + .. math:: x\\_out = new[0] + m(x - old[0]) where - .. math :: + .. math:: m = \\frac{new[1]-new[0]}{old[1]-old[0]} Examples diff --git a/numpy/random/_generator.pyx b/numpy/random/_generator.pyx index 5347ea125..7087b6e1d 100644 --- a/numpy/random/_generator.pyx +++ b/numpy/random/_generator.pyx @@ -3107,7 +3107,7 @@ cdef class Generator: `a` > 1. The Zipf distribution (also known as the zeta distribution) is a - continuous probability distribution that satisfies Zipf's law: the + discrete probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. @@ -3135,9 +3135,10 @@ cdef class Generator: ----- The probability density for the Zipf distribution is - .. math:: p(x) = \\frac{x^{-a}}{\\zeta(a)}, + .. math:: p(k) = \\frac{k^{-a}}{\\zeta(a)}, - where :math:`\\zeta` is the Riemann Zeta function. + for integers :math:`k \geq 1`, where :math:`\\zeta` is the Riemann Zeta + function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely @@ -3153,22 +3154,29 @@ cdef class Generator: -------- Draw samples from the distribution: - >>> a = 2. # parameter - >>> s = np.random.default_rng().zipf(a, 1000) + >>> a = 4.0 + >>> n = 20000 + >>> s = np.random.default_rng().zipf(a, size=n) Display the histogram of the samples, along with - the probability density function: + the expected histogram based on the probability + density function: >>> import matplotlib.pyplot as plt - >>> from scipy import special # doctest: +SKIP + >>> from scipy.special import zeta # doctest: +SKIP + + `bincount` provides a fast histogram for small integers. - Truncate s values at 50 so plot is interesting: + >>> count = np.bincount(s) + >>> k = np.arange(1, s.max() + 1) - >>> count, bins, ignored = plt.hist(s[s<50], - ... 50, density=True) - >>> x = np.arange(1., 50.) - >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP - >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP + >>> plt.bar(k, count[1:], alpha=0.5, label='sample count') + >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5, + ... label='expected count') # doctest: +SKIP + >>> plt.semilogy() + >>> plt.grid(alpha=0.4) + >>> plt.legend() + >>> plt.title(f'Zipf sample, a={a}, size={n}') >>> plt.show() """ diff --git a/numpy/random/mtrand.pyx b/numpy/random/mtrand.pyx index 81a526ab4..3e13503d0 100644 --- a/numpy/random/mtrand.pyx +++ b/numpy/random/mtrand.pyx @@ -3609,7 +3609,7 @@ cdef class RandomState: `a` > 1. The Zipf distribution (also known as the zeta distribution) is a - continuous probability distribution that satisfies Zipf's law: the + discrete probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. @@ -3642,9 +3642,10 @@ cdef class RandomState: ----- The probability density for the Zipf distribution is - .. math:: p(x) = \\frac{x^{-a}}{\\zeta(a)}, + .. math:: p(k) = \\frac{k^{-a}}{\\zeta(a)}, - where :math:`\\zeta` is the Riemann Zeta function. + for integers :math:`k \geq 1`, where :math:`\\zeta` is the Riemann Zeta + function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely @@ -3660,21 +3661,29 @@ cdef class RandomState: -------- Draw samples from the distribution: - >>> a = 2. # parameter - >>> s = np.random.zipf(a, 1000) + >>> a = 4.0 + >>> n = 20000 + >>> s = np.random.zipf(a, n) Display the histogram of the samples, along with - the probability density function: + the expected histogram based on the probability + density function: >>> import matplotlib.pyplot as plt - >>> from scipy import special # doctest: +SKIP + >>> from scipy.special import zeta # doctest: +SKIP + + `bincount` provides a fast histogram for small integers. - Truncate s values at 50 so plot is interesting: + >>> count = np.bincount(s) + >>> k = np.arange(1, s.max() + 1) - >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True) - >>> x = np.arange(1., 50.) - >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP - >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP + >>> plt.bar(k, count[1:], alpha=0.5, label='sample count') + >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5, + ... label='expected count') # doctest: +SKIP + >>> plt.semilogy() + >>> plt.grid(alpha=0.4) + >>> plt.legend() + >>> plt.title(f'Zipf sample, a={a}, size={n}') >>> plt.show() """ diff --git a/numpy/testing/__init__.py b/numpy/testing/__init__.py index a008f5828..6e06c5b49 100644 --- a/numpy/testing/__init__.py +++ b/numpy/testing/__init__.py @@ -8,8 +8,7 @@ away. from unittest import TestCase from ._private.utils import * -from ._private.utils import (_assert_valid_refcount, _gen_alignment_data, - IS_PYSTON) +from ._private.utils import (_assert_valid_refcount, _gen_alignment_data) from ._private import extbuild, decorators as dec from ._private.nosetester import ( run_module_suite, NoseTester as Tester diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index 3d52f74b2..4c6b64bc9 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -35,7 +35,7 @@ __all__ = [ 'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings', 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', 'HAS_REFCOUNT', 'suppress_warnings', 'assert_array_compare', - 'assert_no_gc_cycles', 'break_cycles', 'HAS_LAPACK64' + 'assert_no_gc_cycles', 'break_cycles', 'HAS_LAPACK64', 'IS_PYSTON', ] diff --git a/numpy/testing/_private/utils.pyi b/numpy/testing/_private/utils.pyi index 26ce52e40..4ba5d82ee 100644 --- a/numpy/testing/_private/utils.pyi +++ b/numpy/testing/_private/utils.pyi @@ -133,6 +133,7 @@ class suppress_warnings: verbose: int IS_PYPY: Final[bool] +IS_PYSTON: Final[bool] HAS_REFCOUNT: Final[bool] HAS_LAPACK64: Final[bool] diff --git a/numpy/tests/test__all__.py b/numpy/tests/test__all__.py new file mode 100644 index 000000000..e44bda3d5 --- /dev/null +++ b/numpy/tests/test__all__.py @@ -0,0 +1,9 @@ + +import collections +import numpy as np + + +def test_no_duplicates_in_np__all__(): + # Regression test for gh-10198. + dups = {k: v for k, v in collections.Counter(np.__all__).items() if v > 1} + assert len(dups) == 0 diff --git a/numpy/tests/test_public_api.py b/numpy/tests/test_public_api.py index 1e7d389d9..fa29c75b5 100644 --- a/numpy/tests/test_public_api.py +++ b/numpy/tests/test_public_api.py @@ -1,4 +1,5 @@ import sys +import sysconfig import subprocess import pkgutil import types @@ -458,3 +459,40 @@ def test_api_importable(): raise AssertionError("Modules that are not really public but looked " "public and can not be imported: " "{}".format(module_names)) + + +@pytest.mark.xfail( + sysconfig.get_config_var("Py_DEBUG") is not None, + reason=( + "NumPy possibly built with `USE_DEBUG=True ./tools/travis-test.sh`, " + "which does not expose the `array_api` entry point. " + "See https://github.com/numpy/numpy/pull/19800" + ), +) +def test_array_api_entry_point(): + """ + Entry point for Array API implementation can be found with importlib and + returns the numpy.array_api namespace. + """ + eps = importlib.metadata.entry_points() + try: + xp_eps = eps.select(group="array_api") + except AttributeError: + # The select interface for entry_points was introduced in py3.10, + # deprecating its dict interface. We fallback to dict keys for finding + # Array API entry points so that running this test in <=3.9 will + # still work - see https://github.com/numpy/numpy/pull/19800. + xp_eps = eps.get("array_api", []) + assert len(xp_eps) > 0, "No entry points for 'array_api' found" + + try: + ep = next(ep for ep in xp_eps if ep.name == "numpy") + except StopIteration: + raise AssertionError("'numpy' not in array_api entry points") from None + + xp = ep.load() + msg = ( + f"numpy entry point value '{ep.value}' " + "does not point to our Array API implementation" + ) + assert xp is numpy.array_api, msg diff --git a/numpy/typing/_generic_alias.py b/numpy/typing/_generic_alias.py index 932f12dd0..1eb2c8c05 100644 --- a/numpy/typing/_generic_alias.py +++ b/numpy/typing/_generic_alias.py @@ -185,6 +185,8 @@ class _GenericAlias: "__mro_entries__", "__reduce__", "__reduce_ex__", + "__copy__", + "__deepcopy__", }) def __getattribute__(self, name: str) -> Any: diff --git a/numpy/typing/tests/data/reveal/arithmetic.pyi b/numpy/typing/tests/data/reveal/arithmetic.pyi index 0d9132e5b..c5b467469 100644 --- a/numpy/typing/tests/data/reveal/arithmetic.pyi +++ b/numpy/typing/tests/data/reveal/arithmetic.pyi @@ -45,104 +45,104 @@ AR_LIKE_O: List[np.object_] # Array subtraction -reveal_type(AR_b - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_b - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_b - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_b - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_b - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] +reveal_type(AR_b - AR_LIKE_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_b - AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_b - AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_b - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_b - AR_LIKE_m) # E: ndarray[Any, dtype[timedelta64]] reveal_type(AR_b - AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_u - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_LIKE_i - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_f - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_c - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_LIKE_m - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_LIKE_M - AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] +reveal_type(AR_LIKE_u - AR_b) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_LIKE_i - AR_b) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_f - AR_b) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_c - AR_b) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_LIKE_m - AR_b) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_LIKE_M - AR_b) # E: ndarray[Any, dtype[datetime64]] reveal_type(AR_LIKE_O - AR_b) # E: Any -reveal_type(AR_u - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_u - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_u - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_u - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_u - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_u - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] +reveal_type(AR_u - AR_LIKE_b) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_u - AR_LIKE_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_u - AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_u - AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_u - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_u - AR_LIKE_m) # E: ndarray[Any, dtype[timedelta64]] reveal_type(AR_u - AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_b - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_LIKE_u - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_LIKE_i - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_f - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_c - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_LIKE_m - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_LIKE_M - AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] +reveal_type(AR_LIKE_b - AR_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_LIKE_u - AR_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_LIKE_i - AR_u) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_f - AR_u) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_c - AR_u) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_LIKE_m - AR_u) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_LIKE_M - AR_u) # E: ndarray[Any, dtype[datetime64]] reveal_type(AR_LIKE_O - AR_u) # E: Any -reveal_type(AR_i - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_i - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_i - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_i - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_i - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_i - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] +reveal_type(AR_i - AR_LIKE_b) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_i - AR_LIKE_u) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_i - AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_i - AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_i - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_i - AR_LIKE_m) # E: ndarray[Any, dtype[timedelta64]] reveal_type(AR_i - AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_b - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_u - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_i - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_f - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_c - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_LIKE_m - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_LIKE_M - AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] +reveal_type(AR_LIKE_b - AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_u - AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_i - AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_f - AR_i) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_c - AR_i) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_LIKE_m - AR_i) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_LIKE_M - AR_i) # E: ndarray[Any, dtype[datetime64]] reveal_type(AR_LIKE_O - AR_i) # E: Any -reveal_type(AR_f - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_f - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_f - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_f - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_f - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] +reveal_type(AR_f - AR_LIKE_b) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_f - AR_LIKE_u) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_f - AR_LIKE_i) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_f - AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_f - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] reveal_type(AR_f - AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_b - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_u - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_i - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_f - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_c - AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] +reveal_type(AR_LIKE_b - AR_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_u - AR_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_i - AR_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_f - AR_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_c - AR_f) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] reveal_type(AR_LIKE_O - AR_f) # E: Any -reveal_type(AR_c - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_c - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_c - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_c - AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_c - AR_LIKE_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] +reveal_type(AR_c - AR_LIKE_b) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_c - AR_LIKE_u) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_c - AR_LIKE_i) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_c - AR_LIKE_f) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_c - AR_LIKE_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] reveal_type(AR_c - AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_b - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_LIKE_u - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_LIKE_i - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_LIKE_f - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(AR_LIKE_c - AR_c) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] +reveal_type(AR_LIKE_b - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_LIKE_u - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_LIKE_i - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_LIKE_f - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(AR_LIKE_c - AR_c) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] reveal_type(AR_LIKE_O - AR_c) # E: Any -reveal_type(AR_m - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_m - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_m - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_m - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] +reveal_type(AR_m - AR_LIKE_b) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_m - AR_LIKE_u) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_m - AR_LIKE_i) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_m - AR_LIKE_m) # E: ndarray[Any, dtype[timedelta64]] reveal_type(AR_m - AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_b - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_LIKE_u - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_LIKE_i - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_LIKE_m - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_LIKE_M - AR_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] +reveal_type(AR_LIKE_b - AR_m) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_LIKE_u - AR_m) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_LIKE_i - AR_m) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_LIKE_m - AR_m) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_LIKE_M - AR_m) # E: ndarray[Any, dtype[datetime64]] reveal_type(AR_LIKE_O - AR_m) # E: Any -reveal_type(AR_M - AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(AR_M - AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(AR_M - AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(AR_M - AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(AR_M - AR_LIKE_M) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] +reveal_type(AR_M - AR_LIKE_b) # E: ndarray[Any, dtype[datetime64]] +reveal_type(AR_M - AR_LIKE_u) # E: ndarray[Any, dtype[datetime64]] +reveal_type(AR_M - AR_LIKE_i) # E: ndarray[Any, dtype[datetime64]] +reveal_type(AR_M - AR_LIKE_m) # E: ndarray[Any, dtype[datetime64]] +reveal_type(AR_M - AR_LIKE_M) # E: ndarray[Any, dtype[timedelta64]] reveal_type(AR_M - AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_M - AR_M) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] +reveal_type(AR_LIKE_M - AR_M) # E: ndarray[Any, dtype[timedelta64]] reveal_type(AR_LIKE_O - AR_M) # E: Any reveal_type(AR_O - AR_LIKE_b) # E: Any @@ -165,64 +165,64 @@ reveal_type(AR_LIKE_O - AR_O) # E: Any # Array floor division -reveal_type(AR_b // AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[{int8}]] -reveal_type(AR_b // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_b // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_b // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(AR_b // AR_LIKE_b) # E: ndarray[Any, dtype[{int8}]] +reveal_type(AR_b // AR_LIKE_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_b // AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_b // AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(AR_b // AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_b // AR_b) # E: numpy.ndarray[Any, numpy.dtype[{int8}]] -reveal_type(AR_LIKE_u // AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_LIKE_i // AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_f // AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(AR_LIKE_b // AR_b) # E: ndarray[Any, dtype[{int8}]] +reveal_type(AR_LIKE_u // AR_b) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_LIKE_i // AR_b) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_f // AR_b) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(AR_LIKE_O // AR_b) # E: Any -reveal_type(AR_u // AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_u // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_u // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_u // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(AR_u // AR_LIKE_b) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_u // AR_LIKE_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_u // AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_u // AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(AR_u // AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_b // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_LIKE_u // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(AR_LIKE_i // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_f // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_m // AR_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] +reveal_type(AR_LIKE_b // AR_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_LIKE_u // AR_u) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(AR_LIKE_i // AR_u) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_f // AR_u) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_m // AR_u) # E: ndarray[Any, dtype[timedelta64]] reveal_type(AR_LIKE_O // AR_u) # E: Any -reveal_type(AR_i // AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_i // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_i // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_i // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(AR_i // AR_LIKE_b) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_i // AR_LIKE_u) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_i // AR_LIKE_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_i // AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(AR_i // AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_b // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_u // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_i // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(AR_LIKE_f // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_m // AR_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] +reveal_type(AR_LIKE_b // AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_u // AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_i // AR_i) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(AR_LIKE_f // AR_i) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_m // AR_i) # E: ndarray[Any, dtype[timedelta64]] reveal_type(AR_LIKE_O // AR_i) # E: Any -reveal_type(AR_f // AR_LIKE_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_f // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_f // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_f // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(AR_f // AR_LIKE_b) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_f // AR_LIKE_u) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_f // AR_LIKE_i) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_f // AR_LIKE_f) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(AR_f // AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_b // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_u // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_i // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_f // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(AR_LIKE_m // AR_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] +reveal_type(AR_LIKE_b // AR_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_u // AR_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_i // AR_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_f // AR_f) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(AR_LIKE_m // AR_f) # E: ndarray[Any, dtype[timedelta64]] reveal_type(AR_LIKE_O // AR_f) # E: Any -reveal_type(AR_m // AR_LIKE_u) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_m // AR_LIKE_i) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_m // AR_LIKE_f) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(AR_m // AR_LIKE_m) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] +reveal_type(AR_m // AR_LIKE_u) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_m // AR_LIKE_i) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_m // AR_LIKE_f) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(AR_m // AR_LIKE_m) # E: ndarray[Any, dtype[{int64}]] reveal_type(AR_m // AR_LIKE_O) # E: Any -reveal_type(AR_LIKE_m // AR_m) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] +reveal_type(AR_LIKE_m // AR_m) # E: ndarray[Any, dtype[{int64}]] reveal_type(AR_LIKE_O // AR_m) # E: Any reveal_type(AR_O // AR_LIKE_b) # E: Any @@ -252,7 +252,7 @@ reveal_type(-i8) # E: {int64} reveal_type(-i4) # E: {int32} reveal_type(-u8) # E: {uint64} reveal_type(-u4) # E: {uint32} -reveal_type(-td) # E: numpy.timedelta64 +reveal_type(-td) # E: timedelta64 reveal_type(-AR_f) # E: Any reveal_type(+f16) # E: {float128} @@ -264,7 +264,7 @@ reveal_type(+i8) # E: {int64} reveal_type(+i4) # E: {int32} reveal_type(+u8) # E: {uint64} reveal_type(+u4) # E: {uint32} -reveal_type(+td) # E: numpy.timedelta64 +reveal_type(+td) # E: timedelta64 reveal_type(+AR_f) # E: Any reveal_type(abs(f16)) # E: {float128} @@ -276,32 +276,32 @@ reveal_type(abs(i8)) # E: {int64} reveal_type(abs(i4)) # E: {int32} reveal_type(abs(u8)) # E: {uint64} reveal_type(abs(u4)) # E: {uint32} -reveal_type(abs(td)) # E: numpy.timedelta64 -reveal_type(abs(b_)) # E: numpy.bool_ +reveal_type(abs(td)) # E: timedelta64 +reveal_type(abs(b_)) # E: bool_ reveal_type(abs(AR_f)) # E: Any # Time structures -reveal_type(dt + td) # E: numpy.datetime64 -reveal_type(dt + i) # E: numpy.datetime64 -reveal_type(dt + i4) # E: numpy.datetime64 -reveal_type(dt + i8) # E: numpy.datetime64 -reveal_type(dt - dt) # E: numpy.timedelta64 -reveal_type(dt - i) # E: numpy.datetime64 -reveal_type(dt - i4) # E: numpy.datetime64 -reveal_type(dt - i8) # E: numpy.datetime64 - -reveal_type(td + td) # E: numpy.timedelta64 -reveal_type(td + i) # E: numpy.timedelta64 -reveal_type(td + i4) # E: numpy.timedelta64 -reveal_type(td + i8) # E: numpy.timedelta64 -reveal_type(td - td) # E: numpy.timedelta64 -reveal_type(td - i) # E: numpy.timedelta64 -reveal_type(td - i4) # E: numpy.timedelta64 -reveal_type(td - i8) # E: numpy.timedelta64 -reveal_type(td / f) # E: numpy.timedelta64 -reveal_type(td / f4) # E: numpy.timedelta64 -reveal_type(td / f8) # E: numpy.timedelta64 +reveal_type(dt + td) # E: datetime64 +reveal_type(dt + i) # E: datetime64 +reveal_type(dt + i4) # E: datetime64 +reveal_type(dt + i8) # E: datetime64 +reveal_type(dt - dt) # E: timedelta64 +reveal_type(dt - i) # E: datetime64 +reveal_type(dt - i4) # E: datetime64 +reveal_type(dt - i8) # E: datetime64 + +reveal_type(td + td) # E: timedelta64 +reveal_type(td + i) # E: timedelta64 +reveal_type(td + i4) # E: timedelta64 +reveal_type(td + i8) # E: timedelta64 +reveal_type(td - td) # E: timedelta64 +reveal_type(td - i) # E: timedelta64 +reveal_type(td - i4) # E: timedelta64 +reveal_type(td - i8) # E: timedelta64 +reveal_type(td / f) # E: timedelta64 +reveal_type(td / f4) # E: timedelta64 +reveal_type(td / f8) # E: timedelta64 reveal_type(td / td) # E: {float64} reveal_type(td // td) # E: {int64} @@ -378,7 +378,7 @@ reveal_type(c8 + b_) # E: {complex64} reveal_type(c8 + b) # E: {complex64} reveal_type(c8 + c) # E: {complex128} reveal_type(c8 + f) # E: {complex128} -reveal_type(c8 + i) # E: numpy.complexfloating[{_NBitInt}, {_NBitInt}] +reveal_type(c8 + i) # E: complexfloating[{_NBitInt}, {_NBitInt}] reveal_type(c8 + AR_f) # E: Any reveal_type(f16 + c8) # E: {complex256} @@ -392,7 +392,7 @@ reveal_type(b_ + c8) # E: {complex64} reveal_type(b + c8) # E: {complex64} reveal_type(c + c8) # E: {complex128} reveal_type(f + c8) # E: {complex128} -reveal_type(i + c8) # E: numpy.complexfloating[{_NBitInt}, {_NBitInt}] +reveal_type(i + c8) # E: complexfloating[{_NBitInt}, {_NBitInt}] reveal_type(AR_f + c8) # E: Any # Float @@ -430,7 +430,7 @@ reveal_type(f4 + b_) # E: {float32} reveal_type(f4 + b) # E: {float32} reveal_type(f4 + c) # E: {complex128} reveal_type(f4 + f) # E: {float64} -reveal_type(f4 + i) # E: numpy.floating[{_NBitInt}] +reveal_type(f4 + i) # E: floating[{_NBitInt}] reveal_type(f4 + AR_f) # E: Any reveal_type(f16 + f4) # E: {float128} @@ -442,7 +442,7 @@ reveal_type(b_ + f4) # E: {float32} reveal_type(b + f4) # E: {float32} reveal_type(c + f4) # E: {complex128} reveal_type(f + f4) # E: {float64} -reveal_type(i + f4) # E: numpy.floating[{_NBitInt}] +reveal_type(i + f4) # E: floating[{_NBitInt}] reveal_type(AR_f + f4) # E: Any # Int diff --git a/numpy/typing/tests/data/reveal/array_constructors.pyi b/numpy/typing/tests/data/reveal/array_constructors.pyi index 0aea4ea96..233988e63 100644 --- a/numpy/typing/tests/data/reveal/array_constructors.pyi +++ b/numpy/typing/tests/data/reveal/array_constructors.pyi @@ -16,167 +16,167 @@ C: List[int] def func(i: int, j: int, **kwargs: Any) -> SubClass[np.float64]: ... -reveal_type(np.empty_like(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.empty_like(A)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.empty_like(B)) # E: SubClass[{float64}] -reveal_type(np.empty_like([1, 1.0])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.empty_like(A, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.empty_like(A, dtype='c16')) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.empty_like([1, 1.0])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.empty_like(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.empty_like(A, dtype='c16')) # E: ndarray[Any, dtype[Any]] -reveal_type(np.array(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.array(B)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.array(A)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.array(B)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.array(B, subok=True)) # E: SubClass[{float64}] -reveal_type(np.array([1, 1.0])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.array(A, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.array(A, dtype='c16')) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.zeros([1, 5, 6])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.zeros([1, 5, 6], dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.zeros([1, 5, 6], dtype='c16')) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.empty([1, 5, 6])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.empty([1, 5, 6], dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.empty([1, 5, 6], dtype='c16')) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.concatenate(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.concatenate([1, 1.0])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.concatenate(A, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.concatenate(A, dtype='c16')) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.concatenate([1, 1.0], out=A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] - -reveal_type(np.asarray(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.asarray(B)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.asarray([1, 1.0])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.asarray(A, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.asarray(A, dtype='c16')) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.asanyarray(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.array([1, 1.0])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.array(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.array(A, dtype='c16')) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.zeros([1, 5, 6])) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.zeros([1, 5, 6], dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.zeros([1, 5, 6], dtype='c16')) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.empty([1, 5, 6])) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.empty([1, 5, 6], dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.empty([1, 5, 6], dtype='c16')) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.concatenate(A)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.concatenate([1, 1.0])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.concatenate(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.concatenate(A, dtype='c16')) # E: ndarray[Any, dtype[Any]] +reveal_type(np.concatenate([1, 1.0], out=A)) # E: ndarray[Any, dtype[{float64}]] + +reveal_type(np.asarray(A)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.asarray(B)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.asarray([1, 1.0])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.asarray(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.asarray(A, dtype='c16')) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.asanyarray(A)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.asanyarray(B)) # E: SubClass[{float64}] -reveal_type(np.asanyarray([1, 1.0])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.asanyarray(A, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.asanyarray(A, dtype='c16')) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.ascontiguousarray(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.ascontiguousarray(B)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.ascontiguousarray([1, 1.0])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.ascontiguousarray(A, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.ascontiguousarray(A, dtype='c16')) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.asfortranarray(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.asfortranarray(B)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.asfortranarray([1, 1.0])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.asfortranarray(A, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.asfortranarray(A, dtype='c16')) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.fromstring("1 1 1", sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.fromstring(b"1 1 1", sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.fromstring("1 1 1", dtype=np.int64, sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.fromstring(b"1 1 1", dtype=np.int64, sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.fromstring("1 1 1", dtype="c16", sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.fromstring(b"1 1 1", dtype="c16", sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.fromfile("test.txt", sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.fromfile("test.txt", dtype=np.int64, sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.fromfile("test.txt", dtype="c16", sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.asanyarray([1, 1.0])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.asanyarray(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.asanyarray(A, dtype='c16')) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.ascontiguousarray(A)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.ascontiguousarray(B)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.ascontiguousarray([1, 1.0])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.ascontiguousarray(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.ascontiguousarray(A, dtype='c16')) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.asfortranarray(A)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.asfortranarray(B)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.asfortranarray([1, 1.0])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.asfortranarray(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.asfortranarray(A, dtype='c16')) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.fromstring("1 1 1", sep=" ")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fromstring(b"1 1 1", sep=" ")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fromstring("1 1 1", dtype=np.int64, sep=" ")) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.fromstring(b"1 1 1", dtype=np.int64, sep=" ")) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.fromstring("1 1 1", dtype="c16", sep=" ")) # E: ndarray[Any, dtype[Any]] +reveal_type(np.fromstring(b"1 1 1", dtype="c16", sep=" ")) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.fromfile("test.txt", sep=" ")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fromfile("test.txt", dtype=np.int64, sep=" ")) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.fromfile("test.txt", dtype="c16", sep=" ")) # E: ndarray[Any, dtype[Any]] with open("test.txt") as f: - reveal_type(np.fromfile(f, sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] - reveal_type(np.fromfile(b"test.txt", sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] - reveal_type(np.fromfile(Path("test.txt"), sep=" ")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] - -reveal_type(np.fromiter("12345", np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.fromiter("12345", float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.frombuffer(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.frombuffer(A, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.frombuffer(A, dtype="c16")) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.arange(False, True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.arange(10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.arange(0, 10, step=2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.arange(10.0)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.arange(start=0, stop=10.0)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.arange(np.timedelta64(0))) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(np.arange(0, np.timedelta64(10))) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(np.arange(np.datetime64("0"), np.datetime64("10"))) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(np.arange(10, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.arange(0, 10, step=2, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[{int16}]] -reveal_type(np.arange(10, dtype=int)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.arange(0, 10, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.require(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] + reveal_type(np.fromfile(f, sep=" ")) # E: ndarray[Any, dtype[{float64}]] + reveal_type(np.fromfile(b"test.txt", sep=" ")) # E: ndarray[Any, dtype[{float64}]] + reveal_type(np.fromfile(Path("test.txt"), sep=" ")) # E: ndarray[Any, dtype[{float64}]] + +reveal_type(np.fromiter("12345", np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fromiter("12345", float)) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.frombuffer(A)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.frombuffer(A, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.frombuffer(A, dtype="c16")) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.arange(False, True)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.arange(10)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.arange(0, 10, step=2)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.arange(10.0)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.arange(start=0, stop=10.0)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.arange(np.timedelta64(0))) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(np.arange(0, np.timedelta64(10))) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(np.arange(np.datetime64("0"), np.datetime64("10"))) # E: ndarray[Any, dtype[datetime64]] +reveal_type(np.arange(10, dtype=np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.arange(0, 10, step=2, dtype=np.int16)) # E: ndarray[Any, dtype[{int16}]] +reveal_type(np.arange(10, dtype=int)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.arange(0, 10, dtype="f8")) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.require(A)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.require(B)) # E: SubClass[{float64}] reveal_type(np.require(B, requirements=None)) # E: SubClass[{float64}] -reveal_type(np.require(B, dtype=int)) # E: numpy.ndarray[Any, Any] -reveal_type(np.require(B, requirements="E")) # E: numpy.ndarray[Any, Any] -reveal_type(np.require(B, requirements=["ENSUREARRAY"])) # E: numpy.ndarray[Any, Any] -reveal_type(np.require(B, requirements={"F", "E"})) # E: numpy.ndarray[Any, Any] +reveal_type(np.require(B, dtype=int)) # E: ndarray[Any, Any] +reveal_type(np.require(B, requirements="E")) # E: ndarray[Any, Any] +reveal_type(np.require(B, requirements=["ENSUREARRAY"])) # E: ndarray[Any, Any] +reveal_type(np.require(B, requirements={"F", "E"})) # E: ndarray[Any, Any] reveal_type(np.require(B, requirements=["C", "OWNDATA"])) # E: SubClass[{float64}] reveal_type(np.require(B, requirements="W")) # E: SubClass[{float64}] reveal_type(np.require(B, requirements="A")) # E: SubClass[{float64}] -reveal_type(np.require(C)) # E: numpy.ndarray[Any, Any] +reveal_type(np.require(C)) # E: ndarray[Any, Any] -reveal_type(np.linspace(0, 10)) # E: numpy.ndarray[Any, Any] -reveal_type(np.linspace(0, 10, retstep=True)) # E: Tuple[numpy.ndarray[Any, Any], Any] -reveal_type(np.logspace(0, 10)) # E: numpy.ndarray[Any, Any] -reveal_type(np.geomspace(1, 10)) # E: numpy.ndarray[Any, Any] +reveal_type(np.linspace(0, 10)) # E: ndarray[Any, Any] +reveal_type(np.linspace(0, 10, retstep=True)) # E: Tuple[ndarray[Any, Any], Any] +reveal_type(np.logspace(0, 10)) # E: ndarray[Any, Any] +reveal_type(np.geomspace(1, 10)) # E: ndarray[Any, Any] -reveal_type(np.zeros_like(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.zeros_like(C)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.zeros_like(A, dtype=float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.zeros_like(A)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.zeros_like(C)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.zeros_like(A, dtype=float)) # E: ndarray[Any, dtype[Any]] reveal_type(np.zeros_like(B)) # E: SubClass[{float64}] -reveal_type(np.zeros_like(B, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] +reveal_type(np.zeros_like(B, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] -reveal_type(np.ones_like(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.ones_like(C)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.ones_like(A, dtype=float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.ones_like(A)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.ones_like(C)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.ones_like(A, dtype=float)) # E: ndarray[Any, dtype[Any]] reveal_type(np.ones_like(B)) # E: SubClass[{float64}] -reveal_type(np.ones_like(B, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] +reveal_type(np.ones_like(B, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] -reveal_type(np.full_like(A, i8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.full_like(C, i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.full_like(A, i8, dtype=int)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.full_like(A, i8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.full_like(C, i8)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.full_like(A, i8, dtype=int)) # E: ndarray[Any, dtype[Any]] reveal_type(np.full_like(B, i8)) # E: SubClass[{float64}] -reveal_type(np.full_like(B, i8, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] +reveal_type(np.full_like(B, i8, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] -reveal_type(np.ones(1)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.ones([1, 1, 1])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.ones(5, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.ones(5, dtype=int)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.ones(1)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.ones([1, 1, 1])) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.ones(5, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.ones(5, dtype=int)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.full(1, i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.full([1, 1, 1], i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.full(1, i8, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.full(1, i8, dtype=float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.full(1, i8)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.full([1, 1, 1], i8)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.full(1, i8, dtype=np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.full(1, i8, dtype=float)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.indices([1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.indices([1, 2, 3], sparse=True)) # E: tuple[numpy.ndarray[Any, numpy.dtype[{int_}]]] +reveal_type(np.indices([1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.indices([1, 2, 3], sparse=True)) # E: tuple[ndarray[Any, dtype[{int_}]]] reveal_type(np.fromfunction(func, (3, 5))) # E: SubClass[{float64}] -reveal_type(np.identity(10)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.identity(10, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.identity(10, dtype=int)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.identity(10)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.identity(10, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.identity(10, dtype=int)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.atleast_1d(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.atleast_1d(C)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.atleast_1d(A, A)) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] -reveal_type(np.atleast_1d(A, C)) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] -reveal_type(np.atleast_1d(C, C)) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.atleast_1d(A)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.atleast_1d(C)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.atleast_1d(A, A)) # E: list[ndarray[Any, dtype[Any]]] +reveal_type(np.atleast_1d(A, C)) # E: list[ndarray[Any, dtype[Any]]] +reveal_type(np.atleast_1d(C, C)) # E: list[ndarray[Any, dtype[Any]]] -reveal_type(np.atleast_2d(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.atleast_2d(A)) # E: ndarray[Any, dtype[{float64}]] -reveal_type(np.atleast_3d(A)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.atleast_3d(A)) # E: ndarray[Any, dtype[{float64}]] -reveal_type(np.vstack([A, A])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.vstack([A, C])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.vstack([C, C])) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.vstack([A, A])) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.vstack([A, C])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.vstack([C, C])) # E: ndarray[Any, dtype[Any]] -reveal_type(np.hstack([A, A])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.hstack([A, A])) # E: ndarray[Any, dtype[{float64}]] -reveal_type(np.stack([A, A])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.stack([A, C])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.stack([C, C])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.stack([A, A], axis=0)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.stack([A, A])) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.stack([A, C])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.stack([C, C])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.stack([A, A], axis=0)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.stack([A, A], out=B)) # E: SubClass[{float64}] -reveal_type(np.block([[A, A], [A, A]])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.block(C)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.block([[A, A], [A, A]])) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.block(C)) # E: ndarray[Any, dtype[Any]] diff --git a/numpy/typing/tests/data/reveal/arraypad.pyi b/numpy/typing/tests/data/reveal/arraypad.pyi index 03c03fb4e..995f82b57 100644 --- a/numpy/typing/tests/data/reveal/arraypad.pyi +++ b/numpy/typing/tests/data/reveal/arraypad.pyi @@ -14,8 +14,8 @@ AR_i8: npt.NDArray[np.int64] AR_f8: npt.NDArray[np.float64] AR_LIKE: List[int] -reveal_type(np.pad(AR_i8, (2, 3), "constant")) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.pad(AR_LIKE, (2, 3), "constant")) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.pad(AR_i8, (2, 3), "constant")) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.pad(AR_LIKE, (2, 3), "constant")) # E: ndarray[Any, dtype[Any]] -reveal_type(np.pad(AR_f8, (2, 3), mode_func)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.pad(AR_f8, (2, 3), mode_func, a=1, b=2)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.pad(AR_f8, (2, 3), mode_func)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.pad(AR_f8, (2, 3), mode_func, a=1, b=2)) # E: ndarray[Any, dtype[{float64}]] diff --git a/numpy/typing/tests/data/reveal/arraysetops.pyi b/numpy/typing/tests/data/reveal/arraysetops.pyi index c8aeb03ab..9deff8a8e 100644 --- a/numpy/typing/tests/data/reveal/arraysetops.pyi +++ b/numpy/typing/tests/data/reveal/arraysetops.pyi @@ -9,52 +9,52 @@ AR_O: npt.NDArray[np.object_] AR_LIKE_f8: list[float] -reveal_type(np.ediff1d(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[{int8}]] -reveal_type(np.ediff1d(AR_i8, to_end=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.ediff1d(AR_M)) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(np.ediff1d(AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(np.ediff1d(AR_LIKE_f8, to_begin=[1, 1.5])) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.intersect1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.intersect1d(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(np.intersect1d(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.intersect1d(AR_f8, AR_f8, return_indices=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] - -reveal_type(np.setxor1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.setxor1d(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(np.setxor1d(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.in1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.in1d(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.in1d(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.in1d(AR_f8, AR_LIKE_f8, invert=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(np.isin(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isin(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isin(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isin(AR_f8, AR_LIKE_f8, invert=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(np.union1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.union1d(AR_M, AR_M)) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(np.union1d(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.setdiff1d(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.setdiff1d(AR_M, AR_M, assume_unique=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(np.setdiff1d(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.unique(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.unique(AR_LIKE_f8, axis=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.unique(AR_f8, return_index=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_LIKE_f8, return_index=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_f8, return_inverse=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_LIKE_f8, return_inverse=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_f8, return_counts=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_LIKE_f8, return_counts=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_f8, return_index=True, return_inverse=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_f8, return_index=True, return_counts=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_LIKE_f8, return_index=True, return_counts=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_f8, return_inverse=True, return_counts=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_LIKE_f8, return_inverse=True, return_counts=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_f8, return_index=True, return_inverse=True, return_counts=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True, return_counts=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] +reveal_type(np.ediff1d(AR_b)) # E: ndarray[Any, dtype[{int8}]] +reveal_type(np.ediff1d(AR_i8, to_end=[1, 2, 3])) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.ediff1d(AR_M)) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(np.ediff1d(AR_O)) # E: ndarray[Any, dtype[object_]] +reveal_type(np.ediff1d(AR_LIKE_f8, to_begin=[1, 1.5])) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.intersect1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.intersect1d(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[datetime64]] +reveal_type(np.intersect1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.intersect1d(AR_f8, AR_f8, return_indices=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] + +reveal_type(np.setxor1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.setxor1d(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[datetime64]] +reveal_type(np.setxor1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.in1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.in1d(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.in1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.in1d(AR_f8, AR_LIKE_f8, invert=True)) # E: ndarray[Any, dtype[bool_]] + +reveal_type(np.isin(AR_i8, AR_i8)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isin(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isin(AR_f8, AR_i8)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isin(AR_f8, AR_LIKE_f8, invert=True)) # E: ndarray[Any, dtype[bool_]] + +reveal_type(np.union1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.union1d(AR_M, AR_M)) # E: ndarray[Any, dtype[datetime64]] +reveal_type(np.union1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.setdiff1d(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.setdiff1d(AR_M, AR_M, assume_unique=True)) # E: ndarray[Any, dtype[datetime64]] +reveal_type(np.setdiff1d(AR_f8, AR_i8)) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.unique(AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.unique(AR_LIKE_f8, axis=0)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.unique(AR_f8, return_index=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_LIKE_f8, return_index=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_f8, return_inverse=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_LIKE_f8, return_inverse=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_f8, return_counts=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_LIKE_f8, return_counts=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_f8, return_index=True, return_inverse=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_f8, return_index=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_LIKE_f8, return_index=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_f8, return_inverse=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_LIKE_f8, return_inverse=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_f8, return_index=True, return_inverse=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True, return_counts=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] diff --git a/numpy/typing/tests/data/reveal/arrayterator.pyi b/numpy/typing/tests/data/reveal/arrayterator.pyi index ea4e75612..2dab9d08c 100644 --- a/numpy/typing/tests/data/reveal/arrayterator.pyi +++ b/numpy/typing/tests/data/reveal/arrayterator.pyi @@ -4,7 +4,7 @@ import numpy as np AR_i8: np.ndarray[Any, np.dtype[np.int64]] ar_iter = np.lib.Arrayterator(AR_i8) -reveal_type(ar_iter.var) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] +reveal_type(ar_iter.var) # E: ndarray[Any, dtype[{int64}]] reveal_type(ar_iter.buf_size) # E: Union[None, builtins.int] reveal_type(ar_iter.start) # E: builtins.list[builtins.int] reveal_type(ar_iter.stop) # E: builtins.list[builtins.int] @@ -12,13 +12,13 @@ reveal_type(ar_iter.step) # E: builtins.list[builtins.int] reveal_type(ar_iter.shape) # E: builtins.tuple[builtins.int] reveal_type(ar_iter.flat) # E: typing.Generator[{int64}, None, None] -reveal_type(ar_iter.__array__()) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] +reveal_type(ar_iter.__array__()) # E: ndarray[Any, dtype[{int64}]] for i in ar_iter: - reveal_type(i) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] + reveal_type(i) # E: ndarray[Any, dtype[{int64}]] -reveal_type(ar_iter[0]) # E: numpy.lib.arrayterator.Arrayterator[Any, numpy.dtype[{int64}]] -reveal_type(ar_iter[...]) # E: numpy.lib.arrayterator.Arrayterator[Any, numpy.dtype[{int64}]] -reveal_type(ar_iter[:]) # E: numpy.lib.arrayterator.Arrayterator[Any, numpy.dtype[{int64}]] -reveal_type(ar_iter[0, 0, 0]) # E: numpy.lib.arrayterator.Arrayterator[Any, numpy.dtype[{int64}]] -reveal_type(ar_iter[..., 0, :]) # E: numpy.lib.arrayterator.Arrayterator[Any, numpy.dtype[{int64}]] +reveal_type(ar_iter[0]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]] +reveal_type(ar_iter[...]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]] +reveal_type(ar_iter[:]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]] +reveal_type(ar_iter[0, 0, 0]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]] +reveal_type(ar_iter[..., 0, :]) # E: lib.arrayterator.Arrayterator[Any, dtype[{int64}]] diff --git a/numpy/typing/tests/data/reveal/bitwise_ops.pyi b/numpy/typing/tests/data/reveal/bitwise_ops.pyi index 6b9969568..f293ef65b 100644 --- a/numpy/typing/tests/data/reveal/bitwise_ops.pyi +++ b/numpy/typing/tests/data/reveal/bitwise_ops.pyi @@ -75,17 +75,17 @@ reveal_type(u4 | u4) # E: {uint32} reveal_type(u4 ^ u4) # E: {uint32} reveal_type(u4 & u4) # E: {uint32} -reveal_type(u4 << i4) # E: numpy.signedinteger[Any] -reveal_type(u4 >> i4) # E: numpy.signedinteger[Any] -reveal_type(u4 | i4) # E: numpy.signedinteger[Any] -reveal_type(u4 ^ i4) # E: numpy.signedinteger[Any] -reveal_type(u4 & i4) # E: numpy.signedinteger[Any] - -reveal_type(u4 << i) # E: numpy.signedinteger[Any] -reveal_type(u4 >> i) # E: numpy.signedinteger[Any] -reveal_type(u4 | i) # E: numpy.signedinteger[Any] -reveal_type(u4 ^ i) # E: numpy.signedinteger[Any] -reveal_type(u4 & i) # E: numpy.signedinteger[Any] +reveal_type(u4 << i4) # E: signedinteger[Any] +reveal_type(u4 >> i4) # E: signedinteger[Any] +reveal_type(u4 | i4) # E: signedinteger[Any] +reveal_type(u4 ^ i4) # E: signedinteger[Any] +reveal_type(u4 & i4) # E: signedinteger[Any] + +reveal_type(u4 << i) # E: signedinteger[Any] +reveal_type(u4 >> i) # E: signedinteger[Any] +reveal_type(u4 | i) # E: signedinteger[Any] +reveal_type(u4 ^ i) # E: signedinteger[Any] +reveal_type(u4 & i) # E: signedinteger[Any] reveal_type(u8 << b_) # E: {uint64} reveal_type(u8 >> b_) # E: {uint64} @@ -101,9 +101,9 @@ reveal_type(u8 & b) # E: {uint64} reveal_type(b_ << b_) # E: {int8} reveal_type(b_ >> b_) # E: {int8} -reveal_type(b_ | b_) # E: numpy.bool_ -reveal_type(b_ ^ b_) # E: numpy.bool_ -reveal_type(b_ & b_) # E: numpy.bool_ +reveal_type(b_ | b_) # E: bool_ +reveal_type(b_ ^ b_) # E: bool_ +reveal_type(b_ & b_) # E: bool_ reveal_type(b_ << AR) # E: Any reveal_type(b_ >> AR) # E: Any @@ -113,9 +113,9 @@ reveal_type(b_ & AR) # E: Any reveal_type(b_ << b) # E: {int8} reveal_type(b_ >> b) # E: {int8} -reveal_type(b_ | b) # E: numpy.bool_ -reveal_type(b_ ^ b) # E: numpy.bool_ -reveal_type(b_ & b) # E: numpy.bool_ +reveal_type(b_ | b) # E: bool_ +reveal_type(b_ ^ b) # E: bool_ +reveal_type(b_ & b) # E: bool_ reveal_type(b_ << i) # E: {int_} reveal_type(b_ >> i) # E: {int_} @@ -127,5 +127,5 @@ reveal_type(~i8) # E: {int64} reveal_type(~i4) # E: {int32} reveal_type(~u8) # E: {uint64} reveal_type(~u4) # E: {uint32} -reveal_type(~b_) # E: numpy.bool_ +reveal_type(~b_) # E: bool_ reveal_type(~AR) # E: Any diff --git a/numpy/typing/tests/data/reveal/char.pyi b/numpy/typing/tests/data/reveal/char.pyi index dd2e76a2d..ce8c1b269 100644 --- a/numpy/typing/tests/data/reveal/char.pyi +++ b/numpy/typing/tests/data/reveal/char.pyi @@ -5,143 +5,143 @@ from typing import Sequence AR_U: npt.NDArray[np.str_] AR_S: npt.NDArray[np.bytes_] -reveal_type(np.char.equal(AR_U, AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.equal(AR_S, AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.equal(AR_U, AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.equal(AR_S, AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.not_equal(AR_U, AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.not_equal(AR_S, AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.not_equal(AR_U, AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.not_equal(AR_S, AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.greater_equal(AR_U, AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.greater_equal(AR_S, AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.greater_equal(AR_U, AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.greater_equal(AR_S, AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.less_equal(AR_U, AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.less_equal(AR_S, AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.less_equal(AR_U, AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.less_equal(AR_S, AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.greater(AR_U, AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.greater(AR_S, AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.greater(AR_U, AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.greater(AR_S, AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.less(AR_U, AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.less(AR_S, AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.less(AR_U, AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.less(AR_S, AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.multiply(AR_U, 5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.multiply(AR_S, [5, 4, 3])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.multiply(AR_U, 5)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.multiply(AR_S, [5, 4, 3])) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.mod(AR_U, "test")) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.mod(AR_S, "test")) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.mod(AR_U, "test")) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.mod(AR_S, "test")) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.capitalize(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.capitalize(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.capitalize(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.capitalize(AR_S)) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.center(AR_U, 5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.center(AR_S, [2, 3, 4], b"a")) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.center(AR_U, 5)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.center(AR_S, [2, 3, 4], b"a")) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.encode(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.decode(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] +reveal_type(np.char.encode(AR_U)) # E: ndarray[Any, dtype[bytes_]] +reveal_type(np.char.decode(AR_S)) # E: ndarray[Any, dtype[str_]] -reveal_type(np.char.expandtabs(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.expandtabs(AR_S, tabsize=4)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.expandtabs(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.expandtabs(AR_S, tabsize=4)) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.join(AR_U, "_")) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.join(AR_S, [b"_", b""])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.join(AR_U, "_")) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.join(AR_S, [b"_", b""])) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.ljust(AR_U, 5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.ljust(AR_S, [4, 3, 1], fillchar=[b"a", b"b", b"c"])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.rjust(AR_U, 5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.rjust(AR_S, [4, 3, 1], fillchar=[b"a", b"b", b"c"])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.ljust(AR_U, 5)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.ljust(AR_S, [4, 3, 1], fillchar=[b"a", b"b", b"c"])) # E: ndarray[Any, dtype[bytes_]] +reveal_type(np.char.rjust(AR_U, 5)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.rjust(AR_S, [4, 3, 1], fillchar=[b"a", b"b", b"c"])) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.lstrip(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.lstrip(AR_S, chars=b"_")) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.rstrip(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.rstrip(AR_S, chars=b"_")) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.strip(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.strip(AR_S, chars=b"_")) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.lstrip(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.lstrip(AR_S, chars=b"_")) # E: ndarray[Any, dtype[bytes_]] +reveal_type(np.char.rstrip(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.rstrip(AR_S, chars=b"_")) # E: ndarray[Any, dtype[bytes_]] +reveal_type(np.char.strip(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.strip(AR_S, chars=b"_")) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.partition(AR_U, "\n")) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.partition(AR_S, [b"a", b"b", b"c"])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.rpartition(AR_U, "\n")) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.rpartition(AR_S, [b"a", b"b", b"c"])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.partition(AR_U, "\n")) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.partition(AR_S, [b"a", b"b", b"c"])) # E: ndarray[Any, dtype[bytes_]] +reveal_type(np.char.rpartition(AR_U, "\n")) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.rpartition(AR_S, [b"a", b"b", b"c"])) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.replace(AR_U, "_", "-")) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.replace(AR_S, [b"_", b""], [b"a", b"b"])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.replace(AR_U, "_", "-")) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.replace(AR_S, [b"_", b""], [b"a", b"b"])) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.split(AR_U, "_")) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(np.char.split(AR_S, maxsplit=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(np.char.rsplit(AR_U, "_")) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(np.char.rsplit(AR_S, maxsplit=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(np.char.split(AR_U, "_")) # E: ndarray[Any, dtype[object_]] +reveal_type(np.char.split(AR_S, maxsplit=[1, 2, 3])) # E: ndarray[Any, dtype[object_]] +reveal_type(np.char.rsplit(AR_U, "_")) # E: ndarray[Any, dtype[object_]] +reveal_type(np.char.rsplit(AR_S, maxsplit=[1, 2, 3])) # E: ndarray[Any, dtype[object_]] -reveal_type(np.char.splitlines(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(np.char.splitlines(AR_S, keepends=[True, True, False])) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(np.char.splitlines(AR_U)) # E: ndarray[Any, dtype[object_]] +reveal_type(np.char.splitlines(AR_S, keepends=[True, True, False])) # E: ndarray[Any, dtype[object_]] -reveal_type(np.char.swapcase(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.swapcase(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.swapcase(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.swapcase(AR_S)) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.title(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.title(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.title(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.title(AR_S)) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.upper(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.upper(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.upper(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.upper(AR_S)) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.zfill(AR_U, 5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.zfill(AR_S, [2, 3, 4])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(np.char.zfill(AR_U, 5)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.char.zfill(AR_S, [2, 3, 4])) # E: ndarray[Any, dtype[bytes_]] -reveal_type(np.char.count(AR_U, "a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.char.count(AR_S, [b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(np.char.count(AR_U, "a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.char.count(AR_S, [b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] -reveal_type(np.char.endswith(AR_U, "a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.endswith(AR_S, [b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.startswith(AR_U, "a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.startswith(AR_S, [b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.endswith(AR_U, "a", start=[1, 2, 3])) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.endswith(AR_S, [b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.startswith(AR_U, "a", start=[1, 2, 3])) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.startswith(AR_S, [b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.find(AR_U, "a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.char.find(AR_S, [b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.char.rfind(AR_U, "a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.char.rfind(AR_S, [b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(np.char.find(AR_U, "a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.char.find(AR_S, [b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.char.rfind(AR_U, "a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.char.rfind(AR_S, [b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] -reveal_type(np.char.index(AR_U, "a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.char.index(AR_S, [b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.char.rindex(AR_U, "a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.char.rindex(AR_S, [b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(np.char.index(AR_U, "a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.char.index(AR_S, [b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.char.rindex(AR_U, "a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.char.rindex(AR_S, [b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] -reveal_type(np.char.isalpha(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.isalpha(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.isalpha(AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.isalpha(AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.isalnum(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.isalnum(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.isalnum(AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.isalnum(AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.isdecimal(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.isdecimal(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.isdecimal(AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.isdecimal(AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.isdigit(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.isdigit(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.isdigit(AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.isdigit(AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.islower(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.islower(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.islower(AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.islower(AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.isnumeric(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.isnumeric(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.isnumeric(AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.isnumeric(AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.isspace(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.isspace(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.isspace(AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.isspace(AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.istitle(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.istitle(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.istitle(AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.istitle(AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.isupper(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.char.isupper(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.char.isupper(AR_U)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.char.isupper(AR_S)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.char.str_len(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.char.str_len(AR_S)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(np.char.str_len(AR_U)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.char.str_len(AR_S)) # E: ndarray[Any, dtype[{int_}]] -reveal_type(np.char.array(AR_U)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.array(AR_S, order="K")) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.array("bob", copy=True)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.array(b"bob", itemsize=5)) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.array(1, unicode=False)) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.array(1, unicode=True)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] +reveal_type(np.char.array(AR_U)) # E: chararray[Any, dtype[str_]] +reveal_type(np.char.array(AR_S, order="K")) # E: chararray[Any, dtype[bytes_]] +reveal_type(np.char.array("bob", copy=True)) # E: chararray[Any, dtype[str_]] +reveal_type(np.char.array(b"bob", itemsize=5)) # E: chararray[Any, dtype[bytes_]] +reveal_type(np.char.array(1, unicode=False)) # E: chararray[Any, dtype[bytes_]] +reveal_type(np.char.array(1, unicode=True)) # E: chararray[Any, dtype[str_]] -reveal_type(np.char.asarray(AR_U)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.asarray(AR_S, order="K")) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.asarray("bob")) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.char.asarray(b"bob", itemsize=5)) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.asarray(1, unicode=False)) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(np.char.asarray(1, unicode=True)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] +reveal_type(np.char.asarray(AR_U)) # E: chararray[Any, dtype[str_]] +reveal_type(np.char.asarray(AR_S, order="K")) # E: chararray[Any, dtype[bytes_]] +reveal_type(np.char.asarray("bob")) # E: chararray[Any, dtype[str_]] +reveal_type(np.char.asarray(b"bob", itemsize=5)) # E: chararray[Any, dtype[bytes_]] +reveal_type(np.char.asarray(1, unicode=False)) # E: chararray[Any, dtype[bytes_]] +reveal_type(np.char.asarray(1, unicode=True)) # E: chararray[Any, dtype[str_]] diff --git a/numpy/typing/tests/data/reveal/chararray.pyi b/numpy/typing/tests/data/reveal/chararray.pyi index c0a39c92b..3da2e1599 100644 --- a/numpy/typing/tests/data/reveal/chararray.pyi +++ b/numpy/typing/tests/data/reveal/chararray.pyi @@ -4,126 +4,126 @@ from typing import Any AR_U: np.chararray[Any, np.dtype[np.str_]] AR_S: np.chararray[Any, np.dtype[np.bytes_]] -reveal_type(AR_U == AR_U) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S == AR_S) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U == AR_U) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S == AR_S) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U != AR_U) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S != AR_S) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U != AR_U) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S != AR_S) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U >= AR_U) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S >= AR_S) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U >= AR_U) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S >= AR_S) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U <= AR_U) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S <= AR_S) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U <= AR_U) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S <= AR_S) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U > AR_U) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S > AR_S) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U > AR_U) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S > AR_S) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U < AR_U) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S < AR_S) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U < AR_U) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S < AR_S) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U * 5) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S * [5]) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U * 5) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S * [5]) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U % "test") # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S % b"test") # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U % "test") # E: chararray[Any, dtype[str_]] +reveal_type(AR_S % b"test") # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.capitalize()) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.capitalize()) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.capitalize()) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.capitalize()) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.center(5)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.center([2, 3, 4], b"a")) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.center(5)) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.center([2, 3, 4], b"a")) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.encode()) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(AR_S.decode()) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] +reveal_type(AR_U.encode()) # E: chararray[Any, dtype[bytes_]] +reveal_type(AR_S.decode()) # E: chararray[Any, dtype[str_]] -reveal_type(AR_U.expandtabs()) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.expandtabs(tabsize=4)) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.expandtabs()) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.expandtabs(tabsize=4)) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.join("_")) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.join([b"_", b""])) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.join("_")) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.join([b"_", b""])) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.ljust(5)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.ljust([4, 3, 1], fillchar=[b"a", b"b", b"c"])) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(AR_U.rjust(5)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.rjust([4, 3, 1], fillchar=[b"a", b"b", b"c"])) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.ljust(5)) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.ljust([4, 3, 1], fillchar=[b"a", b"b", b"c"])) # E: chararray[Any, dtype[bytes_]] +reveal_type(AR_U.rjust(5)) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.rjust([4, 3, 1], fillchar=[b"a", b"b", b"c"])) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.lstrip()) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.lstrip(chars=b"_")) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(AR_U.rstrip()) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.rstrip(chars=b"_")) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(AR_U.strip()) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.strip(chars=b"_")) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.lstrip()) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.lstrip(chars=b"_")) # E: chararray[Any, dtype[bytes_]] +reveal_type(AR_U.rstrip()) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.rstrip(chars=b"_")) # E: chararray[Any, dtype[bytes_]] +reveal_type(AR_U.strip()) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.strip(chars=b"_")) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.partition("\n")) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.partition([b"a", b"b", b"c"])) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] -reveal_type(AR_U.rpartition("\n")) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.rpartition([b"a", b"b", b"c"])) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.partition("\n")) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.partition([b"a", b"b", b"c"])) # E: chararray[Any, dtype[bytes_]] +reveal_type(AR_U.rpartition("\n")) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.rpartition([b"a", b"b", b"c"])) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.replace("_", "-")) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.replace([b"_", b""], [b"a", b"b"])) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.replace("_", "-")) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.replace([b"_", b""], [b"a", b"b"])) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.split("_")) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(AR_S.split(maxsplit=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(AR_U.rsplit("_")) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(AR_S.rsplit(maxsplit=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(AR_U.split("_")) # E: ndarray[Any, dtype[object_]] +reveal_type(AR_S.split(maxsplit=[1, 2, 3])) # E: ndarray[Any, dtype[object_]] +reveal_type(AR_U.rsplit("_")) # E: ndarray[Any, dtype[object_]] +reveal_type(AR_S.rsplit(maxsplit=[1, 2, 3])) # E: ndarray[Any, dtype[object_]] -reveal_type(AR_U.splitlines()) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(AR_S.splitlines(keepends=[True, True, False])) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(AR_U.splitlines()) # E: ndarray[Any, dtype[object_]] +reveal_type(AR_S.splitlines(keepends=[True, True, False])) # E: ndarray[Any, dtype[object_]] -reveal_type(AR_U.swapcase()) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.swapcase()) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.swapcase()) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.swapcase()) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.title()) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.title()) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.title()) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.title()) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.upper()) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.upper()) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.upper()) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.upper()) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.zfill(5)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(AR_S.zfill([2, 3, 4])) # E: numpy.chararray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(AR_U.zfill(5)) # E: chararray[Any, dtype[str_]] +reveal_type(AR_S.zfill([2, 3, 4])) # E: chararray[Any, dtype[bytes_]] -reveal_type(AR_U.count("a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(AR_S.count([b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(AR_U.count("a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(AR_S.count([b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] -reveal_type(AR_U.endswith("a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.endswith([b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_U.startswith("a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.startswith([b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.endswith("a", start=[1, 2, 3])) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.endswith([b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_U.startswith("a", start=[1, 2, 3])) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.startswith([b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U.find("a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(AR_S.find([b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(AR_U.rfind("a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(AR_S.rfind([b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(AR_U.find("a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(AR_S.find([b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(AR_U.rfind("a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(AR_S.rfind([b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] -reveal_type(AR_U.index("a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(AR_S.index([b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(AR_U.rindex("a", start=[1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(AR_S.rindex([b"a", b"b", b"c"], end=9)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(AR_U.index("a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(AR_S.index([b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(AR_U.rindex("a", start=[1, 2, 3])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(AR_S.rindex([b"a", b"b", b"c"], end=9)) # E: ndarray[Any, dtype[{int_}]] -reveal_type(AR_U.isalpha()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.isalpha()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.isalpha()) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.isalpha()) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U.isalnum()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.isalnum()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.isalnum()) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.isalnum()) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U.isdecimal()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.isdecimal()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.isdecimal()) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.isdecimal()) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U.isdigit()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.isdigit()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.isdigit()) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.isdigit()) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U.islower()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.islower()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.islower()) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.islower()) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U.isnumeric()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.isnumeric()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.isnumeric()) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.isnumeric()) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U.isspace()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.isspace()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.isspace()) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.isspace()) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U.istitle()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.istitle()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.istitle()) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.istitle()) # E: ndarray[Any, dtype[bool_]] -reveal_type(AR_U.isupper()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR_S.isupper()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(AR_U.isupper()) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR_S.isupper()) # E: ndarray[Any, dtype[bool_]] diff --git a/numpy/typing/tests/data/reveal/comparisons.pyi b/numpy/typing/tests/data/reveal/comparisons.pyi index 16f21cc39..ecd8ea690 100644 --- a/numpy/typing/tests/data/reveal/comparisons.pyi +++ b/numpy/typing/tests/data/reveal/comparisons.pyi @@ -27,226 +27,226 @@ SEQ = (0, 1, 2, 3, 4) # Time structures -reveal_type(dt > dt) # E: numpy.bool_ +reveal_type(dt > dt) # E: bool_ -reveal_type(td > td) # E: numpy.bool_ -reveal_type(td > i) # E: numpy.bool_ -reveal_type(td > i4) # E: numpy.bool_ -reveal_type(td > i8) # E: numpy.bool_ +reveal_type(td > td) # E: bool_ +reveal_type(td > i) # E: bool_ +reveal_type(td > i4) # E: bool_ +reveal_type(td > i8) # E: bool_ -reveal_type(td > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(td > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(AR > td) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > td) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(td > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(td > SEQ) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR > SEQ) # E: ndarray[Any, dtype[bool_]] +reveal_type(AR > td) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > td) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > AR) # E: ndarray[Any, dtype[bool_]] # boolean -reveal_type(b_ > b) # E: numpy.bool_ -reveal_type(b_ > b_) # E: numpy.bool_ -reveal_type(b_ > i) # E: numpy.bool_ -reveal_type(b_ > i8) # E: numpy.bool_ -reveal_type(b_ > i4) # E: numpy.bool_ -reveal_type(b_ > u8) # E: numpy.bool_ -reveal_type(b_ > u4) # E: numpy.bool_ -reveal_type(b_ > f) # E: numpy.bool_ -reveal_type(b_ > f8) # E: numpy.bool_ -reveal_type(b_ > f4) # E: numpy.bool_ -reveal_type(b_ > c) # E: numpy.bool_ -reveal_type(b_ > c16) # E: numpy.bool_ -reveal_type(b_ > c8) # E: numpy.bool_ -reveal_type(b_ > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(b_ > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(b_ > b) # E: bool_ +reveal_type(b_ > b_) # E: bool_ +reveal_type(b_ > i) # E: bool_ +reveal_type(b_ > i8) # E: bool_ +reveal_type(b_ > i4) # E: bool_ +reveal_type(b_ > u8) # E: bool_ +reveal_type(b_ > u4) # E: bool_ +reveal_type(b_ > f) # E: bool_ +reveal_type(b_ > f8) # E: bool_ +reveal_type(b_ > f4) # E: bool_ +reveal_type(b_ > c) # E: bool_ +reveal_type(b_ > c16) # E: bool_ +reveal_type(b_ > c8) # E: bool_ +reveal_type(b_ > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(b_ > SEQ) # E: ndarray[Any, dtype[bool_]] # Complex -reveal_type(c16 > c16) # E: numpy.bool_ -reveal_type(c16 > f8) # E: numpy.bool_ -reveal_type(c16 > i8) # E: numpy.bool_ -reveal_type(c16 > c8) # E: numpy.bool_ -reveal_type(c16 > f4) # E: numpy.bool_ -reveal_type(c16 > i4) # E: numpy.bool_ -reveal_type(c16 > b_) # E: numpy.bool_ -reveal_type(c16 > b) # E: numpy.bool_ -reveal_type(c16 > c) # E: numpy.bool_ -reveal_type(c16 > f) # E: numpy.bool_ -reveal_type(c16 > i) # E: numpy.bool_ -reveal_type(c16 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(c16 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(c16 > c16) # E: numpy.bool_ -reveal_type(f8 > c16) # E: numpy.bool_ -reveal_type(i8 > c16) # E: numpy.bool_ -reveal_type(c8 > c16) # E: numpy.bool_ -reveal_type(f4 > c16) # E: numpy.bool_ -reveal_type(i4 > c16) # E: numpy.bool_ -reveal_type(b_ > c16) # E: numpy.bool_ -reveal_type(b > c16) # E: numpy.bool_ -reveal_type(c > c16) # E: numpy.bool_ -reveal_type(f > c16) # E: numpy.bool_ -reveal_type(i > c16) # E: numpy.bool_ -reveal_type(AR > c16) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > c16) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(c8 > c16) # E: numpy.bool_ -reveal_type(c8 > f8) # E: numpy.bool_ -reveal_type(c8 > i8) # E: numpy.bool_ -reveal_type(c8 > c8) # E: numpy.bool_ -reveal_type(c8 > f4) # E: numpy.bool_ -reveal_type(c8 > i4) # E: numpy.bool_ -reveal_type(c8 > b_) # E: numpy.bool_ -reveal_type(c8 > b) # E: numpy.bool_ -reveal_type(c8 > c) # E: numpy.bool_ -reveal_type(c8 > f) # E: numpy.bool_ -reveal_type(c8 > i) # E: numpy.bool_ -reveal_type(c8 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(c8 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(c16 > c8) # E: numpy.bool_ -reveal_type(f8 > c8) # E: numpy.bool_ -reveal_type(i8 > c8) # E: numpy.bool_ -reveal_type(c8 > c8) # E: numpy.bool_ -reveal_type(f4 > c8) # E: numpy.bool_ -reveal_type(i4 > c8) # E: numpy.bool_ -reveal_type(b_ > c8) # E: numpy.bool_ -reveal_type(b > c8) # E: numpy.bool_ -reveal_type(c > c8) # E: numpy.bool_ -reveal_type(f > c8) # E: numpy.bool_ -reveal_type(i > c8) # E: numpy.bool_ -reveal_type(AR > c8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > c8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(c16 > c16) # E: bool_ +reveal_type(c16 > f8) # E: bool_ +reveal_type(c16 > i8) # E: bool_ +reveal_type(c16 > c8) # E: bool_ +reveal_type(c16 > f4) # E: bool_ +reveal_type(c16 > i4) # E: bool_ +reveal_type(c16 > b_) # E: bool_ +reveal_type(c16 > b) # E: bool_ +reveal_type(c16 > c) # E: bool_ +reveal_type(c16 > f) # E: bool_ +reveal_type(c16 > i) # E: bool_ +reveal_type(c16 > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(c16 > SEQ) # E: ndarray[Any, dtype[bool_]] + +reveal_type(c16 > c16) # E: bool_ +reveal_type(f8 > c16) # E: bool_ +reveal_type(i8 > c16) # E: bool_ +reveal_type(c8 > c16) # E: bool_ +reveal_type(f4 > c16) # E: bool_ +reveal_type(i4 > c16) # E: bool_ +reveal_type(b_ > c16) # E: bool_ +reveal_type(b > c16) # E: bool_ +reveal_type(c > c16) # E: bool_ +reveal_type(f > c16) # E: bool_ +reveal_type(i > c16) # E: bool_ +reveal_type(AR > c16) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > c16) # E: ndarray[Any, dtype[bool_]] + +reveal_type(c8 > c16) # E: bool_ +reveal_type(c8 > f8) # E: bool_ +reveal_type(c8 > i8) # E: bool_ +reveal_type(c8 > c8) # E: bool_ +reveal_type(c8 > f4) # E: bool_ +reveal_type(c8 > i4) # E: bool_ +reveal_type(c8 > b_) # E: bool_ +reveal_type(c8 > b) # E: bool_ +reveal_type(c8 > c) # E: bool_ +reveal_type(c8 > f) # E: bool_ +reveal_type(c8 > i) # E: bool_ +reveal_type(c8 > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(c8 > SEQ) # E: ndarray[Any, dtype[bool_]] + +reveal_type(c16 > c8) # E: bool_ +reveal_type(f8 > c8) # E: bool_ +reveal_type(i8 > c8) # E: bool_ +reveal_type(c8 > c8) # E: bool_ +reveal_type(f4 > c8) # E: bool_ +reveal_type(i4 > c8) # E: bool_ +reveal_type(b_ > c8) # E: bool_ +reveal_type(b > c8) # E: bool_ +reveal_type(c > c8) # E: bool_ +reveal_type(f > c8) # E: bool_ +reveal_type(i > c8) # E: bool_ +reveal_type(AR > c8) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > c8) # E: ndarray[Any, dtype[bool_]] # Float -reveal_type(f8 > f8) # E: numpy.bool_ -reveal_type(f8 > i8) # E: numpy.bool_ -reveal_type(f8 > f4) # E: numpy.bool_ -reveal_type(f8 > i4) # E: numpy.bool_ -reveal_type(f8 > b_) # E: numpy.bool_ -reveal_type(f8 > b) # E: numpy.bool_ -reveal_type(f8 > c) # E: numpy.bool_ -reveal_type(f8 > f) # E: numpy.bool_ -reveal_type(f8 > i) # E: numpy.bool_ -reveal_type(f8 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(f8 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(f8 > f8) # E: numpy.bool_ -reveal_type(i8 > f8) # E: numpy.bool_ -reveal_type(f4 > f8) # E: numpy.bool_ -reveal_type(i4 > f8) # E: numpy.bool_ -reveal_type(b_ > f8) # E: numpy.bool_ -reveal_type(b > f8) # E: numpy.bool_ -reveal_type(c > f8) # E: numpy.bool_ -reveal_type(f > f8) # E: numpy.bool_ -reveal_type(i > f8) # E: numpy.bool_ -reveal_type(AR > f8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > f8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(f4 > f8) # E: numpy.bool_ -reveal_type(f4 > i8) # E: numpy.bool_ -reveal_type(f4 > f4) # E: numpy.bool_ -reveal_type(f4 > i4) # E: numpy.bool_ -reveal_type(f4 > b_) # E: numpy.bool_ -reveal_type(f4 > b) # E: numpy.bool_ -reveal_type(f4 > c) # E: numpy.bool_ -reveal_type(f4 > f) # E: numpy.bool_ -reveal_type(f4 > i) # E: numpy.bool_ -reveal_type(f4 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(f4 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(f8 > f4) # E: numpy.bool_ -reveal_type(i8 > f4) # E: numpy.bool_ -reveal_type(f4 > f4) # E: numpy.bool_ -reveal_type(i4 > f4) # E: numpy.bool_ -reveal_type(b_ > f4) # E: numpy.bool_ -reveal_type(b > f4) # E: numpy.bool_ -reveal_type(c > f4) # E: numpy.bool_ -reveal_type(f > f4) # E: numpy.bool_ -reveal_type(i > f4) # E: numpy.bool_ -reveal_type(AR > f4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > f4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(f8 > f8) # E: bool_ +reveal_type(f8 > i8) # E: bool_ +reveal_type(f8 > f4) # E: bool_ +reveal_type(f8 > i4) # E: bool_ +reveal_type(f8 > b_) # E: bool_ +reveal_type(f8 > b) # E: bool_ +reveal_type(f8 > c) # E: bool_ +reveal_type(f8 > f) # E: bool_ +reveal_type(f8 > i) # E: bool_ +reveal_type(f8 > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(f8 > SEQ) # E: ndarray[Any, dtype[bool_]] + +reveal_type(f8 > f8) # E: bool_ +reveal_type(i8 > f8) # E: bool_ +reveal_type(f4 > f8) # E: bool_ +reveal_type(i4 > f8) # E: bool_ +reveal_type(b_ > f8) # E: bool_ +reveal_type(b > f8) # E: bool_ +reveal_type(c > f8) # E: bool_ +reveal_type(f > f8) # E: bool_ +reveal_type(i > f8) # E: bool_ +reveal_type(AR > f8) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > f8) # E: ndarray[Any, dtype[bool_]] + +reveal_type(f4 > f8) # E: bool_ +reveal_type(f4 > i8) # E: bool_ +reveal_type(f4 > f4) # E: bool_ +reveal_type(f4 > i4) # E: bool_ +reveal_type(f4 > b_) # E: bool_ +reveal_type(f4 > b) # E: bool_ +reveal_type(f4 > c) # E: bool_ +reveal_type(f4 > f) # E: bool_ +reveal_type(f4 > i) # E: bool_ +reveal_type(f4 > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(f4 > SEQ) # E: ndarray[Any, dtype[bool_]] + +reveal_type(f8 > f4) # E: bool_ +reveal_type(i8 > f4) # E: bool_ +reveal_type(f4 > f4) # E: bool_ +reveal_type(i4 > f4) # E: bool_ +reveal_type(b_ > f4) # E: bool_ +reveal_type(b > f4) # E: bool_ +reveal_type(c > f4) # E: bool_ +reveal_type(f > f4) # E: bool_ +reveal_type(i > f4) # E: bool_ +reveal_type(AR > f4) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > f4) # E: ndarray[Any, dtype[bool_]] # Int -reveal_type(i8 > i8) # E: numpy.bool_ -reveal_type(i8 > u8) # E: numpy.bool_ -reveal_type(i8 > i4) # E: numpy.bool_ -reveal_type(i8 > u4) # E: numpy.bool_ -reveal_type(i8 > b_) # E: numpy.bool_ -reveal_type(i8 > b) # E: numpy.bool_ -reveal_type(i8 > c) # E: numpy.bool_ -reveal_type(i8 > f) # E: numpy.bool_ -reveal_type(i8 > i) # E: numpy.bool_ -reveal_type(i8 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(i8 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(u8 > u8) # E: numpy.bool_ -reveal_type(u8 > i4) # E: numpy.bool_ -reveal_type(u8 > u4) # E: numpy.bool_ -reveal_type(u8 > b_) # E: numpy.bool_ -reveal_type(u8 > b) # E: numpy.bool_ -reveal_type(u8 > c) # E: numpy.bool_ -reveal_type(u8 > f) # E: numpy.bool_ -reveal_type(u8 > i) # E: numpy.bool_ -reveal_type(u8 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(u8 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(i8 > i8) # E: numpy.bool_ -reveal_type(u8 > i8) # E: numpy.bool_ -reveal_type(i4 > i8) # E: numpy.bool_ -reveal_type(u4 > i8) # E: numpy.bool_ -reveal_type(b_ > i8) # E: numpy.bool_ -reveal_type(b > i8) # E: numpy.bool_ -reveal_type(c > i8) # E: numpy.bool_ -reveal_type(f > i8) # E: numpy.bool_ -reveal_type(i > i8) # E: numpy.bool_ -reveal_type(AR > i8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > i8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(u8 > u8) # E: numpy.bool_ -reveal_type(i4 > u8) # E: numpy.bool_ -reveal_type(u4 > u8) # E: numpy.bool_ -reveal_type(b_ > u8) # E: numpy.bool_ -reveal_type(b > u8) # E: numpy.bool_ -reveal_type(c > u8) # E: numpy.bool_ -reveal_type(f > u8) # E: numpy.bool_ -reveal_type(i > u8) # E: numpy.bool_ -reveal_type(AR > u8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > u8) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(i4 > i8) # E: numpy.bool_ -reveal_type(i4 > i4) # E: numpy.bool_ -reveal_type(i4 > i) # E: numpy.bool_ -reveal_type(i4 > b_) # E: numpy.bool_ -reveal_type(i4 > b) # E: numpy.bool_ -reveal_type(i4 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(i4 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(u4 > i8) # E: numpy.bool_ -reveal_type(u4 > i4) # E: numpy.bool_ -reveal_type(u4 > u8) # E: numpy.bool_ -reveal_type(u4 > u4) # E: numpy.bool_ -reveal_type(u4 > i) # E: numpy.bool_ -reveal_type(u4 > b_) # E: numpy.bool_ -reveal_type(u4 > b) # E: numpy.bool_ -reveal_type(u4 > AR) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(u4 > SEQ) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(i8 > i4) # E: numpy.bool_ -reveal_type(i4 > i4) # E: numpy.bool_ -reveal_type(i > i4) # E: numpy.bool_ -reveal_type(b_ > i4) # E: numpy.bool_ -reveal_type(b > i4) # E: numpy.bool_ -reveal_type(AR > i4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > i4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] - -reveal_type(i8 > u4) # E: numpy.bool_ -reveal_type(i4 > u4) # E: numpy.bool_ -reveal_type(u8 > u4) # E: numpy.bool_ -reveal_type(u4 > u4) # E: numpy.bool_ -reveal_type(b_ > u4) # E: numpy.bool_ -reveal_type(b > u4) # E: numpy.bool_ -reveal_type(i > u4) # E: numpy.bool_ -reveal_type(AR > u4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(SEQ > u4) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(i8 > i8) # E: bool_ +reveal_type(i8 > u8) # E: bool_ +reveal_type(i8 > i4) # E: bool_ +reveal_type(i8 > u4) # E: bool_ +reveal_type(i8 > b_) # E: bool_ +reveal_type(i8 > b) # E: bool_ +reveal_type(i8 > c) # E: bool_ +reveal_type(i8 > f) # E: bool_ +reveal_type(i8 > i) # E: bool_ +reveal_type(i8 > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(i8 > SEQ) # E: ndarray[Any, dtype[bool_]] + +reveal_type(u8 > u8) # E: bool_ +reveal_type(u8 > i4) # E: bool_ +reveal_type(u8 > u4) # E: bool_ +reveal_type(u8 > b_) # E: bool_ +reveal_type(u8 > b) # E: bool_ +reveal_type(u8 > c) # E: bool_ +reveal_type(u8 > f) # E: bool_ +reveal_type(u8 > i) # E: bool_ +reveal_type(u8 > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(u8 > SEQ) # E: ndarray[Any, dtype[bool_]] + +reveal_type(i8 > i8) # E: bool_ +reveal_type(u8 > i8) # E: bool_ +reveal_type(i4 > i8) # E: bool_ +reveal_type(u4 > i8) # E: bool_ +reveal_type(b_ > i8) # E: bool_ +reveal_type(b > i8) # E: bool_ +reveal_type(c > i8) # E: bool_ +reveal_type(f > i8) # E: bool_ +reveal_type(i > i8) # E: bool_ +reveal_type(AR > i8) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > i8) # E: ndarray[Any, dtype[bool_]] + +reveal_type(u8 > u8) # E: bool_ +reveal_type(i4 > u8) # E: bool_ +reveal_type(u4 > u8) # E: bool_ +reveal_type(b_ > u8) # E: bool_ +reveal_type(b > u8) # E: bool_ +reveal_type(c > u8) # E: bool_ +reveal_type(f > u8) # E: bool_ +reveal_type(i > u8) # E: bool_ +reveal_type(AR > u8) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > u8) # E: ndarray[Any, dtype[bool_]] + +reveal_type(i4 > i8) # E: bool_ +reveal_type(i4 > i4) # E: bool_ +reveal_type(i4 > i) # E: bool_ +reveal_type(i4 > b_) # E: bool_ +reveal_type(i4 > b) # E: bool_ +reveal_type(i4 > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(i4 > SEQ) # E: ndarray[Any, dtype[bool_]] + +reveal_type(u4 > i8) # E: bool_ +reveal_type(u4 > i4) # E: bool_ +reveal_type(u4 > u8) # E: bool_ +reveal_type(u4 > u4) # E: bool_ +reveal_type(u4 > i) # E: bool_ +reveal_type(u4 > b_) # E: bool_ +reveal_type(u4 > b) # E: bool_ +reveal_type(u4 > AR) # E: ndarray[Any, dtype[bool_]] +reveal_type(u4 > SEQ) # E: ndarray[Any, dtype[bool_]] + +reveal_type(i8 > i4) # E: bool_ +reveal_type(i4 > i4) # E: bool_ +reveal_type(i > i4) # E: bool_ +reveal_type(b_ > i4) # E: bool_ +reveal_type(b > i4) # E: bool_ +reveal_type(AR > i4) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > i4) # E: ndarray[Any, dtype[bool_]] + +reveal_type(i8 > u4) # E: bool_ +reveal_type(i4 > u4) # E: bool_ +reveal_type(u8 > u4) # E: bool_ +reveal_type(u4 > u4) # E: bool_ +reveal_type(b_ > u4) # E: bool_ +reveal_type(b > u4) # E: bool_ +reveal_type(i > u4) # E: bool_ +reveal_type(AR > u4) # E: ndarray[Any, dtype[bool_]] +reveal_type(SEQ > u4) # E: ndarray[Any, dtype[bool_]] diff --git a/numpy/typing/tests/data/reveal/constants.pyi b/numpy/typing/tests/data/reveal/constants.pyi index 9a46bfded..37f54ccda 100644 --- a/numpy/typing/tests/data/reveal/constants.pyi +++ b/numpy/typing/tests/data/reveal/constants.pyi @@ -43,8 +43,8 @@ reveal_type(np.WRAP) # E: Literal[1] reveal_type(np.tracemalloc_domain) # E: Literal[389047] reveal_type(np.little_endian) # E: bool -reveal_type(np.True_) # E: numpy.bool_ -reveal_type(np.False_) # E: numpy.bool_ +reveal_type(np.True_) # E: bool_ +reveal_type(np.False_) # E: bool_ reveal_type(np.UFUNC_PYVALS_NAME) # E: Literal['UFUNC_PYVALS'] diff --git a/numpy/typing/tests/data/reveal/ctypeslib.pyi b/numpy/typing/tests/data/reveal/ctypeslib.pyi index 461a447d9..ccbdfe36e 100644 --- a/numpy/typing/tests/data/reveal/ctypeslib.pyi +++ b/numpy/typing/tests/data/reveal/ctypeslib.pyi @@ -24,12 +24,12 @@ pointer: ctypes.pointer[Any] reveal_type(np.ctypeslib.c_intp()) # E: {c_intp} -reveal_type(np.ctypeslib.ndpointer()) # E: Type[numpy.ctypeslib._ndptr[None]] -reveal_type(np.ctypeslib.ndpointer(dtype=np.float64)) # E: Type[numpy.ctypeslib._ndptr[numpy.dtype[{float64}]]] -reveal_type(np.ctypeslib.ndpointer(dtype=float)) # E: Type[numpy.ctypeslib._ndptr[numpy.dtype[Any]]] -reveal_type(np.ctypeslib.ndpointer(shape=(10, 3))) # E: Type[numpy.ctypeslib._ndptr[None]] -reveal_type(np.ctypeslib.ndpointer(np.int64, shape=(10, 3))) # E: Type[numpy.ctypeslib._concrete_ndptr[numpy.dtype[{int64}]]] -reveal_type(np.ctypeslib.ndpointer(int, shape=(1,))) # E: Type[numpy.ctypeslib._concrete_ndptr[numpy.dtype[Any]]] +reveal_type(np.ctypeslib.ndpointer()) # E: Type[ctypeslib._ndptr[None]] +reveal_type(np.ctypeslib.ndpointer(dtype=np.float64)) # E: Type[ctypeslib._ndptr[dtype[{float64}]]] +reveal_type(np.ctypeslib.ndpointer(dtype=float)) # E: Type[ctypeslib._ndptr[dtype[Any]]] +reveal_type(np.ctypeslib.ndpointer(shape=(10, 3))) # E: Type[ctypeslib._ndptr[None]] +reveal_type(np.ctypeslib.ndpointer(np.int64, shape=(10, 3))) # E: Type[ctypeslib._concrete_ndptr[dtype[{int64}]]] +reveal_type(np.ctypeslib.ndpointer(int, shape=(1,))) # E: Type[ctypeslib._concrete_ndptr[dtype[Any]]] reveal_type(np.ctypeslib.as_ctypes_type(np.bool_)) # E: Type[ctypes.c_bool] reveal_type(np.ctypeslib.as_ctypes_type(np.ubyte)) # E: Type[{c_ubyte}] @@ -82,6 +82,6 @@ reveal_type(np.ctypeslib.as_ctypes(AR_double)) # E: ctypes.Array[{c_double}] reveal_type(np.ctypeslib.as_ctypes(AR_longdouble)) # E: ctypes.Array[{c_longdouble}] reveal_type(np.ctypeslib.as_ctypes(AR_void)) # E: ctypes.Array[Any] -reveal_type(np.ctypeslib.as_array(AR_ubyte)) # E: numpy.ndarray[Any, numpy.dtype[{ubyte}]] -reveal_type(np.ctypeslib.as_array(1)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.ctypeslib.as_array(pointer)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.ctypeslib.as_array(AR_ubyte)) # E: ndarray[Any, dtype[{ubyte}]] +reveal_type(np.ctypeslib.as_array(1)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.ctypeslib.as_array(pointer)) # E: ndarray[Any, dtype[Any]] diff --git a/numpy/typing/tests/data/reveal/dtype.pyi b/numpy/typing/tests/data/reveal/dtype.pyi index 364d1dcab..934d7da5e 100644 --- a/numpy/typing/tests/data/reveal/dtype.pyi +++ b/numpy/typing/tests/data/reveal/dtype.pyi @@ -5,72 +5,72 @@ dtype_U: np.dtype[np.str_] dtype_V: np.dtype[np.void] dtype_i8: np.dtype[np.int64] -reveal_type(np.dtype(np.float64)) # E: numpy.dtype[{float64}] -reveal_type(np.dtype(np.int64)) # E: numpy.dtype[{int64}] +reveal_type(np.dtype(np.float64)) # E: dtype[{float64}] +reveal_type(np.dtype(np.int64)) # E: dtype[{int64}] # String aliases -reveal_type(np.dtype("float64")) # E: numpy.dtype[{float64}] -reveal_type(np.dtype("float32")) # E: numpy.dtype[{float32}] -reveal_type(np.dtype("int64")) # E: numpy.dtype[{int64}] -reveal_type(np.dtype("int32")) # E: numpy.dtype[{int32}] -reveal_type(np.dtype("bool")) # E: numpy.dtype[numpy.bool_] -reveal_type(np.dtype("bytes")) # E: numpy.dtype[numpy.bytes_] -reveal_type(np.dtype("str")) # E: numpy.dtype[numpy.str_] +reveal_type(np.dtype("float64")) # E: dtype[{float64}] +reveal_type(np.dtype("float32")) # E: dtype[{float32}] +reveal_type(np.dtype("int64")) # E: dtype[{int64}] +reveal_type(np.dtype("int32")) # E: dtype[{int32}] +reveal_type(np.dtype("bool")) # E: dtype[bool_] +reveal_type(np.dtype("bytes")) # E: dtype[bytes_] +reveal_type(np.dtype("str")) # E: dtype[str_] # Python types -reveal_type(np.dtype(complex)) # E: numpy.dtype[{cdouble}] -reveal_type(np.dtype(float)) # E: numpy.dtype[{double}] -reveal_type(np.dtype(int)) # E: numpy.dtype[{int_}] -reveal_type(np.dtype(bool)) # E: numpy.dtype[numpy.bool_] -reveal_type(np.dtype(str)) # E: numpy.dtype[numpy.str_] -reveal_type(np.dtype(bytes)) # E: numpy.dtype[numpy.bytes_] -reveal_type(np.dtype(object)) # E: numpy.dtype[numpy.object_] +reveal_type(np.dtype(complex)) # E: dtype[{cdouble}] +reveal_type(np.dtype(float)) # E: dtype[{double}] +reveal_type(np.dtype(int)) # E: dtype[{int_}] +reveal_type(np.dtype(bool)) # E: dtype[bool_] +reveal_type(np.dtype(str)) # E: dtype[str_] +reveal_type(np.dtype(bytes)) # E: dtype[bytes_] +reveal_type(np.dtype(object)) # E: dtype[object_] # ctypes -reveal_type(np.dtype(ct.c_double)) # E: numpy.dtype[{double}] -reveal_type(np.dtype(ct.c_longlong)) # E: numpy.dtype[{longlong}] -reveal_type(np.dtype(ct.c_uint32)) # E: numpy.dtype[{uint32}] -reveal_type(np.dtype(ct.c_bool)) # E: numpy.dtype[numpy.bool_] -reveal_type(np.dtype(ct.c_char)) # E: numpy.dtype[numpy.bytes_] -reveal_type(np.dtype(ct.py_object)) # E: numpy.dtype[numpy.object_] +reveal_type(np.dtype(ct.c_double)) # E: dtype[{double}] +reveal_type(np.dtype(ct.c_longlong)) # E: dtype[{longlong}] +reveal_type(np.dtype(ct.c_uint32)) # E: dtype[{uint32}] +reveal_type(np.dtype(ct.c_bool)) # E: dtype[bool_] +reveal_type(np.dtype(ct.c_char)) # E: dtype[bytes_] +reveal_type(np.dtype(ct.py_object)) # E: dtype[object_] # Special case for None -reveal_type(np.dtype(None)) # E: numpy.dtype[{double}] +reveal_type(np.dtype(None)) # E: dtype[{double}] # Dtypes of dtypes -reveal_type(np.dtype(np.dtype(np.float64))) # E: numpy.dtype[{float64}] +reveal_type(np.dtype(np.dtype(np.float64))) # E: dtype[{float64}] # Parameterized dtypes -reveal_type(np.dtype("S8")) # E: numpy.dtype +reveal_type(np.dtype("S8")) # E: dtype # Void -reveal_type(np.dtype(("U", 10))) # E: numpy.dtype[numpy.void] +reveal_type(np.dtype(("U", 10))) # E: dtype[void] # Methods and attributes -reveal_type(dtype_U.base) # E: numpy.dtype[Any] -reveal_type(dtype_U.subdtype) # E: Union[None, Tuple[numpy.dtype[Any], builtins.tuple[builtins.int]]] -reveal_type(dtype_U.newbyteorder()) # E: numpy.dtype[numpy.str_] -reveal_type(dtype_U.type) # E: Type[numpy.str_] +reveal_type(dtype_U.base) # E: dtype[Any] +reveal_type(dtype_U.subdtype) # E: Union[None, Tuple[dtype[Any], builtins.tuple[builtins.int]]] +reveal_type(dtype_U.newbyteorder()) # E: dtype[str_] +reveal_type(dtype_U.type) # E: Type[str_] reveal_type(dtype_U.name) # E: str reveal_type(dtype_U.names) # E: Union[None, builtins.tuple[builtins.str]] -reveal_type(dtype_U * 0) # E: numpy.dtype[numpy.str_] -reveal_type(dtype_U * 1) # E: numpy.dtype[numpy.str_] -reveal_type(dtype_U * 2) # E: numpy.dtype[numpy.str_] +reveal_type(dtype_U * 0) # E: dtype[str_] +reveal_type(dtype_U * 1) # E: dtype[str_] +reveal_type(dtype_U * 2) # E: dtype[str_] -reveal_type(dtype_i8 * 0) # E: numpy.dtype[numpy.void] -reveal_type(dtype_i8 * 1) # E: numpy.dtype[{int64}] -reveal_type(dtype_i8 * 2) # E: numpy.dtype[numpy.void] +reveal_type(dtype_i8 * 0) # E: dtype[void] +reveal_type(dtype_i8 * 1) # E: dtype[{int64}] +reveal_type(dtype_i8 * 2) # E: dtype[void] -reveal_type(0 * dtype_U) # E: numpy.dtype[numpy.str_] -reveal_type(1 * dtype_U) # E: numpy.dtype[numpy.str_] -reveal_type(2 * dtype_U) # E: numpy.dtype[numpy.str_] +reveal_type(0 * dtype_U) # E: dtype[str_] +reveal_type(1 * dtype_U) # E: dtype[str_] +reveal_type(2 * dtype_U) # E: dtype[str_] -reveal_type(0 * dtype_i8) # E: numpy.dtype[Any] -reveal_type(1 * dtype_i8) # E: numpy.dtype[Any] -reveal_type(2 * dtype_i8) # E: numpy.dtype[Any] +reveal_type(0 * dtype_i8) # E: dtype[Any] +reveal_type(1 * dtype_i8) # E: dtype[Any] +reveal_type(2 * dtype_i8) # E: dtype[Any] -reveal_type(dtype_V["f0"]) # E: numpy.dtype[Any] -reveal_type(dtype_V[0]) # E: numpy.dtype[Any] -reveal_type(dtype_V[["f0", "f1"]]) # E: numpy.dtype[numpy.void] -reveal_type(dtype_V[["f0"]]) # E: numpy.dtype[numpy.void] +reveal_type(dtype_V["f0"]) # E: dtype[Any] +reveal_type(dtype_V[0]) # E: dtype[Any] +reveal_type(dtype_V[["f0", "f1"]]) # E: dtype[void] +reveal_type(dtype_V[["f0"]]) # E: dtype[void] diff --git a/numpy/typing/tests/data/reveal/einsumfunc.pyi b/numpy/typing/tests/data/reveal/einsumfunc.pyi index f1a90428d..5b07e6d3c 100644 --- a/numpy/typing/tests/data/reveal/einsumfunc.pyi +++ b/numpy/typing/tests/data/reveal/einsumfunc.pyi @@ -18,8 +18,8 @@ reveal_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c)) # E: Any reveal_type(np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_i)) # E: Any reveal_type(np.einsum("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c)) # E: Any -reveal_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c, out=OUT_f)) # E: numpy.ndarray[Any, numpy.dtype[{float64}] -reveal_type(np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe", out=OUT_f)) # E: numpy.ndarray[Any, numpy.dtype[{float64}] +reveal_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c, out=OUT_f)) # E: ndarray[Any, dtype[{float64}] +reveal_type(np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe", out=OUT_f)) # E: ndarray[Any, dtype[{float64}] reveal_type(np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, dtype="c16")) # E: Any reveal_type(np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe")) # E: Any diff --git a/numpy/typing/tests/data/reveal/fft.pyi b/numpy/typing/tests/data/reveal/fft.pyi new file mode 100644 index 000000000..0667938e4 --- /dev/null +++ b/numpy/typing/tests/data/reveal/fft.pyi @@ -0,0 +1,35 @@ +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_LIKE_f8: list[float] + +reveal_type(np.fft.fftshift(AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fft.fftshift(AR_LIKE_f8, axes=0)) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.fft.ifftshift(AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fft.ifftshift(AR_LIKE_f8, axes=0)) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.fft.fftfreq(5, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.fft.fftfreq(np.int64(), AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] + +reveal_type(np.fft.fftfreq(5, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.fft.fftfreq(np.int64(), AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] + +reveal_type(np.fft.fft(AR_f8)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.fft.ifft(AR_f8, axis=1)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.fft.rfft(AR_f8, n=None)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.fft.irfft(AR_f8, norm="ortho")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fft.hfft(AR_f8, n=2)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fft.ihfft(AR_f8)) # E: ndarray[Any, dtype[{complex128}]] + +reveal_type(np.fft.fftn(AR_f8)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.fft.ifftn(AR_f8)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.fft.rfftn(AR_f8)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.fft.irfftn(AR_f8)) # E: ndarray[Any, dtype[{float64}]] + +reveal_type(np.fft.rfft2(AR_f8)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.fft.ifft2(AR_f8)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.fft.fft2(AR_f8)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.fft.irfft2(AR_f8)) # E: ndarray[Any, dtype[{float64}]] diff --git a/numpy/typing/tests/data/reveal/flatiter.pyi b/numpy/typing/tests/data/reveal/flatiter.pyi index 97776dd9f..ef89acb58 100644 --- a/numpy/typing/tests/data/reveal/flatiter.pyi +++ b/numpy/typing/tests/data/reveal/flatiter.pyi @@ -3,15 +3,15 @@ import numpy as np a: np.flatiter[np.ndarray[Any, np.dtype[np.str_]]] -reveal_type(a.base) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(a.copy()) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] +reveal_type(a.base) # E: ndarray[Any, dtype[str_]] +reveal_type(a.copy()) # E: ndarray[Any, dtype[str_]] reveal_type(a.coords) # E: tuple[builtins.int] reveal_type(a.index) # E: int -reveal_type(iter(a)) # E: Iterator[numpy.str_] -reveal_type(next(a)) # E: numpy.str_ -reveal_type(a[0]) # E: numpy.str_ -reveal_type(a[[0, 1, 2]]) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(a[...]) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(a[:]) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(a.__array__()) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(a.__array__(np.dtype(np.float64))) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(iter(a)) # E: Iterator[str_] +reveal_type(next(a)) # E: str_ +reveal_type(a[0]) # E: str_ +reveal_type(a[[0, 1, 2]]) # E: ndarray[Any, dtype[str_]] +reveal_type(a[...]) # E: ndarray[Any, dtype[str_]] +reveal_type(a[:]) # E: ndarray[Any, dtype[str_]] +reveal_type(a.__array__()) # E: ndarray[Any, dtype[str_]] +reveal_type(a.__array__(np.dtype(np.float64))) # E: ndarray[Any, dtype[{float64}]] diff --git a/numpy/typing/tests/data/reveal/fromnumeric.pyi b/numpy/typing/tests/data/reveal/fromnumeric.pyi index bbcfbb85a..2ee1952cf 100644 --- a/numpy/typing/tests/data/reveal/fromnumeric.pyi +++ b/numpy/typing/tests/data/reveal/fromnumeric.pyi @@ -1,4 +1,4 @@ -"""Tests for :mod:`numpy.core.fromnumeric`.""" +"""Tests for :mod:`core.fromnumeric`.""" import numpy as np @@ -20,37 +20,37 @@ reveal_type(np.take(B, 0)) # E: Any reveal_type(np.take(A, [0])) # E: Any reveal_type(np.take(B, [0])) # E: Any -reveal_type(np.reshape(a, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.reshape(b, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.reshape(c, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.reshape(A, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.reshape(B, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.reshape(a, 1)) # E: ndarray[Any, Any] +reveal_type(np.reshape(b, 1)) # E: ndarray[Any, Any] +reveal_type(np.reshape(c, 1)) # E: ndarray[Any, Any] +reveal_type(np.reshape(A, 1)) # E: ndarray[Any, Any] +reveal_type(np.reshape(B, 1)) # E: ndarray[Any, Any] reveal_type(np.choose(a, [True, True])) # E: Any reveal_type(np.choose(A, [True, True])) # E: Any -reveal_type(np.repeat(a, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.repeat(b, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.repeat(c, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.repeat(A, 1)) # E: numpy.ndarray[Any, Any] -reveal_type(np.repeat(B, 1)) # E: numpy.ndarray[Any, Any] +reveal_type(np.repeat(a, 1)) # E: ndarray[Any, Any] +reveal_type(np.repeat(b, 1)) # E: ndarray[Any, Any] +reveal_type(np.repeat(c, 1)) # E: ndarray[Any, Any] +reveal_type(np.repeat(A, 1)) # E: ndarray[Any, Any] +reveal_type(np.repeat(B, 1)) # E: ndarray[Any, Any] # TODO: Add tests for np.put() -reveal_type(np.swapaxes(A, 0, 0)) # E: numpy.ndarray[Any, Any] -reveal_type(np.swapaxes(B, 0, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.swapaxes(A, 0, 0)) # E: ndarray[Any, Any] +reveal_type(np.swapaxes(B, 0, 0)) # E: ndarray[Any, Any] -reveal_type(np.transpose(a)) # E: numpy.ndarray[Any, Any] -reveal_type(np.transpose(b)) # E: numpy.ndarray[Any, Any] -reveal_type(np.transpose(c)) # E: numpy.ndarray[Any, Any] -reveal_type(np.transpose(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.transpose(B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.transpose(a)) # E: ndarray[Any, Any] +reveal_type(np.transpose(b)) # E: ndarray[Any, Any] +reveal_type(np.transpose(c)) # E: ndarray[Any, Any] +reveal_type(np.transpose(A)) # E: ndarray[Any, Any] +reveal_type(np.transpose(B)) # E: ndarray[Any, Any] -reveal_type(np.partition(a, 0, axis=None)) # E: numpy.ndarray[Any, Any] -reveal_type(np.partition(b, 0, axis=None)) # E: numpy.ndarray[Any, Any] -reveal_type(np.partition(c, 0, axis=None)) # E: numpy.ndarray[Any, Any] -reveal_type(np.partition(A, 0)) # E: numpy.ndarray[Any, Any] -reveal_type(np.partition(B, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.partition(a, 0, axis=None)) # E: ndarray[Any, Any] +reveal_type(np.partition(b, 0, axis=None)) # E: ndarray[Any, Any] +reveal_type(np.partition(c, 0, axis=None)) # E: ndarray[Any, Any] +reveal_type(np.partition(A, 0)) # E: ndarray[Any, Any] +reveal_type(np.partition(B, 0)) # E: ndarray[Any, Any] reveal_type(np.argpartition(a, 0)) # E: Any reveal_type(np.argpartition(b, 0)) # E: Any @@ -58,11 +58,11 @@ reveal_type(np.argpartition(c, 0)) # E: Any reveal_type(np.argpartition(A, 0)) # E: Any reveal_type(np.argpartition(B, 0)) # E: Any -reveal_type(np.sort(A, 0)) # E: numpy.ndarray[Any, Any] -reveal_type(np.sort(B, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.sort(A, 0)) # E: ndarray[Any, Any] +reveal_type(np.sort(B, 0)) # E: ndarray[Any, Any] -reveal_type(np.argsort(A, 0)) # E: numpy.ndarray[Any, Any] -reveal_type(np.argsort(B, 0)) # E: numpy.ndarray[Any, Any] +reveal_type(np.argsort(A, 0)) # E: ndarray[Any, Any] +reveal_type(np.argsort(B, 0)) # E: ndarray[Any, Any] reveal_type(np.argmax(A)) # E: {intp} reveal_type(np.argmax(B)) # E: {intp} @@ -76,38 +76,38 @@ reveal_type(np.argmin(B, axis=0)) # E: Any reveal_type(np.searchsorted(A[0], 0)) # E: {intp} reveal_type(np.searchsorted(B[0], 0)) # E: {intp} -reveal_type(np.searchsorted(A[0], [0])) # E: numpy.ndarray[Any, Any] -reveal_type(np.searchsorted(B[0], [0])) # E: numpy.ndarray[Any, Any] +reveal_type(np.searchsorted(A[0], [0])) # E: ndarray[Any, Any] +reveal_type(np.searchsorted(B[0], [0])) # E: ndarray[Any, Any] -reveal_type(np.resize(a, (5, 5))) # E: numpy.ndarray[Any, Any] -reveal_type(np.resize(b, (5, 5))) # E: numpy.ndarray[Any, Any] -reveal_type(np.resize(c, (5, 5))) # E: numpy.ndarray[Any, Any] -reveal_type(np.resize(A, (5, 5))) # E: numpy.ndarray[Any, Any] -reveal_type(np.resize(B, (5, 5))) # E: numpy.ndarray[Any, Any] +reveal_type(np.resize(a, (5, 5))) # E: ndarray[Any, Any] +reveal_type(np.resize(b, (5, 5))) # E: ndarray[Any, Any] +reveal_type(np.resize(c, (5, 5))) # E: ndarray[Any, Any] +reveal_type(np.resize(A, (5, 5))) # E: ndarray[Any, Any] +reveal_type(np.resize(B, (5, 5))) # E: ndarray[Any, Any] -reveal_type(np.squeeze(a)) # E: numpy.bool_ +reveal_type(np.squeeze(a)) # E: bool_ reveal_type(np.squeeze(b)) # E: {float32} -reveal_type(np.squeeze(c)) # E: numpy.ndarray[Any, Any] -reveal_type(np.squeeze(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.squeeze(B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.squeeze(c)) # E: ndarray[Any, Any] +reveal_type(np.squeeze(A)) # E: ndarray[Any, Any] +reveal_type(np.squeeze(B)) # E: ndarray[Any, Any] -reveal_type(np.diagonal(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.diagonal(B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.diagonal(A)) # E: ndarray[Any, Any] +reveal_type(np.diagonal(B)) # E: ndarray[Any, Any] reveal_type(np.trace(A)) # E: Any reveal_type(np.trace(B)) # E: Any -reveal_type(np.ravel(a)) # E: numpy.ndarray[Any, Any] -reveal_type(np.ravel(b)) # E: numpy.ndarray[Any, Any] -reveal_type(np.ravel(c)) # E: numpy.ndarray[Any, Any] -reveal_type(np.ravel(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.ravel(B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.ravel(a)) # E: ndarray[Any, Any] +reveal_type(np.ravel(b)) # E: ndarray[Any, Any] +reveal_type(np.ravel(c)) # E: ndarray[Any, Any] +reveal_type(np.ravel(A)) # E: ndarray[Any, Any] +reveal_type(np.ravel(B)) # E: ndarray[Any, Any] -reveal_type(np.nonzero(a)) # E: tuple[numpy.ndarray[Any, Any]] -reveal_type(np.nonzero(b)) # E: tuple[numpy.ndarray[Any, Any]] -reveal_type(np.nonzero(c)) # E: tuple[numpy.ndarray[Any, Any]] -reveal_type(np.nonzero(A)) # E: tuple[numpy.ndarray[Any, Any]] -reveal_type(np.nonzero(B)) # E: tuple[numpy.ndarray[Any, Any]] +reveal_type(np.nonzero(a)) # E: tuple[ndarray[Any, Any]] +reveal_type(np.nonzero(b)) # E: tuple[ndarray[Any, Any]] +reveal_type(np.nonzero(c)) # E: tuple[ndarray[Any, Any]] +reveal_type(np.nonzero(A)) # E: tuple[ndarray[Any, Any]] +reveal_type(np.nonzero(B)) # E: tuple[ndarray[Any, Any]] reveal_type(np.shape(a)) # E: tuple[builtins.int] reveal_type(np.shape(b)) # E: tuple[builtins.int] @@ -115,11 +115,11 @@ reveal_type(np.shape(c)) # E: tuple[builtins.int] reveal_type(np.shape(A)) # E: tuple[builtins.int] reveal_type(np.shape(B)) # E: tuple[builtins.int] -reveal_type(np.compress([True], a)) # E: numpy.ndarray[Any, Any] -reveal_type(np.compress([True], b)) # E: numpy.ndarray[Any, Any] -reveal_type(np.compress([True], c)) # E: numpy.ndarray[Any, Any] -reveal_type(np.compress([True], A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.compress([True], B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.compress([True], a)) # E: ndarray[Any, Any] +reveal_type(np.compress([True], b)) # E: ndarray[Any, Any] +reveal_type(np.compress([True], c)) # E: ndarray[Any, Any] +reveal_type(np.compress([True], A)) # E: ndarray[Any, Any] +reveal_type(np.compress([True], B)) # E: ndarray[Any, Any] reveal_type(np.clip(a, 0, 1.0)) # E: Any reveal_type(np.clip(b, -1, 1)) # E: Any @@ -135,31 +135,31 @@ reveal_type(np.sum(B)) # E: Any reveal_type(np.sum(A, axis=0)) # E: Any reveal_type(np.sum(B, axis=0)) # E: Any -reveal_type(np.all(a)) # E: numpy.bool_ -reveal_type(np.all(b)) # E: numpy.bool_ -reveal_type(np.all(c)) # E: numpy.bool_ -reveal_type(np.all(A)) # E: numpy.bool_ -reveal_type(np.all(B)) # E: numpy.bool_ +reveal_type(np.all(a)) # E: bool_ +reveal_type(np.all(b)) # E: bool_ +reveal_type(np.all(c)) # E: bool_ +reveal_type(np.all(A)) # E: bool_ +reveal_type(np.all(B)) # E: bool_ reveal_type(np.all(A, axis=0)) # E: Any reveal_type(np.all(B, axis=0)) # E: Any reveal_type(np.all(A, keepdims=True)) # E: Any reveal_type(np.all(B, keepdims=True)) # E: Any -reveal_type(np.any(a)) # E: numpy.bool_ -reveal_type(np.any(b)) # E: numpy.bool_ -reveal_type(np.any(c)) # E: numpy.bool_ -reveal_type(np.any(A)) # E: numpy.bool_ -reveal_type(np.any(B)) # E: numpy.bool_ +reveal_type(np.any(a)) # E: bool_ +reveal_type(np.any(b)) # E: bool_ +reveal_type(np.any(c)) # E: bool_ +reveal_type(np.any(A)) # E: bool_ +reveal_type(np.any(B)) # E: bool_ reveal_type(np.any(A, axis=0)) # E: Any reveal_type(np.any(B, axis=0)) # E: Any reveal_type(np.any(A, keepdims=True)) # E: Any reveal_type(np.any(B, keepdims=True)) # E: Any -reveal_type(np.cumsum(a)) # E: numpy.ndarray[Any, Any] -reveal_type(np.cumsum(b)) # E: numpy.ndarray[Any, Any] -reveal_type(np.cumsum(c)) # E: numpy.ndarray[Any, Any] -reveal_type(np.cumsum(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.cumsum(B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumsum(a)) # E: ndarray[Any, Any] +reveal_type(np.cumsum(b)) # E: ndarray[Any, Any] +reveal_type(np.cumsum(c)) # E: ndarray[Any, Any] +reveal_type(np.cumsum(A)) # E: ndarray[Any, Any] +reveal_type(np.cumsum(B)) # E: ndarray[Any, Any] reveal_type(np.ptp(a)) # E: Any reveal_type(np.ptp(b)) # E: Any @@ -203,11 +203,11 @@ reveal_type(np.prod(B, keepdims=True)) # E: Any reveal_type(np.prod(b, out=d)) # E: Any reveal_type(np.prod(B, out=d)) # E: Any -reveal_type(np.cumprod(a)) # E: numpy.ndarray[Any, Any] -reveal_type(np.cumprod(b)) # E: numpy.ndarray[Any, Any] -reveal_type(np.cumprod(c)) # E: numpy.ndarray[Any, Any] -reveal_type(np.cumprod(A)) # E: numpy.ndarray[Any, Any] -reveal_type(np.cumprod(B)) # E: numpy.ndarray[Any, Any] +reveal_type(np.cumprod(a)) # E: ndarray[Any, Any] +reveal_type(np.cumprod(b)) # E: ndarray[Any, Any] +reveal_type(np.cumprod(c)) # E: ndarray[Any, Any] +reveal_type(np.cumprod(A)) # E: ndarray[Any, Any] +reveal_type(np.cumprod(B)) # E: ndarray[Any, Any] reveal_type(np.ndim(a)) # E: int reveal_type(np.ndim(b)) # E: int diff --git a/numpy/typing/tests/data/reveal/getlimits.pyi b/numpy/typing/tests/data/reveal/getlimits.pyi index 90bcb06c8..1614b577e 100644 --- a/numpy/typing/tests/data/reveal/getlimits.pyi +++ b/numpy/typing/tests/data/reveal/getlimits.pyi @@ -10,12 +10,12 @@ u4: np.uint32 finfo_f8: np.finfo[np.float64] iinfo_i8: np.iinfo[np.int64] -reveal_type(np.finfo(f)) # E: numpy.finfo[{double}] -reveal_type(np.finfo(f8)) # E: numpy.finfo[{float64}] -reveal_type(np.finfo(c8)) # E: numpy.finfo[{float32}] -reveal_type(np.finfo('f2')) # E: numpy.finfo[numpy.floating[Any]] +reveal_type(np.finfo(f)) # E: finfo[{double}] +reveal_type(np.finfo(f8)) # E: finfo[{float64}] +reveal_type(np.finfo(c8)) # E: finfo[{float32}] +reveal_type(np.finfo('f2')) # E: finfo[floating[Any]] -reveal_type(finfo_f8.dtype) # E: numpy.dtype[{float64}] +reveal_type(finfo_f8.dtype) # E: dtype[{float64}] reveal_type(finfo_f8.bits) # E: int reveal_type(finfo_f8.eps) # E: {float64} reveal_type(finfo_f8.epsneg) # E: {float64} @@ -39,7 +39,7 @@ reveal_type(np.iinfo(i8)) # E: iinfo[{int64}] reveal_type(np.iinfo(u4)) # E: iinfo[{uint32}] reveal_type(np.iinfo('i2')) # E: iinfo[Any] -reveal_type(iinfo_i8.dtype) # E: numpy.dtype[{int64}] +reveal_type(iinfo_i8.dtype) # E: dtype[{int64}] reveal_type(iinfo_i8.kind) # E: str reveal_type(iinfo_i8.bits) # E: int reveal_type(iinfo_i8.key) # E: str diff --git a/numpy/typing/tests/data/reveal/histograms.pyi b/numpy/typing/tests/data/reveal/histograms.pyi index 55fa9518f..d96e44f09 100644 --- a/numpy/typing/tests/data/reveal/histograms.pyi +++ b/numpy/typing/tests/data/reveal/histograms.pyi @@ -4,16 +4,16 @@ import numpy.typing as npt AR_i8: npt.NDArray[np.int64] AR_f8: npt.NDArray[np.float64] -reveal_type(np.histogram_bin_edges(AR_i8, bins="auto")) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.histogram_bin_edges(AR_i8, bins="rice", range=(0, 3))) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.histogram_bin_edges(AR_i8, bins="scott", weights=AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.histogram_bin_edges(AR_i8, bins="auto")) # E: ndarray[Any, dtype[Any]] +reveal_type(np.histogram_bin_edges(AR_i8, bins="rice", range=(0, 3))) # E: ndarray[Any, dtype[Any]] +reveal_type(np.histogram_bin_edges(AR_i8, bins="scott", weights=AR_f8)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.histogram(AR_i8, bins="auto")) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[Any]]] -reveal_type(np.histogram(AR_i8, bins="rice", range=(0, 3))) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[Any]]] -reveal_type(np.histogram(AR_i8, bins="scott", weights=AR_f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[Any]]] -reveal_type(np.histogram(AR_f8, bins=1, density=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.histogram(AR_i8, bins="auto")) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]] +reveal_type(np.histogram(AR_i8, bins="rice", range=(0, 3))) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]] +reveal_type(np.histogram(AR_i8, bins="scott", weights=AR_f8)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]] +reveal_type(np.histogram(AR_f8, bins=1, density=True)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]] -reveal_type(np.histogramdd(AR_i8, bins=[1])) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], builtins.list[numpy.ndarray[Any, numpy.dtype[Any]]]] -reveal_type(np.histogramdd(AR_i8, range=[(0, 3)])) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], builtins.list[numpy.ndarray[Any, numpy.dtype[Any]]]] -reveal_type(np.histogramdd(AR_i8, weights=AR_f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], builtins.list[numpy.ndarray[Any, numpy.dtype[Any]]]] -reveal_type(np.histogramdd(AR_f8, density=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], builtins.list[numpy.ndarray[Any, numpy.dtype[Any]]]] +reveal_type(np.histogramdd(AR_i8, bins=[1])) # E: Tuple[ndarray[Any, dtype[Any]], builtins.list[ndarray[Any, dtype[Any]]]] +reveal_type(np.histogramdd(AR_i8, range=[(0, 3)])) # E: Tuple[ndarray[Any, dtype[Any]], builtins.list[ndarray[Any, dtype[Any]]]] +reveal_type(np.histogramdd(AR_i8, weights=AR_f8)) # E: Tuple[ndarray[Any, dtype[Any]], builtins.list[ndarray[Any, dtype[Any]]]] +reveal_type(np.histogramdd(AR_f8, density=True)) # E: Tuple[ndarray[Any, dtype[Any]], builtins.list[ndarray[Any, dtype[Any]]]] diff --git a/numpy/typing/tests/data/reveal/index_tricks.pyi b/numpy/typing/tests/data/reveal/index_tricks.pyi index 863d60220..cee4d8c3e 100644 --- a/numpy/typing/tests/data/reveal/index_tricks.pyi +++ b/numpy/typing/tests/data/reveal/index_tricks.pyi @@ -8,41 +8,41 @@ AR_LIKE_U: List[str] AR_i8: np.ndarray[Any, np.dtype[np.int64]] -reveal_type(np.ndenumerate(AR_i8)) # E: numpy.ndenumerate[{int64}] -reveal_type(np.ndenumerate(AR_LIKE_f)) # E: numpy.ndenumerate[{double}] -reveal_type(np.ndenumerate(AR_LIKE_U)) # E: numpy.ndenumerate[numpy.str_] +reveal_type(np.ndenumerate(AR_i8)) # E: ndenumerate[{int64}] +reveal_type(np.ndenumerate(AR_LIKE_f)) # E: ndenumerate[{double}] +reveal_type(np.ndenumerate(AR_LIKE_U)) # E: ndenumerate[str_] -reveal_type(np.ndenumerate(AR_i8).iter) # E: numpy.flatiter[numpy.ndarray[Any, numpy.dtype[{int64}]]] -reveal_type(np.ndenumerate(AR_LIKE_f).iter) # E: numpy.flatiter[numpy.ndarray[Any, numpy.dtype[{double}]]] -reveal_type(np.ndenumerate(AR_LIKE_U).iter) # E: numpy.flatiter[numpy.ndarray[Any, numpy.dtype[numpy.str_]]] +reveal_type(np.ndenumerate(AR_i8).iter) # E: flatiter[ndarray[Any, dtype[{int64}]]] +reveal_type(np.ndenumerate(AR_LIKE_f).iter) # E: flatiter[ndarray[Any, dtype[{double}]]] +reveal_type(np.ndenumerate(AR_LIKE_U).iter) # E: flatiter[ndarray[Any, dtype[str_]]] reveal_type(next(np.ndenumerate(AR_i8))) # E: Tuple[builtins.tuple[builtins.int], {int64}] reveal_type(next(np.ndenumerate(AR_LIKE_f))) # E: Tuple[builtins.tuple[builtins.int], {double}] -reveal_type(next(np.ndenumerate(AR_LIKE_U))) # E: Tuple[builtins.tuple[builtins.int], numpy.str_] +reveal_type(next(np.ndenumerate(AR_LIKE_U))) # E: Tuple[builtins.tuple[builtins.int], str_] reveal_type(iter(np.ndenumerate(AR_i8))) # E: Iterator[Tuple[builtins.tuple[builtins.int], {int64}]] reveal_type(iter(np.ndenumerate(AR_LIKE_f))) # E: Iterator[Tuple[builtins.tuple[builtins.int], {double}]] -reveal_type(iter(np.ndenumerate(AR_LIKE_U))) # E: Iterator[Tuple[builtins.tuple[builtins.int], numpy.str_]] +reveal_type(iter(np.ndenumerate(AR_LIKE_U))) # E: Iterator[Tuple[builtins.tuple[builtins.int], str_]] reveal_type(iter(np.ndindex(1, 2, 3))) # E: Iterator[builtins.tuple[builtins.int]] reveal_type(next(np.ndindex(1, 2, 3))) # E: builtins.tuple[builtins.int] -reveal_type(np.unravel_index([22, 41, 37], (7, 6))) # E: tuple[numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.unravel_index([31, 41, 13], (7, 6), order="F")) # E: tuple[numpy.ndarray[Any, numpy.dtype[{intp}]]] +reveal_type(np.unravel_index([22, 41, 37], (7, 6))) # E: tuple[ndarray[Any, dtype[{intp}]]] +reveal_type(np.unravel_index([31, 41, 13], (7, 6), order="F")) # E: tuple[ndarray[Any, dtype[{intp}]]] reveal_type(np.unravel_index(1621, (6, 7, 8, 9))) # E: tuple[{intp}] -reveal_type(np.ravel_multi_index([[1]], (7, 6))) # E: numpy.ndarray[Any, numpy.dtype[{intp}]] +reveal_type(np.ravel_multi_index([[1]], (7, 6))) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6))) # E: {intp} reveal_type(np.ravel_multi_index(AR_LIKE_i, (7, 6), order="F")) # E: {intp} reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 6), mode="clip")) # E: {intp} reveal_type(np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=("clip", "wrap"))) # E: {intp} reveal_type(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9))) # E: {intp} -reveal_type(np.mgrid[1:1:2]) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.mgrid[1:1:2, None:10]) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.mgrid[1:1:2]) # E: ndarray[Any, dtype[Any]] +reveal_type(np.mgrid[1:1:2, None:10]) # E: ndarray[Any, dtype[Any]] -reveal_type(np.ogrid[1:1:2]) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] -reveal_type(np.ogrid[1:1:2, None:10]) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.ogrid[1:1:2]) # E: list[ndarray[Any, dtype[Any]]] +reveal_type(np.ogrid[1:1:2, None:10]) # E: list[ndarray[Any, dtype[Any]]] reveal_type(np.index_exp[0:1]) # E: Tuple[builtins.slice] reveal_type(np.index_exp[0:1, None:3]) # E: Tuple[builtins.slice, builtins.slice] @@ -52,13 +52,13 @@ reveal_type(np.s_[0:1]) # E: builtins.slice reveal_type(np.s_[0:1, None:3]) # E: Tuple[builtins.slice, builtins.slice] reveal_type(np.s_[0, 0:1, ..., [0, 1, 3]]) # E: Tuple[Literal[0]?, builtins.slice, builtins.ellipsis, builtins.list[builtins.int]] -reveal_type(np.ix_(AR_LIKE_b)) # E: tuple[numpy.ndarray[Any, numpy.dtype[numpy.bool_]]] -reveal_type(np.ix_(AR_LIKE_i, AR_LIKE_f)) # E: tuple[numpy.ndarray[Any, numpy.dtype[{double}]]] -reveal_type(np.ix_(AR_i8)) # E: tuple[numpy.ndarray[Any, numpy.dtype[{int64}]]] +reveal_type(np.ix_(AR_LIKE_b)) # E: tuple[ndarray[Any, dtype[bool_]]] +reveal_type(np.ix_(AR_LIKE_i, AR_LIKE_f)) # E: tuple[ndarray[Any, dtype[{double}]]] +reveal_type(np.ix_(AR_i8)) # E: tuple[ndarray[Any, dtype[{int64}]]] reveal_type(np.fill_diagonal(AR_i8, 5)) # E: None -reveal_type(np.diag_indices(4)) # E: tuple[numpy.ndarray[Any, numpy.dtype[{int_}]]] -reveal_type(np.diag_indices(2, 3)) # E: tuple[numpy.ndarray[Any, numpy.dtype[{int_}]]] +reveal_type(np.diag_indices(4)) # E: tuple[ndarray[Any, dtype[{int_}]]] +reveal_type(np.diag_indices(2, 3)) # E: tuple[ndarray[Any, dtype[{int_}]]] -reveal_type(np.diag_indices_from(AR_i8)) # E: tuple[numpy.ndarray[Any, numpy.dtype[{int_}]]] +reveal_type(np.diag_indices_from(AR_i8)) # E: tuple[ndarray[Any, dtype[{int_}]]] diff --git a/numpy/typing/tests/data/reveal/lib_function_base.pyi b/numpy/typing/tests/data/reveal/lib_function_base.pyi index bced08894..854b955b4 100644 --- a/numpy/typing/tests/data/reveal/lib_function_base.pyi +++ b/numpy/typing/tests/data/reveal/lib_function_base.pyi @@ -26,9 +26,9 @@ reveal_type(vectorized_func.signature) # E: Union[None, builtins.str] reveal_type(vectorized_func.otypes) # E: Union[None, builtins.str] reveal_type(vectorized_func.excluded) # E: set[Union[builtins.int, builtins.str]] reveal_type(vectorized_func.__doc__) # E: Union[None, builtins.str] -reveal_type(vectorized_func([1])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.vectorize(int)) # E: numpy.vectorize -reveal_type(np.vectorize( # E: numpy.vectorize +reveal_type(vectorized_func([1])) # E: ndarray[Any, dtype[Any]] +reveal_type(np.vectorize(int)) # E: vectorize +reveal_type(np.vectorize( # E: vectorize int, otypes="i", doc="doc", excluded=(), cache=True, signature=None )) @@ -36,63 +36,63 @@ reveal_type(np.add_newdoc("__main__", "blabla", doc="test doc")) # E: None reveal_type(np.add_newdoc("__main__", "blabla", doc=("meth", "test doc"))) # E: None reveal_type(np.add_newdoc("__main__", "blabla", doc=[("meth", "test doc")])) # E: None -reveal_type(np.rot90(AR_f8, k=2)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.rot90(AR_LIKE_f8, axes=(0, 1))) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.rot90(AR_f8, k=2)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.rot90(AR_LIKE_f8, axes=(0, 1))) # E: ndarray[Any, dtype[Any]] reveal_type(np.flip(f8)) # E: {float64} reveal_type(np.flip(1.0)) # E: Any -reveal_type(np.flip(AR_f8, axis=(0, 1))) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.flip(AR_LIKE_f8, axis=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.flip(AR_f8, axis=(0, 1))) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.flip(AR_LIKE_f8, axis=0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.iterable(1)) # E: bool reveal_type(np.iterable([1])) # E: bool -reveal_type(np.average(AR_f8)) # E: numpy.floating[Any] -reveal_type(np.average(AR_f8, weights=AR_c16)) # E: numpy.complexfloating[Any, Any] +reveal_type(np.average(AR_f8)) # E: floating[Any] +reveal_type(np.average(AR_f8, weights=AR_c16)) # E: complexfloating[Any, Any] reveal_type(np.average(AR_O)) # E: Any -reveal_type(np.average(AR_f8, returned=True)) # E: Tuple[numpy.floating[Any], numpy.floating[Any]] -reveal_type(np.average(AR_f8, weights=AR_c16, returned=True)) # E: Tuple[numpy.complexfloating[Any, Any], numpy.complexfloating[Any, Any]] +reveal_type(np.average(AR_f8, returned=True)) # E: Tuple[floating[Any], floating[Any]] +reveal_type(np.average(AR_f8, weights=AR_c16, returned=True)) # E: Tuple[complexfloating[Any, Any], complexfloating[Any, Any]] reveal_type(np.average(AR_O, returned=True)) # E: Tuple[Any, Any] reveal_type(np.average(AR_f8, axis=0)) # E: Any reveal_type(np.average(AR_f8, axis=0, returned=True)) # E: Tuple[Any, Any] -reveal_type(np.asarray_chkfinite(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.asarray_chkfinite(AR_LIKE_f8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.asarray_chkfinite(AR_f8, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.asarray_chkfinite(AR_f8, dtype=float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.asarray_chkfinite(AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.asarray_chkfinite(AR_LIKE_f8)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.asarray_chkfinite(AR_f8, dtype=np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.asarray_chkfinite(AR_f8, dtype=float)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.piecewise(AR_f8, AR_b, [func])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.piecewise(AR_LIKE_f8, AR_b, [func])) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.piecewise(AR_f8, AR_b, [func])) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.piecewise(AR_LIKE_f8, AR_b, [func])) # E: ndarray[Any, dtype[Any]] -reveal_type(np.select([AR_f8], [AR_f8])) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.select([AR_f8], [AR_f8])) # E: ndarray[Any, dtype[Any]] -reveal_type(np.copy(AR_LIKE_f8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.copy(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.copy(CHAR_AR_U)) # E: numpy.ndarray[Any, Any] -reveal_type(np.copy(CHAR_AR_U, "K", subok=True)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.copy(CHAR_AR_U, subok=True)) # E: numpy.chararray[Any, numpy.dtype[numpy.str_]] +reveal_type(np.copy(AR_LIKE_f8)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.copy(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.copy(CHAR_AR_U)) # E: ndarray[Any, Any] +reveal_type(np.copy(CHAR_AR_U, "K", subok=True)) # E: chararray[Any, dtype[str_]] +reveal_type(np.copy(CHAR_AR_U, subok=True)) # E: chararray[Any, dtype[str_]] reveal_type(np.gradient(AR_f8, axis=None)) # E: Any reveal_type(np.gradient(AR_LIKE_f8, edge_order=2)) # E: Any reveal_type(np.diff("bob", n=0)) # E: str -reveal_type(np.diff(AR_f8, axis=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.diff(AR_LIKE_f8, prepend=1.5)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.diff(AR_f8, axis=0)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.diff(AR_LIKE_f8, prepend=1.5)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.angle(AR_f8)) # E: numpy.floating[Any] -reveal_type(np.angle(AR_c16, deg=True)) # E: numpy.complexfloating[Any, Any] +reveal_type(np.angle(AR_f8)) # E: floating[Any] +reveal_type(np.angle(AR_c16, deg=True)) # E: complexfloating[Any, Any] reveal_type(np.angle(AR_O)) # E: Any -reveal_type(np.unwrap(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.unwrap(AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(np.unwrap(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.unwrap(AR_O)) # E: ndarray[Any, dtype[object_]] -reveal_type(np.sort_complex(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] +reveal_type(np.sort_complex(AR_f8)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] -reveal_type(np.trim_zeros(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.trim_zeros(AR_f8)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.trim_zeros(AR_LIKE_f8)) # E: list[builtins.float] -reveal_type(np.extract(AR_i8, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.extract(AR_i8, AR_LIKE_f8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.extract(AR_i8, AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.extract(AR_i8, AR_LIKE_f8)) # E: ndarray[Any, dtype[Any]] reveal_type(np.place(AR_f8, mask=AR_i8, vals=5.0)) # E: None @@ -100,81 +100,81 @@ reveal_type(np.disp(1, linefeed=True)) # E: None with open("test", "w") as f: reveal_type(np.disp("message", device=f)) # E: None -reveal_type(np.cov(AR_f8, bias=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.cov(AR_f8, AR_c16, ddof=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.cov(AR_f8, aweights=AR_f8, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[{float32}]] -reveal_type(np.cov(AR_f8, fweights=AR_f8, dtype=float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.cov(AR_f8, bias=True)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.cov(AR_f8, AR_c16, ddof=1)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.cov(AR_f8, aweights=AR_f8, dtype=np.float32)) # E: ndarray[Any, dtype[{float32}]] +reveal_type(np.cov(AR_f8, fweights=AR_f8, dtype=float)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.corrcoef(AR_f8, rowvar=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.corrcoef(AR_f8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.corrcoef(AR_f8, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[{float32}]] -reveal_type(np.corrcoef(AR_f8, dtype=float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.corrcoef(AR_f8, rowvar=True)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.corrcoef(AR_f8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.corrcoef(AR_f8, dtype=np.float32)) # E: ndarray[Any, dtype[{float32}]] +reveal_type(np.corrcoef(AR_f8, dtype=float)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.blackman(5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.bartlett(6)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.hanning(4.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.hamming(0)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.i0(AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.kaiser(4, 5.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(np.blackman(5)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.bartlett(6)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.hanning(4.5)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.hamming(0)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.i0(AR_i8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.kaiser(4, 5.9)) # E: ndarray[Any, dtype[floating[Any]]] -reveal_type(np.sinc(1.0)) # E: numpy.floating[Any] -reveal_type(np.sinc(1j)) # E: numpy.complexfloating[Any, Any] -reveal_type(np.sinc(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.sinc(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] +reveal_type(np.sinc(1.0)) # E: floating[Any] +reveal_type(np.sinc(1j)) # E: complexfloating[Any, Any] +reveal_type(np.sinc(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.sinc(AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] reveal_type(np.msort(CHAR_AR_U)) # E: Any -reveal_type(np.msort(AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.msort(AR_LIKE_f8)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.msort(AR_U)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.msort(AR_LIKE_f8)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.median(AR_f8, keepdims=False)) # E: numpy.floating[Any] -reveal_type(np.median(AR_c16, overwrite_input=True)) # E: numpy.complexfloating[Any, Any] -reveal_type(np.median(AR_m)) # E: numpy.timedelta64 +reveal_type(np.median(AR_f8, keepdims=False)) # E: floating[Any] +reveal_type(np.median(AR_c16, overwrite_input=True)) # E: complexfloating[Any, Any] +reveal_type(np.median(AR_m)) # E: timedelta64 reveal_type(np.median(AR_O)) # E: Any reveal_type(np.median(AR_f8, keepdims=True)) # E: Any reveal_type(np.median(AR_c16, axis=0)) # E: Any -reveal_type(np.median(AR_LIKE_f8, out=AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[{complex128}]] +reveal_type(np.median(AR_LIKE_f8, out=AR_c16)) # E: ndarray[Any, dtype[{complex128}]] reveal_type(np.add_newdoc_ufunc(np.add, "docstring")) # E: None -reveal_type(np.percentile(AR_f8, 50)) # E: numpy.floating[Any] -reveal_type(np.percentile(AR_c16, 50)) # E: numpy.complexfloating[Any, Any] -reveal_type(np.percentile(AR_m, 50)) # E: numpy.timedelta64 -reveal_type(np.percentile(AR_M, 50, overwrite_input=True)) # E: numpy.datetime64 +reveal_type(np.percentile(AR_f8, 50)) # E: floating[Any] +reveal_type(np.percentile(AR_c16, 50)) # E: complexfloating[Any, Any] +reveal_type(np.percentile(AR_m, 50)) # E: timedelta64 +reveal_type(np.percentile(AR_M, 50, overwrite_input=True)) # E: datetime64 reveal_type(np.percentile(AR_O, 50)) # E: Any -reveal_type(np.percentile(AR_f8, [50])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.percentile(AR_c16, [50])) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.percentile(AR_m, [50])) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(np.percentile(AR_M, [50], interpolation="nearest")) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(np.percentile(AR_O, [50])) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(np.percentile(AR_f8, [50])) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.percentile(AR_c16, [50])) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.percentile(AR_m, [50])) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(np.percentile(AR_M, [50], interpolation="nearest")) # E: ndarray[Any, dtype[datetime64]] +reveal_type(np.percentile(AR_O, [50])) # E: ndarray[Any, dtype[object_]] reveal_type(np.percentile(AR_f8, [50], keepdims=True)) # E: Any reveal_type(np.percentile(AR_f8, [50], axis=[1])) # E: Any -reveal_type(np.percentile(AR_f8, [50], out=AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[{complex128}]] +reveal_type(np.percentile(AR_f8, [50], out=AR_c16)) # E: ndarray[Any, dtype[{complex128}]] -reveal_type(np.quantile(AR_f8, 0.5)) # E: numpy.floating[Any] -reveal_type(np.quantile(AR_c16, 0.5)) # E: numpy.complexfloating[Any, Any] -reveal_type(np.quantile(AR_m, 0.5)) # E: numpy.timedelta64 -reveal_type(np.quantile(AR_M, 0.5, overwrite_input=True)) # E: numpy.datetime64 +reveal_type(np.quantile(AR_f8, 0.5)) # E: floating[Any] +reveal_type(np.quantile(AR_c16, 0.5)) # E: complexfloating[Any, Any] +reveal_type(np.quantile(AR_m, 0.5)) # E: timedelta64 +reveal_type(np.quantile(AR_M, 0.5, overwrite_input=True)) # E: datetime64 reveal_type(np.quantile(AR_O, 0.5)) # E: Any -reveal_type(np.quantile(AR_f8, [0.5])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.quantile(AR_c16, [0.5])) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.quantile(AR_m, [0.5])) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(np.quantile(AR_M, [0.5], interpolation="nearest")) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(np.quantile(AR_O, [0.5])) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(np.quantile(AR_f8, [0.5])) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.quantile(AR_c16, [0.5])) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.quantile(AR_m, [0.5])) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(np.quantile(AR_M, [0.5], interpolation="nearest")) # E: ndarray[Any, dtype[datetime64]] +reveal_type(np.quantile(AR_O, [0.5])) # E: ndarray[Any, dtype[object_]] reveal_type(np.quantile(AR_f8, [0.5], keepdims=True)) # E: Any reveal_type(np.quantile(AR_f8, [0.5], axis=[1])) # E: Any -reveal_type(np.quantile(AR_f8, [0.5], out=AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[{complex128}]] +reveal_type(np.quantile(AR_f8, [0.5], out=AR_c16)) # E: ndarray[Any, dtype[{complex128}]] -reveal_type(np.meshgrid(AR_f8, AR_i8, copy=False)) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] -reveal_type(np.meshgrid(AR_f8, AR_i8, AR_c16, indexing="ij")) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.meshgrid(AR_f8, AR_i8, copy=False)) # E: list[ndarray[Any, dtype[Any]]] +reveal_type(np.meshgrid(AR_f8, AR_i8, AR_c16, indexing="ij")) # E: list[ndarray[Any, dtype[Any]]] -reveal_type(np.delete(AR_f8, np.s_[:5])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.delete(AR_LIKE_f8, [0, 4, 9], axis=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.delete(AR_f8, np.s_[:5])) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.delete(AR_LIKE_f8, [0, 4, 9], axis=0)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.insert(AR_f8, np.s_[:5], 5)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.insert(AR_LIKE_f8, [0, 4, 9], [0.5, 9.2, 7], axis=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.insert(AR_f8, np.s_[:5], 5)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.insert(AR_LIKE_f8, [0, 4, 9], [0.5, 9.2, 7], axis=0)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.append(AR_f8, 5)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.append(AR_LIKE_f8, 1j, axis=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.append(AR_f8, 5)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.append(AR_LIKE_f8, 1j, axis=0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.digitize(4.5, [1])) # E: {intp} -reveal_type(np.digitize(AR_f8, [1, 2, 3])) # E: numpy.ndarray[Any, numpy.dtype[{intp}]] +reveal_type(np.digitize(AR_f8, [1, 2, 3])) # E: ndarray[Any, dtype[{intp}]] diff --git a/numpy/typing/tests/data/reveal/lib_polynomial.pyi b/numpy/typing/tests/data/reveal/lib_polynomial.pyi index 5a4a3c424..de8950724 100644 --- a/numpy/typing/tests/data/reveal/lib_polynomial.pyi +++ b/numpy/typing/tests/data/reveal/lib_polynomial.pyi @@ -13,99 +13,99 @@ poly_obj: np.poly1d reveal_type(poly_obj.variable) # E: str reveal_type(poly_obj.order) # E: int reveal_type(poly_obj.o) # E: int -reveal_type(poly_obj.roots) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(poly_obj.r) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(poly_obj.coeffs) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(poly_obj.c) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(poly_obj.coef) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(poly_obj.coefficients) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(poly_obj.roots) # E: ndarray[Any, dtype[Any]] +reveal_type(poly_obj.r) # E: ndarray[Any, dtype[Any]] +reveal_type(poly_obj.coeffs) # E: ndarray[Any, dtype[Any]] +reveal_type(poly_obj.c) # E: ndarray[Any, dtype[Any]] +reveal_type(poly_obj.coef) # E: ndarray[Any, dtype[Any]] +reveal_type(poly_obj.coefficients) # E: ndarray[Any, dtype[Any]] reveal_type(poly_obj.__hash__) # E: None reveal_type(poly_obj(1)) # E: Any -reveal_type(poly_obj([1])) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(poly_obj(poly_obj)) # E: numpy.poly1d +reveal_type(poly_obj([1])) # E: ndarray[Any, dtype[Any]] +reveal_type(poly_obj(poly_obj)) # E: poly1d reveal_type(len(poly_obj)) # E: int -reveal_type(-poly_obj) # E: numpy.poly1d -reveal_type(+poly_obj) # E: numpy.poly1d - -reveal_type(poly_obj * 5) # E: numpy.poly1d -reveal_type(5 * poly_obj) # E: numpy.poly1d -reveal_type(poly_obj + 5) # E: numpy.poly1d -reveal_type(5 + poly_obj) # E: numpy.poly1d -reveal_type(poly_obj - 5) # E: numpy.poly1d -reveal_type(5 - poly_obj) # E: numpy.poly1d -reveal_type(poly_obj**1) # E: numpy.poly1d -reveal_type(poly_obj**1.0) # E: numpy.poly1d -reveal_type(poly_obj / 5) # E: numpy.poly1d -reveal_type(5 / poly_obj) # E: numpy.poly1d +reveal_type(-poly_obj) # E: poly1d +reveal_type(+poly_obj) # E: poly1d + +reveal_type(poly_obj * 5) # E: poly1d +reveal_type(5 * poly_obj) # E: poly1d +reveal_type(poly_obj + 5) # E: poly1d +reveal_type(5 + poly_obj) # E: poly1d +reveal_type(poly_obj - 5) # E: poly1d +reveal_type(5 - poly_obj) # E: poly1d +reveal_type(poly_obj**1) # E: poly1d +reveal_type(poly_obj**1.0) # E: poly1d +reveal_type(poly_obj / 5) # E: poly1d +reveal_type(5 / poly_obj) # E: poly1d reveal_type(poly_obj[0]) # E: Any poly_obj[0] = 5 reveal_type(iter(poly_obj)) # E: Iterator[Any] -reveal_type(poly_obj.deriv()) # E: numpy.poly1d -reveal_type(poly_obj.integ()) # E: numpy.poly1d - -reveal_type(np.poly(poly_obj)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.poly(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.poly(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] - -reveal_type(np.polyint(poly_obj)) # E: numpy.poly1d -reveal_type(np.polyint(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.polyint(AR_f8, k=AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.polyint(AR_O, m=2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] - -reveal_type(np.polyder(poly_obj)) # E: numpy.poly1d -reveal_type(np.polyder(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.polyder(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.polyder(AR_O, m=2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] - -reveal_type(np.polyfit(AR_f8, AR_f8, 2)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.polyfit(AR_f8, AR_i8, 1, full=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]], numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]]] -reveal_type(np.polyfit(AR_u4, AR_f8, 1.0, cov="unscaled")) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]]] -reveal_type(np.polyfit(AR_c16, AR_f8, 2)) # E: numpy.ndarray[Any, numpy.dtype[{complex128}]] -reveal_type(np.polyfit(AR_f8, AR_c16, 1, full=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{complex128}]], numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]], numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]]] -reveal_type(np.polyfit(AR_u4, AR_c16, 1.0, cov=True)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{complex128}]], numpy.ndarray[Any, numpy.dtype[{complex128}]]] - -reveal_type(np.polyval(AR_b, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.polyval(AR_u4, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(np.polyval(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.polyval(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.polyval(AR_i8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.polyval(AR_O, AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] - -reveal_type(np.polyadd(poly_obj, AR_i8)) # E: numpy.poly1d -reveal_type(np.polyadd(AR_f8, poly_obj)) # E: numpy.poly1d -reveal_type(np.polyadd(AR_b, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.polyadd(AR_u4, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(np.polyadd(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.polyadd(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.polyadd(AR_i8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.polyadd(AR_O, AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] - -reveal_type(np.polysub(poly_obj, AR_i8)) # E: numpy.poly1d -reveal_type(np.polysub(AR_f8, poly_obj)) # E: numpy.poly1d +reveal_type(poly_obj.deriv()) # E: poly1d +reveal_type(poly_obj.integ()) # E: poly1d + +reveal_type(np.poly(poly_obj)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.poly(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.poly(AR_c16)) # E: ndarray[Any, dtype[floating[Any]]] + +reveal_type(np.polyint(poly_obj)) # E: poly1d +reveal_type(np.polyint(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.polyint(AR_f8, k=AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.polyint(AR_O, m=2)) # E: ndarray[Any, dtype[object_]] + +reveal_type(np.polyder(poly_obj)) # E: poly1d +reveal_type(np.polyder(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.polyder(AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.polyder(AR_O, m=2)) # E: ndarray[Any, dtype[object_]] + +reveal_type(np.polyfit(AR_f8, AR_f8, 2)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.polyfit(AR_f8, AR_i8, 1, full=True)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[signedinteger[typing._32Bit]]], ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]]] +reveal_type(np.polyfit(AR_u4, AR_f8, 1.0, cov="unscaled")) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]]] +reveal_type(np.polyfit(AR_c16, AR_f8, 2)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(np.polyfit(AR_f8, AR_c16, 1, full=True)) # E: Tuple[ndarray[Any, dtype[{complex128}]], ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[signedinteger[typing._32Bit]]], ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]]] +reveal_type(np.polyfit(AR_u4, AR_c16, 1.0, cov=True)) # E: Tuple[ndarray[Any, dtype[{complex128}]], ndarray[Any, dtype[{complex128}]]] + +reveal_type(np.polyval(AR_b, AR_b)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.polyval(AR_u4, AR_b)) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(np.polyval(AR_i8, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.polyval(AR_f8, AR_i8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.polyval(AR_i8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.polyval(AR_O, AR_O)) # E: ndarray[Any, dtype[object_]] + +reveal_type(np.polyadd(poly_obj, AR_i8)) # E: poly1d +reveal_type(np.polyadd(AR_f8, poly_obj)) # E: poly1d +reveal_type(np.polyadd(AR_b, AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.polyadd(AR_u4, AR_b)) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(np.polyadd(AR_i8, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.polyadd(AR_f8, AR_i8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.polyadd(AR_i8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.polyadd(AR_O, AR_O)) # E: ndarray[Any, dtype[object_]] + +reveal_type(np.polysub(poly_obj, AR_i8)) # E: poly1d +reveal_type(np.polysub(AR_f8, poly_obj)) # E: poly1d reveal_type(np.polysub(AR_b, AR_b)) # E: <nothing> -reveal_type(np.polysub(AR_u4, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(np.polysub(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.polysub(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.polysub(AR_i8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.polysub(AR_O, AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] - -reveal_type(np.polymul(poly_obj, AR_i8)) # E: numpy.poly1d -reveal_type(np.polymul(AR_f8, poly_obj)) # E: numpy.poly1d -reveal_type(np.polymul(AR_b, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.polymul(AR_u4, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(np.polymul(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.polymul(AR_f8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.polymul(AR_i8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.polymul(AR_O, AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] - -reveal_type(np.polydiv(poly_obj, AR_i8)) # E: numpy.poly1d -reveal_type(np.polydiv(AR_f8, poly_obj)) # E: numpy.poly1d -reveal_type(np.polydiv(AR_b, AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.polydiv(AR_u4, AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.polydiv(AR_i8, AR_i8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.polydiv(AR_f8, AR_i8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.polydiv(AR_i8, AR_c16)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]] -reveal_type(np.polydiv(AR_O, AR_O)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.polysub(AR_u4, AR_b)) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(np.polysub(AR_i8, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.polysub(AR_f8, AR_i8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.polysub(AR_i8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.polysub(AR_O, AR_O)) # E: ndarray[Any, dtype[object_]] + +reveal_type(np.polymul(poly_obj, AR_i8)) # E: poly1d +reveal_type(np.polymul(AR_f8, poly_obj)) # E: poly1d +reveal_type(np.polymul(AR_b, AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.polymul(AR_u4, AR_b)) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(np.polymul(AR_i8, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.polymul(AR_f8, AR_i8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.polymul(AR_i8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.polymul(AR_O, AR_O)) # E: ndarray[Any, dtype[object_]] + +reveal_type(np.polydiv(poly_obj, AR_i8)) # E: poly1d +reveal_type(np.polydiv(AR_f8, poly_obj)) # E: poly1d +reveal_type(np.polydiv(AR_b, AR_b)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.polydiv(AR_u4, AR_b)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.polydiv(AR_i8, AR_i8)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.polydiv(AR_f8, AR_i8)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.polydiv(AR_i8, AR_c16)) # E: Tuple[ndarray[Any, dtype[complexfloating[Any, Any]]], ndarray[Any, dtype[complexfloating[Any, Any]]]] +reveal_type(np.polydiv(AR_O, AR_O)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]] diff --git a/numpy/typing/tests/data/reveal/linalg.pyi b/numpy/typing/tests/data/reveal/linalg.pyi index fecdc0d37..19e13aed6 100644 --- a/numpy/typing/tests/data/reveal/linalg.pyi +++ b/numpy/typing/tests/data/reveal/linalg.pyi @@ -8,57 +8,57 @@ AR_O: npt.NDArray[np.object_] AR_m: npt.NDArray[np.timedelta64] AR_S: npt.NDArray[np.str_] -reveal_type(np.linalg.tensorsolve(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.linalg.tensorsolve(AR_i8, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.linalg.tensorsolve(AR_c16, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] - -reveal_type(np.linalg.solve(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.linalg.solve(AR_i8, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.linalg.solve(AR_c16, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] - -reveal_type(np.linalg.tensorinv(AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.linalg.tensorinv(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.linalg.tensorinv(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] - -reveal_type(np.linalg.inv(AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.linalg.inv(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.linalg.inv(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] - -reveal_type(np.linalg.matrix_power(AR_i8, -1)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.linalg.matrix_power(AR_f8, 0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.linalg.matrix_power(AR_c16, 1)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.linalg.matrix_power(AR_O, 2)) # E: numpy.ndarray[Any, numpy.dtype[Any]] - -reveal_type(np.linalg.cholesky(AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.linalg.cholesky(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.linalg.cholesky(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] - -reveal_type(np.linalg.qr(AR_i8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]]] -reveal_type(np.linalg.qr(AR_f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.linalg.qr(AR_c16)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]] - -reveal_type(np.linalg.eigvals(AR_i8)) # E: Union[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{complex128}]]] -reveal_type(np.linalg.eigvals(AR_f8)) # E: Union[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]] -reveal_type(np.linalg.eigvals(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] - -reveal_type(np.linalg.eigvalsh(AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.linalg.eigvalsh(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.linalg.eigvalsh(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] - -reveal_type(np.linalg.eig(AR_i8)) # E: Union[Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]]], Tuple[numpy.ndarray[Any, numpy.dtype[{complex128}]], numpy.ndarray[Any, numpy.dtype[{complex128}]]]] -reveal_type(np.linalg.eig(AR_f8)) # E: Union[Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]], Tuple[numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]]] -reveal_type(np.linalg.eig(AR_c16)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]] - -reveal_type(np.linalg.eigh(AR_i8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]]] -reveal_type(np.linalg.eigh(AR_f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.linalg.eigh(AR_c16)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]] - -reveal_type(np.linalg.svd(AR_i8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]]] -reveal_type(np.linalg.svd(AR_f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.linalg.svd(AR_c16)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]] -reveal_type(np.linalg.svd(AR_i8, compute_uv=False)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.linalg.svd(AR_f8, compute_uv=False)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.linalg.svd(AR_c16, compute_uv=False)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(np.linalg.tensorsolve(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.linalg.tensorsolve(AR_i8, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.linalg.tensorsolve(AR_c16, AR_f8)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] + +reveal_type(np.linalg.solve(AR_i8, AR_i8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.linalg.solve(AR_i8, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.linalg.solve(AR_c16, AR_f8)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] + +reveal_type(np.linalg.tensorinv(AR_i8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.linalg.tensorinv(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.linalg.tensorinv(AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] + +reveal_type(np.linalg.inv(AR_i8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.linalg.inv(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.linalg.inv(AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] + +reveal_type(np.linalg.matrix_power(AR_i8, -1)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.linalg.matrix_power(AR_f8, 0)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.linalg.matrix_power(AR_c16, 1)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.linalg.matrix_power(AR_O, 2)) # E: ndarray[Any, dtype[Any]] + +reveal_type(np.linalg.cholesky(AR_i8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.linalg.cholesky(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.linalg.cholesky(AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] + +reveal_type(np.linalg.qr(AR_i8)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]]] +reveal_type(np.linalg.qr(AR_f8)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.linalg.qr(AR_c16)) # E: Tuple[ndarray[Any, dtype[complexfloating[Any, Any]]], ndarray[Any, dtype[complexfloating[Any, Any]]]] + +reveal_type(np.linalg.eigvals(AR_i8)) # E: Union[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{complex128}]]] +reveal_type(np.linalg.eigvals(AR_f8)) # E: Union[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[complexfloating[Any, Any]]]] +reveal_type(np.linalg.eigvals(AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] + +reveal_type(np.linalg.eigvalsh(AR_i8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.linalg.eigvalsh(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.linalg.eigvalsh(AR_c16)) # E: ndarray[Any, dtype[floating[Any]]] + +reveal_type(np.linalg.eig(AR_i8)) # E: Union[Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]]], Tuple[ndarray[Any, dtype[{complex128}]], ndarray[Any, dtype[{complex128}]]]] +reveal_type(np.linalg.eig(AR_f8)) # E: Union[Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]], Tuple[ndarray[Any, dtype[complexfloating[Any, Any]]], ndarray[Any, dtype[complexfloating[Any, Any]]]]] +reveal_type(np.linalg.eig(AR_c16)) # E: Tuple[ndarray[Any, dtype[complexfloating[Any, Any]]], ndarray[Any, dtype[complexfloating[Any, Any]]]] + +reveal_type(np.linalg.eigh(AR_i8)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]]] +reveal_type(np.linalg.eigh(AR_f8)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.linalg.eigh(AR_c16)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[complexfloating[Any, Any]]]] + +reveal_type(np.linalg.svd(AR_i8)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]]] +reveal_type(np.linalg.svd(AR_f8)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.linalg.svd(AR_c16)) # E: Tuple[ndarray[Any, dtype[complexfloating[Any, Any]]], ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[complexfloating[Any, Any]]]] +reveal_type(np.linalg.svd(AR_i8, compute_uv=False)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.linalg.svd(AR_f8, compute_uv=False)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.linalg.svd(AR_c16, compute_uv=False)) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(np.linalg.cond(AR_i8)) # E: Any reveal_type(np.linalg.cond(AR_f8)) # E: Any @@ -68,9 +68,9 @@ reveal_type(np.linalg.matrix_rank(AR_i8)) # E: Any reveal_type(np.linalg.matrix_rank(AR_f8)) # E: Any reveal_type(np.linalg.matrix_rank(AR_c16)) # E: Any -reveal_type(np.linalg.pinv(AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.linalg.pinv(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.linalg.pinv(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] +reveal_type(np.linalg.pinv(AR_i8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.linalg.pinv(AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.linalg.pinv(AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] reveal_type(np.linalg.slogdet(AR_i8)) # E: Tuple[Any, Any] reveal_type(np.linalg.slogdet(AR_f8)) # E: Tuple[Any, Any] @@ -80,14 +80,14 @@ reveal_type(np.linalg.det(AR_i8)) # E: Any reveal_type(np.linalg.det(AR_f8)) # E: Any reveal_type(np.linalg.det(AR_c16)) # E: Any -reveal_type(np.linalg.lstsq(AR_i8, AR_i8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{float64}]], {int32}, numpy.ndarray[Any, numpy.dtype[{float64}]]] -reveal_type(np.linalg.lstsq(AR_i8, AR_f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], {int32}, numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.linalg.lstsq(AR_f8, AR_c16)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], {int32}, numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] +reveal_type(np.linalg.lstsq(AR_i8, AR_i8)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{float64}]], {int32}, ndarray[Any, dtype[{float64}]]] +reveal_type(np.linalg.lstsq(AR_i8, AR_f8)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]], {int32}, ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.linalg.lstsq(AR_f8, AR_c16)) # E: Tuple[ndarray[Any, dtype[complexfloating[Any, Any]]], ndarray[Any, dtype[floating[Any]]], {int32}, ndarray[Any, dtype[floating[Any]]]] -reveal_type(np.linalg.norm(AR_i8)) # E: numpy.floating[Any] -reveal_type(np.linalg.norm(AR_f8)) # E: numpy.floating[Any] -reveal_type(np.linalg.norm(AR_c16)) # E: numpy.floating[Any] -reveal_type(np.linalg.norm(AR_S)) # E: numpy.floating[Any] +reveal_type(np.linalg.norm(AR_i8)) # E: floating[Any] +reveal_type(np.linalg.norm(AR_f8)) # E: floating[Any] +reveal_type(np.linalg.norm(AR_c16)) # E: floating[Any] +reveal_type(np.linalg.norm(AR_S)) # E: floating[Any] reveal_type(np.linalg.norm(AR_f8, axis=0)) # E: Any reveal_type(np.linalg.multi_dot([AR_i8, AR_i8])) # E: Any diff --git a/numpy/typing/tests/data/reveal/matrix.pyi b/numpy/typing/tests/data/reveal/matrix.pyi index def33f458..21c39067e 100644 --- a/numpy/typing/tests/data/reveal/matrix.pyi +++ b/numpy/typing/tests/data/reveal/matrix.pyi @@ -5,11 +5,11 @@ import numpy.typing as npt mat: np.matrix[Any, np.dtype[np.int64]] ar_f8: npt.NDArray[np.float64] -reveal_type(mat * 5) # E: numpy.matrix[Any, Any] -reveal_type(5 * mat) # E: numpy.matrix[Any, Any] +reveal_type(mat * 5) # E: matrix[Any, Any] +reveal_type(5 * mat) # E: matrix[Any, Any] mat *= 5 -reveal_type(mat**5) # E: numpy.matrix[Any, Any] +reveal_type(mat**5) # E: matrix[Any, Any] mat **= 5 reveal_type(mat.sum()) # E: Any @@ -17,53 +17,53 @@ reveal_type(mat.mean()) # E: Any reveal_type(mat.std()) # E: Any reveal_type(mat.var()) # E: Any reveal_type(mat.prod()) # E: Any -reveal_type(mat.any()) # E: numpy.bool_ -reveal_type(mat.all()) # E: numpy.bool_ +reveal_type(mat.any()) # E: bool_ +reveal_type(mat.all()) # E: bool_ reveal_type(mat.max()) # E: {int64} reveal_type(mat.min()) # E: {int64} reveal_type(mat.argmax()) # E: {intp} reveal_type(mat.argmin()) # E: {intp} reveal_type(mat.ptp()) # E: {int64} -reveal_type(mat.sum(axis=0)) # E: numpy.matrix[Any, Any] -reveal_type(mat.mean(axis=0)) # E: numpy.matrix[Any, Any] -reveal_type(mat.std(axis=0)) # E: numpy.matrix[Any, Any] -reveal_type(mat.var(axis=0)) # E: numpy.matrix[Any, Any] -reveal_type(mat.prod(axis=0)) # E: numpy.matrix[Any, Any] -reveal_type(mat.any(axis=0)) # E: numpy.matrix[Any, numpy.dtype[numpy.bool_]] -reveal_type(mat.all(axis=0)) # E: numpy.matrix[Any, numpy.dtype[numpy.bool_]] -reveal_type(mat.max(axis=0)) # E: numpy.matrix[Any, numpy.dtype[{int64}]] -reveal_type(mat.min(axis=0)) # E: numpy.matrix[Any, numpy.dtype[{int64}]] -reveal_type(mat.argmax(axis=0)) # E: numpy.matrix[Any, numpy.dtype[{intp}]] -reveal_type(mat.argmin(axis=0)) # E: numpy.matrix[Any, numpy.dtype[{intp}]] -reveal_type(mat.ptp(axis=0)) # E: numpy.matrix[Any, numpy.dtype[{int64}]] +reveal_type(mat.sum(axis=0)) # E: matrix[Any, Any] +reveal_type(mat.mean(axis=0)) # E: matrix[Any, Any] +reveal_type(mat.std(axis=0)) # E: matrix[Any, Any] +reveal_type(mat.var(axis=0)) # E: matrix[Any, Any] +reveal_type(mat.prod(axis=0)) # E: matrix[Any, Any] +reveal_type(mat.any(axis=0)) # E: matrix[Any, dtype[bool_]] +reveal_type(mat.all(axis=0)) # E: matrix[Any, dtype[bool_]] +reveal_type(mat.max(axis=0)) # E: matrix[Any, dtype[{int64}]] +reveal_type(mat.min(axis=0)) # E: matrix[Any, dtype[{int64}]] +reveal_type(mat.argmax(axis=0)) # E: matrix[Any, dtype[{intp}]] +reveal_type(mat.argmin(axis=0)) # E: matrix[Any, dtype[{intp}]] +reveal_type(mat.ptp(axis=0)) # E: matrix[Any, dtype[{int64}]] -reveal_type(mat.sum(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.mean(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.std(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.var(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.prod(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.any(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.all(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.max(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.min(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.argmax(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.argmin(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(mat.ptp(out=ar_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(mat.sum(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.mean(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.std(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.var(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.prod(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.any(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.all(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.max(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.min(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.argmax(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.argmin(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(mat.ptp(out=ar_f8)) # E: ndarray[Any, dtype[{float64}]] -reveal_type(mat.T) # E: numpy.matrix[Any, numpy.dtype[{int64}]] -reveal_type(mat.I) # E: numpy.matrix[Any, Any] -reveal_type(mat.A) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(mat.A1) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(mat.H) # E: numpy.matrix[Any, numpy.dtype[{int64}]] -reveal_type(mat.getT()) # E: numpy.matrix[Any, numpy.dtype[{int64}]] -reveal_type(mat.getI()) # E: numpy.matrix[Any, Any] -reveal_type(mat.getA()) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(mat.getA1()) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(mat.getH()) # E: numpy.matrix[Any, numpy.dtype[{int64}]] +reveal_type(mat.T) # E: matrix[Any, dtype[{int64}]] +reveal_type(mat.I) # E: matrix[Any, Any] +reveal_type(mat.A) # E: ndarray[Any, dtype[{int64}]] +reveal_type(mat.A1) # E: ndarray[Any, dtype[{int64}]] +reveal_type(mat.H) # E: matrix[Any, dtype[{int64}]] +reveal_type(mat.getT()) # E: matrix[Any, dtype[{int64}]] +reveal_type(mat.getI()) # E: matrix[Any, Any] +reveal_type(mat.getA()) # E: ndarray[Any, dtype[{int64}]] +reveal_type(mat.getA1()) # E: ndarray[Any, dtype[{int64}]] +reveal_type(mat.getH()) # E: matrix[Any, dtype[{int64}]] -reveal_type(np.bmat(ar_f8)) # E: numpy.matrix[Any, Any] -reveal_type(np.bmat([[0, 1, 2]])) # E: numpy.matrix[Any, Any] -reveal_type(np.bmat("mat")) # E: numpy.matrix[Any, Any] +reveal_type(np.bmat(ar_f8)) # E: matrix[Any, Any] +reveal_type(np.bmat([[0, 1, 2]])) # E: matrix[Any, Any] +reveal_type(np.bmat("mat")) # E: matrix[Any, Any] -reveal_type(np.asmatrix(ar_f8, dtype=np.int64)) # E: numpy.matrix[Any, Any] +reveal_type(np.asmatrix(ar_f8, dtype=np.int64)) # E: matrix[Any, Any] diff --git a/numpy/typing/tests/data/reveal/memmap.pyi b/numpy/typing/tests/data/reveal/memmap.pyi index c1d8edc67..86de8eb08 100644 --- a/numpy/typing/tests/data/reveal/memmap.pyi +++ b/numpy/typing/tests/data/reveal/memmap.pyi @@ -10,7 +10,7 @@ reveal_type(memmap_obj.offset) # E: int reveal_type(memmap_obj.mode) # E: str reveal_type(memmap_obj.flush()) # E: None -reveal_type(np.memmap("file.txt", offset=5)) # E: numpy.memmap[Any, numpy.dtype[{uint8}]] -reveal_type(np.memmap(b"file.txt", dtype=np.float64, shape=(10, 3))) # E: numpy.memmap[Any, numpy.dtype[{float64}]] +reveal_type(np.memmap("file.txt", offset=5)) # E: memmap[Any, dtype[{uint8}]] +reveal_type(np.memmap(b"file.txt", dtype=np.float64, shape=(10, 3))) # E: memmap[Any, dtype[{float64}]] with open("file.txt", "rb") as f: - reveal_type(np.memmap(f, dtype=float, order="K")) # E: numpy.memmap[Any, numpy.dtype[Any]] + reveal_type(np.memmap(f, dtype=float, order="K")) # E: memmap[Any, dtype[Any]] diff --git a/numpy/typing/tests/data/reveal/mod.pyi b/numpy/typing/tests/data/reveal/mod.pyi index bf45b8c58..b2790b7f3 100644 --- a/numpy/typing/tests/data/reveal/mod.pyi +++ b/numpy/typing/tests/data/reveal/mod.pyi @@ -21,13 +21,13 @@ AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] # Time structures -reveal_type(td % td) # E: numpy.timedelta64 +reveal_type(td % td) # E: timedelta64 reveal_type(AR_m % td) # E: Any reveal_type(td % AR_m) # E: Any -reveal_type(divmod(td, td)) # E: Tuple[{int64}, numpy.timedelta64] -reveal_type(divmod(AR_m, td)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]] -reveal_type(divmod(td, AR_m)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]], numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]]] +reveal_type(divmod(td, td)) # E: Tuple[{int64}, timedelta64] +reveal_type(divmod(AR_m, td)) # E: Tuple[ndarray[Any, dtype[signedinteger[typing._64Bit]]], ndarray[Any, dtype[timedelta64]]] +reveal_type(divmod(td, AR_m)) # E: Tuple[ndarray[Any, dtype[signedinteger[typing._64Bit]]], ndarray[Any, dtype[timedelta64]]] # Bool @@ -38,7 +38,7 @@ reveal_type(b_ % b_) # E: {int8} reveal_type(b_ % i8) # E: {int64} reveal_type(b_ % u8) # E: {uint64} reveal_type(b_ % f8) # E: {float64} -reveal_type(b_ % AR_b) # E: numpy.ndarray[Any, numpy.dtype[{int8}]] +reveal_type(b_ % AR_b) # E: ndarray[Any, dtype[{int8}]] reveal_type(divmod(b_, b)) # E: Tuple[{int8}, {int8}] reveal_type(divmod(b_, i)) # E: Tuple[{int_}, {int_}] @@ -47,7 +47,7 @@ reveal_type(divmod(b_, b_)) # E: Tuple[{int8}, {int8}] reveal_type(divmod(b_, i8)) # E: Tuple[{int64}, {int64}] reveal_type(divmod(b_, u8)) # E: Tuple[{uint64}, {uint64}] reveal_type(divmod(b_, f8)) # E: Tuple[{float64}, {float64}] -reveal_type(divmod(b_, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[{int8}]], numpy.ndarray[Any, numpy.dtype[{int8}]]] +reveal_type(divmod(b_, AR_b)) # E: ndarray[Any, dtype[{int8}]], ndarray[Any, dtype[{int8}]]] reveal_type(b % b_) # E: {int8} reveal_type(i % b_) # E: {int_} @@ -56,7 +56,7 @@ reveal_type(b_ % b_) # E: {int8} reveal_type(i8 % b_) # E: {int64} reveal_type(u8 % b_) # E: {uint64} reveal_type(f8 % b_) # E: {float64} -reveal_type(AR_b % b_) # E: numpy.ndarray[Any, numpy.dtype[{int8}]] +reveal_type(AR_b % b_) # E: ndarray[Any, dtype[{int8}]] reveal_type(divmod(b, b_)) # E: Tuple[{int8}, {int8}] reveal_type(divmod(i, b_)) # E: Tuple[{int_}, {int_}] @@ -65,7 +65,7 @@ reveal_type(divmod(b_, b_)) # E: Tuple[{int8}, {int8}] reveal_type(divmod(i8, b_)) # E: Tuple[{int64}, {int64}] reveal_type(divmod(u8, b_)) # E: Tuple[{uint64}, {uint64}] reveal_type(divmod(f8, b_)) # E: Tuple[{float64}, {float64}] -reveal_type(divmod(AR_b, b_)) # E: numpy.ndarray[Any, numpy.dtype[{int8}]], numpy.ndarray[Any, numpy.dtype[{int8}]]] +reveal_type(divmod(AR_b, b_)) # E: ndarray[Any, dtype[{int8}]], ndarray[Any, dtype[{int8}]]] # int @@ -78,7 +78,7 @@ reveal_type(i4 % i8) # E: {int64} reveal_type(i4 % f8) # E: {float64} reveal_type(i4 % i4) # E: {int32} reveal_type(i4 % f4) # E: {float32} -reveal_type(i8 % AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] +reveal_type(i8 % AR_b) # E: ndarray[Any, dtype[signedinteger[Any]]] reveal_type(divmod(i8, b)) # E: Tuple[{int64}, {int64}] reveal_type(divmod(i8, i)) # E: Tuple[{int64}, {int64}] @@ -89,7 +89,7 @@ reveal_type(divmod(i8, i4)) # E: Tuple[{int64}, {int64}] reveal_type(divmod(i8, f4)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(i4, i4)) # E: Tuple[{int32}, {int32}] reveal_type(divmod(i4, f4)) # E: Tuple[{float32}, {float32}] -reveal_type(divmod(i8, AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]] +reveal_type(divmod(i8, AR_b)) # E: Tuple[ndarray[Any, dtype[signedinteger[Any]]], ndarray[Any, dtype[signedinteger[Any]]]] reveal_type(b % i8) # E: {int64} reveal_type(i % i8) # E: {int64} @@ -100,7 +100,7 @@ reveal_type(i8 % i4) # E: {int64} reveal_type(f8 % i4) # E: {float64} reveal_type(i4 % i4) # E: {int32} reveal_type(f4 % i4) # E: {float32} -reveal_type(AR_b % i8) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] +reveal_type(AR_b % i8) # E: ndarray[Any, dtype[signedinteger[Any]]] reveal_type(divmod(b, i8)) # E: Tuple[{int64}, {int64}] reveal_type(divmod(i, i8)) # E: Tuple[{int64}, {int64}] @@ -111,7 +111,7 @@ reveal_type(divmod(i4, i8)) # E: Tuple[{int64}, {int64}] reveal_type(divmod(f4, i8)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(i4, i4)) # E: Tuple[{int32}, {int32}] reveal_type(divmod(f4, i4)) # E: Tuple[{float32}, {float32}] -reveal_type(divmod(AR_b, i8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]]] +reveal_type(divmod(AR_b, i8)) # E: Tuple[ndarray[Any, dtype[signedinteger[Any]]], ndarray[Any, dtype[signedinteger[Any]]]] # float @@ -120,7 +120,7 @@ reveal_type(f8 % i) # E: {float64} reveal_type(f8 % f) # E: {float64} reveal_type(i8 % f4) # E: {float64} reveal_type(f4 % f4) # E: {float32} -reveal_type(f8 % AR_b) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(f8 % AR_b) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(divmod(f8, b)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(f8, i)) # E: Tuple[{float64}, {float64}] @@ -128,7 +128,7 @@ reveal_type(divmod(f8, f)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(f8, f8)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(f8, f4)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(f4, f4)) # E: Tuple[{float32}, {float32}] -reveal_type(divmod(f8, AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] +reveal_type(divmod(f8, AR_b)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] reveal_type(b % f8) # E: {float64} reveal_type(i % f8) # E: {float64} @@ -136,7 +136,7 @@ reveal_type(f % f8) # E: {float64} reveal_type(f8 % f8) # E: {float64} reveal_type(f8 % f8) # E: {float64} reveal_type(f4 % f4) # E: {float32} -reveal_type(AR_b % f8) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(AR_b % f8) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(divmod(b, f8)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(i, f8)) # E: Tuple[{float64}, {float64}] @@ -144,4 +144,4 @@ reveal_type(divmod(f, f8)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(f8, f8)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(f4, f8)) # E: Tuple[{float64}, {float64}] reveal_type(divmod(f4, f4)) # E: Tuple[{float32}, {float32}] -reveal_type(divmod(AR_b, f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] +reveal_type(divmod(AR_b, f8)) # E: Tuple[ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] diff --git a/numpy/typing/tests/data/reveal/modules.pyi b/numpy/typing/tests/data/reveal/modules.pyi index 7e695433e..ba830eb0d 100644 --- a/numpy/typing/tests/data/reveal/modules.pyi +++ b/numpy/typing/tests/data/reveal/modules.pyi @@ -32,7 +32,7 @@ reveal_type(np.polynomial.polynomial) # E: ModuleType reveal_type(np.__path__) # E: list[builtins.str] reveal_type(np.__version__) # E: str reveal_type(np.__git_version__) # E: str -reveal_type(np.test) # E: numpy._pytesttester.PytestTester +reveal_type(np.test) # E: _pytesttester.PytestTester reveal_type(np.test.module_name) # E: str reveal_type(np.__all__) # E: list[builtins.str] diff --git a/numpy/typing/tests/data/reveal/multiarray.pyi b/numpy/typing/tests/data/reveal/multiarray.pyi index ee818c08a..0e91a7afd 100644 --- a/numpy/typing/tests/data/reveal/multiarray.pyi +++ b/numpy/typing/tests/data/reveal/multiarray.pyi @@ -32,7 +32,7 @@ def func(a: int) -> bool: ... reveal_type(next(b_f8)) # E: tuple[Any] reveal_type(b_f8.reset()) # E: None reveal_type(b_f8.index) # E: int -reveal_type(b_f8.iters) # E: tuple[numpy.flatiter[Any]] +reveal_type(b_f8.iters) # E: tuple[flatiter[Any]] reveal_type(b_f8.nd) # E: int reveal_type(b_f8.ndim) # E: int reveal_type(b_f8.numiter) # E: int @@ -42,7 +42,7 @@ reveal_type(b_f8.size) # E: int reveal_type(next(b_i8_f8_f8)) # E: tuple[Any] reveal_type(b_i8_f8_f8.reset()) # E: None reveal_type(b_i8_f8_f8.index) # E: int -reveal_type(b_i8_f8_f8.iters) # E: tuple[numpy.flatiter[Any]] +reveal_type(b_i8_f8_f8.iters) # E: tuple[flatiter[Any]] reveal_type(b_i8_f8_f8.nd) # E: int reveal_type(b_i8_f8_f8.ndim) # E: int reveal_type(b_i8_f8_f8.numiter) # E: int @@ -51,8 +51,8 @@ reveal_type(b_i8_f8_f8.size) # E: int reveal_type(np.inner(AR_f8, AR_i8)) # E: Any -reveal_type(np.where([True, True, False])) # E: tuple[numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.where([True, True, False], 1, 0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.where([True, True, False])) # E: tuple[ndarray[Any, dtype[{intp}]]] +reveal_type(np.where([True, True, False], 1, 0)) # E: ndarray[Any, dtype[Any]] reveal_type(np.lexsort([0, 1, 2])) # E: Any @@ -60,32 +60,32 @@ reveal_type(np.can_cast(np.dtype("i8"), int)) # E: bool reveal_type(np.can_cast(AR_f8, "f8")) # E: bool reveal_type(np.can_cast(AR_f8, np.complex128, casting="unsafe")) # E: bool -reveal_type(np.min_scalar_type([1])) # E: numpy.dtype[Any] -reveal_type(np.min_scalar_type(AR_f8)) # E: numpy.dtype[Any] +reveal_type(np.min_scalar_type([1])) # E: dtype[Any] +reveal_type(np.min_scalar_type(AR_f8)) # E: dtype[Any] -reveal_type(np.result_type(int, [1])) # E: numpy.dtype[Any] -reveal_type(np.result_type(AR_f8, AR_u1)) # E: numpy.dtype[Any] -reveal_type(np.result_type(AR_f8, np.complex128)) # E: numpy.dtype[Any] +reveal_type(np.result_type(int, [1])) # E: dtype[Any] +reveal_type(np.result_type(AR_f8, AR_u1)) # E: dtype[Any] +reveal_type(np.result_type(AR_f8, np.complex128)) # E: dtype[Any] reveal_type(np.dot(AR_LIKE_f, AR_i8)) # E: Any reveal_type(np.dot(AR_u1, 1)) # E: Any reveal_type(np.dot(1.5j, 1)) # E: Any -reveal_type(np.dot(AR_u1, 1, out=AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.dot(AR_u1, 1, out=AR_f8)) # E: ndarray[Any, dtype[{float64}]] -reveal_type(np.vdot(AR_LIKE_f, AR_i8)) # E: numpy.floating[Any] -reveal_type(np.vdot(AR_u1, 1)) # E: numpy.signedinteger[Any] -reveal_type(np.vdot(1.5j, 1)) # E: numpy.complexfloating[Any, Any] +reveal_type(np.vdot(AR_LIKE_f, AR_i8)) # E: floating[Any] +reveal_type(np.vdot(AR_u1, 1)) # E: signedinteger[Any] +reveal_type(np.vdot(1.5j, 1)) # E: complexfloating[Any, Any] -reveal_type(np.bincount(AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{intp}]] +reveal_type(np.bincount(AR_i8)) # E: ndarray[Any, dtype[{intp}]] reveal_type(np.copyto(AR_f8, [1., 1.5, 1.6])) # E: None reveal_type(np.putmask(AR_f8, [True, True, False], 1.5)) # E: None -reveal_type(np.packbits(AR_i8)) # numpy.ndarray[Any, numpy.dtype[{uint8}]] -reveal_type(np.packbits(AR_u1)) # numpy.ndarray[Any, numpy.dtype[{uint8}]] +reveal_type(np.packbits(AR_i8)) # ndarray[Any, dtype[{uint8}]] +reveal_type(np.packbits(AR_u1)) # ndarray[Any, dtype[{uint8}]] -reveal_type(np.unpackbits(AR_u1)) # numpy.ndarray[Any, numpy.dtype[{uint8}]] +reveal_type(np.unpackbits(AR_u1)) # ndarray[Any, dtype[{uint8}]] reveal_type(np.shares_memory(1, 2)) # E: bool reveal_type(np.shares_memory(AR_f8, AR_f8, max_work=1)) # E: bool @@ -97,36 +97,36 @@ reveal_type(np.geterrobj()) # E: list[Any] reveal_type(np.seterrobj([8192, 521, None])) # E: None -reveal_type(np.promote_types(np.int32, np.int64)) # E: numpy.dtype[Any] -reveal_type(np.promote_types("f4", float)) # E: numpy.dtype[Any] +reveal_type(np.promote_types(np.int32, np.int64)) # E: dtype[Any] +reveal_type(np.promote_types("f4", float)) # E: dtype[Any] -reveal_type(np.frompyfunc(func, 1, 1, identity=None)) # numpy.ufunc +reveal_type(np.frompyfunc(func, 1, 1, identity=None)) # ufunc reveal_type(np.datetime_data("m8[D]")) # E: Tuple[builtins.str, builtins.int] reveal_type(np.datetime_data(np.datetime64)) # E: Tuple[builtins.str, builtins.int] reveal_type(np.datetime_data(np.dtype(np.timedelta64))) # E: Tuple[builtins.str, builtins.int] reveal_type(np.busday_count("2011-01", "2011-02")) # E: {int_} -reveal_type(np.busday_count(["2011-01"], "2011-02")) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(np.busday_count(["2011-01"], "2011-02")) # E: ndarray[Any, dtype[{int_}]] -reveal_type(np.busday_offset(M, m)) # E: numpy.datetime64 -reveal_type(np.busday_offset(M, 5)) # E: numpy.datetime64 -reveal_type(np.busday_offset(AR_M, m)) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] -reveal_type(np.busday_offset("2011-01", "2011-02", roll="forward")) # E: numpy.datetime64 -reveal_type(np.busday_offset(["2011-01"], "2011-02", roll="forward")) # E: numpy.ndarray[Any, numpy.dtype[numpy.datetime64]] +reveal_type(np.busday_offset(M, m)) # E: datetime64 +reveal_type(np.busday_offset(M, 5)) # E: datetime64 +reveal_type(np.busday_offset(AR_M, m)) # E: ndarray[Any, dtype[datetime64]] +reveal_type(np.busday_offset("2011-01", "2011-02", roll="forward")) # E: datetime64 +reveal_type(np.busday_offset(["2011-01"], "2011-02", roll="forward")) # E: ndarray[Any, dtype[datetime64]] -reveal_type(np.is_busday("2012")) # E: numpy.bool_ -reveal_type(np.is_busday(["2012"])) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.is_busday("2012")) # E: bool_ +reveal_type(np.is_busday(["2012"])) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.datetime_as_string(M)) # E: numpy.str_ -reveal_type(np.datetime_as_string(AR_M)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] +reveal_type(np.datetime_as_string(M)) # E: str_ +reveal_type(np.datetime_as_string(AR_M)) # E: ndarray[Any, dtype[str_]] -reveal_type(np.compare_chararrays("a", "b", "!=", rstrip=False)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.compare_chararrays(b"a", b"a", "==", True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.compare_chararrays("a", "b", "!=", rstrip=False)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.compare_chararrays(b"a", b"a", "==", True)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.add_docstring(func, "test")) # E: None -reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], flags=["c_index"])) # E: tuple[numpy.nditer] -reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_flags=[["readonly", "readonly"]])) # E: tuple[numpy.nditer] -reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_dtypes=np.int_)) # E: tuple[numpy.nditer] -reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], order="C", casting="no")) # E: tuple[numpy.nditer] +reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], flags=["c_index"])) # E: tuple[nditer] +reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_flags=[["readonly", "readonly"]])) # E: tuple[nditer] +reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_dtypes=np.int_)) # E: tuple[nditer] +reveal_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], order="C", casting="no")) # E: tuple[nditer] diff --git a/numpy/typing/tests/data/reveal/ndarray_conversion.pyi b/numpy/typing/tests/data/reveal/ndarray_conversion.pyi index 03f2faf43..6885d4fd6 100644 --- a/numpy/typing/tests/data/reveal/ndarray_conversion.pyi +++ b/numpy/typing/tests/data/reveal/ndarray_conversion.pyi @@ -20,32 +20,32 @@ reveal_type(nd.tolist()) # E: Any # dumps is pretty simple # astype -reveal_type(nd.astype("float")) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(nd.astype(float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(nd.astype(np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(nd.astype(np.float64, "K")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(nd.astype(np.float64, "K", "unsafe")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(nd.astype(np.float64, "K", "unsafe", True)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(nd.astype(np.float64, "K", "unsafe", True, True)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(nd.astype("float")) # E: ndarray[Any, dtype[Any]] +reveal_type(nd.astype(float)) # E: ndarray[Any, dtype[Any]] +reveal_type(nd.astype(np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(nd.astype(np.float64, "K")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(nd.astype(np.float64, "K", "unsafe")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(nd.astype(np.float64, "K", "unsafe", True)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(nd.astype(np.float64, "K", "unsafe", True, True)) # E: ndarray[Any, dtype[{float64}]] # byteswap -reveal_type(nd.byteswap()) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(nd.byteswap(True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(nd.byteswap()) # E: ndarray[Any, dtype[{int_}]] +reveal_type(nd.byteswap(True)) # E: ndarray[Any, dtype[{int_}]] # copy -reveal_type(nd.copy()) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(nd.copy("C")) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(nd.copy()) # E: ndarray[Any, dtype[{int_}]] +reveal_type(nd.copy("C")) # E: ndarray[Any, dtype[{int_}]] -reveal_type(nd.view()) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(nd.view(np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(nd.view(float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(nd.view(np.float64, np.matrix)) # E: numpy.matrix[Any, Any] +reveal_type(nd.view()) # E: ndarray[Any, dtype[{int_}]] +reveal_type(nd.view(np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(nd.view(float)) # E: ndarray[Any, dtype[Any]] +reveal_type(nd.view(np.float64, np.matrix)) # E: matrix[Any, Any] # getfield -reveal_type(nd.getfield("float")) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(nd.getfield(float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(nd.getfield(np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(nd.getfield(np.float64, 8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(nd.getfield("float")) # E: ndarray[Any, dtype[Any]] +reveal_type(nd.getfield(float)) # E: ndarray[Any, dtype[Any]] +reveal_type(nd.getfield(np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(nd.getfield(np.float64, 8)) # E: ndarray[Any, dtype[{float64}]] # setflags does not return a value # fill does not return a value diff --git a/numpy/typing/tests/data/reveal/ndarray_misc.pyi b/numpy/typing/tests/data/reveal/ndarray_misc.pyi index 2d900c53d..cd1c3136f 100644 --- a/numpy/typing/tests/data/reveal/ndarray_misc.pyi +++ b/numpy/typing/tests/data/reveal/ndarray_misc.pyi @@ -33,14 +33,14 @@ reveal_type(ctypes_obj.data_as(ct.c_void_p)) # E: ctypes.c_void_p reveal_type(ctypes_obj.shape_as(ct.c_longlong)) # E: ctypes.Array[ctypes.c_longlong] reveal_type(ctypes_obj.strides_as(ct.c_ubyte)) # E: ctypes.Array[ctypes.c_ubyte] -reveal_type(f8.all()) # E: numpy.bool_ -reveal_type(AR_f8.all()) # E: numpy.bool_ +reveal_type(f8.all()) # E: bool_ +reveal_type(AR_f8.all()) # E: bool_ reveal_type(AR_f8.all(axis=0)) # E: Any reveal_type(AR_f8.all(keepdims=True)) # E: Any reveal_type(AR_f8.all(out=B)) # E: SubClass -reveal_type(f8.any()) # E: numpy.bool_ -reveal_type(AR_f8.any()) # E: numpy.bool_ +reveal_type(f8.any()) # E: bool_ +reveal_type(AR_f8.any()) # E: bool_ reveal_type(AR_f8.any(axis=0)) # E: Any reveal_type(AR_f8.any(keepdims=True)) # E: Any reveal_type(AR_f8.any(out=B)) # E: SubClass @@ -55,11 +55,11 @@ reveal_type(AR_f8.argmin()) # E: {intp} reveal_type(AR_f8.argmin(axis=0)) # E: Any reveal_type(AR_f8.argmin(out=B)) # E: SubClass -reveal_type(f8.argsort()) # E: numpy.ndarray[Any, Any] -reveal_type(AR_f8.argsort()) # E: numpy.ndarray[Any, Any] +reveal_type(f8.argsort()) # E: ndarray[Any, Any] +reveal_type(AR_f8.argsort()) # E: ndarray[Any, Any] -reveal_type(f8.astype(np.int64).choose([()])) # E: numpy.ndarray[Any, Any] -reveal_type(AR_f8.choose([0])) # E: numpy.ndarray[Any, Any] +reveal_type(f8.astype(np.int64).choose([()])) # E: ndarray[Any, Any] +reveal_type(AR_f8.choose([0])) # E: ndarray[Any, Any] reveal_type(AR_f8.choose([0], out=B)) # E: SubClass reveal_type(f8.clip(1)) # E: Any @@ -68,24 +68,24 @@ reveal_type(AR_f8.clip(None, 1)) # E: Any reveal_type(AR_f8.clip(1, out=B)) # E: SubClass reveal_type(AR_f8.clip(None, 1, out=B)) # E: SubClass -reveal_type(f8.compress([0])) # E: numpy.ndarray[Any, Any] -reveal_type(AR_f8.compress([0])) # E: numpy.ndarray[Any, Any] +reveal_type(f8.compress([0])) # E: ndarray[Any, Any] +reveal_type(AR_f8.compress([0])) # E: ndarray[Any, Any] reveal_type(AR_f8.compress([0], out=B)) # E: SubClass reveal_type(f8.conj()) # E: {float64} -reveal_type(AR_f8.conj()) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(AR_f8.conj()) # E: ndarray[Any, dtype[{float64}]] reveal_type(B.conj()) # E: SubClass reveal_type(f8.conjugate()) # E: {float64} -reveal_type(AR_f8.conjugate()) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(AR_f8.conjugate()) # E: ndarray[Any, dtype[{float64}]] reveal_type(B.conjugate()) # E: SubClass -reveal_type(f8.cumprod()) # E: numpy.ndarray[Any, Any] -reveal_type(AR_f8.cumprod()) # E: numpy.ndarray[Any, Any] +reveal_type(f8.cumprod()) # E: ndarray[Any, Any] +reveal_type(AR_f8.cumprod()) # E: ndarray[Any, Any] reveal_type(AR_f8.cumprod(out=B)) # E: SubClass -reveal_type(f8.cumsum()) # E: numpy.ndarray[Any, Any] -reveal_type(AR_f8.cumsum()) # E: numpy.ndarray[Any, Any] +reveal_type(f8.cumsum()) # E: ndarray[Any, Any] +reveal_type(AR_f8.cumsum()) # E: ndarray[Any, Any] reveal_type(AR_f8.cumsum(out=B)) # E: SubClass reveal_type(f8.max()) # E: Any @@ -107,7 +107,7 @@ reveal_type(AR_f8.min(keepdims=True)) # E: Any reveal_type(AR_f8.min(out=B)) # E: SubClass reveal_type(f8.newbyteorder()) # E: {float64} -reveal_type(AR_f8.newbyteorder()) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(AR_f8.newbyteorder()) # E: ndarray[Any, dtype[{float64}]] reveal_type(B.newbyteorder('|')) # E: SubClass reveal_type(f8.prod()) # E: Any @@ -123,12 +123,12 @@ reveal_type(AR_f8.ptp(keepdims=True)) # E: Any reveal_type(AR_f8.ptp(out=B)) # E: SubClass reveal_type(f8.round()) # E: {float64} -reveal_type(AR_f8.round()) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(AR_f8.round()) # E: ndarray[Any, dtype[{float64}]] reveal_type(AR_f8.round(out=B)) # E: SubClass -reveal_type(f8.repeat(1)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(AR_f8.repeat(1)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(B.repeat(1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(f8.repeat(1)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(AR_f8.repeat(1)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(B.repeat(1)) # E: ndarray[Any, dtype[object_]] reveal_type(f8.std()) # E: Any reveal_type(AR_f8.std()) # E: Any @@ -144,7 +144,7 @@ reveal_type(AR_f8.sum(out=B)) # E: SubClass reveal_type(f8.take(0)) # E: {float64} reveal_type(AR_f8.take(0)) # E: {float64} -reveal_type(AR_f8.take([0])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(AR_f8.take([0])) # E: ndarray[Any, dtype[{float64}]] reveal_type(AR_f8.take(0, out=B)) # E: SubClass reveal_type(AR_f8.take([0], out=B)) # E: SubClass @@ -154,18 +154,18 @@ reveal_type(AR_f8.var(axis=0)) # E: Any reveal_type(AR_f8.var(keepdims=True)) # E: Any reveal_type(AR_f8.var(out=B)) # E: SubClass -reveal_type(AR_f8.argpartition([0])) # E: numpy.ndarray[Any, numpy.dtype[{intp}]] +reveal_type(AR_f8.argpartition([0])) # E: ndarray[Any, dtype[{intp}]] -reveal_type(AR_f8.diagonal()) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(AR_f8.diagonal()) # E: ndarray[Any, dtype[{float64}]] -reveal_type(AR_f8.dot(1)) # E: numpy.ndarray[Any, Any] +reveal_type(AR_f8.dot(1)) # E: ndarray[Any, Any] reveal_type(AR_f8.dot([1])) # E: Any reveal_type(AR_f8.dot(1, out=B)) # E: SubClass -reveal_type(AR_f8.nonzero()) # E: tuple[numpy.ndarray[Any, numpy.dtype[{intp}]]] +reveal_type(AR_f8.nonzero()) # E: tuple[ndarray[Any, dtype[{intp}]]] reveal_type(AR_f8.searchsorted(1)) # E: {intp} -reveal_type(AR_f8.searchsorted([1])) # E: numpy.ndarray[Any, numpy.dtype[{intp}]] +reveal_type(AR_f8.searchsorted([1])) # E: ndarray[Any, dtype[{intp}]] reveal_type(AR_f8.trace()) # E: Any reveal_type(AR_f8.trace(out=B)) # E: SubClass @@ -173,14 +173,14 @@ reveal_type(AR_f8.trace(out=B)) # E: SubClass reveal_type(AR_f8.item()) # E: float reveal_type(AR_U.item()) # E: str -reveal_type(AR_f8.ravel()) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(AR_U.ravel()) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] +reveal_type(AR_f8.ravel()) # E: ndarray[Any, dtype[{float64}]] +reveal_type(AR_U.ravel()) # E: ndarray[Any, dtype[str_]] -reveal_type(AR_f8.flatten()) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(AR_U.flatten()) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] +reveal_type(AR_f8.flatten()) # E: ndarray[Any, dtype[{float64}]] +reveal_type(AR_U.flatten()) # E: ndarray[Any, dtype[str_]] -reveal_type(AR_f8.reshape(1)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(AR_U.reshape(1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] +reveal_type(AR_f8.reshape(1)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(AR_U.reshape(1)) # E: ndarray[Any, dtype[str_]] reveal_type(int(AR_f8)) # E: int reveal_type(int(AR_U)) # E: int @@ -192,18 +192,18 @@ reveal_type(complex(AR_f8)) # E: complex reveal_type(operator.index(AR_i8)) # E: int -reveal_type(AR_f8.__array_prepare__(B)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] -reveal_type(AR_f8.__array_wrap__(B)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(AR_f8.__array_prepare__(B)) # E: ndarray[Any, dtype[object_]] +reveal_type(AR_f8.__array_wrap__(B)) # E: ndarray[Any, dtype[object_]] reveal_type(AR_V[0]) # E: Any reveal_type(AR_V[0, 0]) # E: Any reveal_type(AR_V[AR_i8]) # E: Any reveal_type(AR_V[AR_i8, AR_i8]) # E: Any -reveal_type(AR_V[AR_i8, None]) # E: numpy.ndarray[Any, numpy.dtype[numpy.void]] -reveal_type(AR_V[0, ...]) # E: numpy.ndarray[Any, numpy.dtype[numpy.void]] -reveal_type(AR_V[:]) # E: numpy.ndarray[Any, numpy.dtype[numpy.void]] -reveal_type(AR_V["a"]) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(AR_V[["a", "b"]]) # E: numpy.ndarray[Any, numpy.dtype[numpy.void]] +reveal_type(AR_V[AR_i8, None]) # E: ndarray[Any, dtype[void]] +reveal_type(AR_V[0, ...]) # E: ndarray[Any, dtype[void]] +reveal_type(AR_V[:]) # E: ndarray[Any, dtype[void]] +reveal_type(AR_V["a"]) # E: ndarray[Any, dtype[Any]] +reveal_type(AR_V[["a", "b"]]) # E: ndarray[Any, dtype[void]] reveal_type(AR_f8.dump("test_file")) # E: None reveal_type(AR_f8.dump(b"test_file")) # E: None diff --git a/numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi b/numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi index a44e1cfa1..c000bf45c 100644 --- a/numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +++ b/numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi @@ -3,33 +3,33 @@ import numpy as np nd = np.array([[1, 2], [3, 4]]) # reshape -reveal_type(nd.reshape()) # E: numpy.ndarray -reveal_type(nd.reshape(4)) # E: numpy.ndarray -reveal_type(nd.reshape(2, 2)) # E: numpy.ndarray -reveal_type(nd.reshape((2, 2))) # E: numpy.ndarray +reveal_type(nd.reshape()) # E: ndarray +reveal_type(nd.reshape(4)) # E: ndarray +reveal_type(nd.reshape(2, 2)) # E: ndarray +reveal_type(nd.reshape((2, 2))) # E: ndarray -reveal_type(nd.reshape((2, 2), order="C")) # E: numpy.ndarray -reveal_type(nd.reshape(4, order="C")) # E: numpy.ndarray +reveal_type(nd.reshape((2, 2), order="C")) # E: ndarray +reveal_type(nd.reshape(4, order="C")) # E: ndarray # resize does not return a value # transpose -reveal_type(nd.transpose()) # E: numpy.ndarray -reveal_type(nd.transpose(1, 0)) # E: numpy.ndarray -reveal_type(nd.transpose((1, 0))) # E: numpy.ndarray +reveal_type(nd.transpose()) # E: ndarray +reveal_type(nd.transpose(1, 0)) # E: ndarray +reveal_type(nd.transpose((1, 0))) # E: ndarray # swapaxes -reveal_type(nd.swapaxes(0, 1)) # E: numpy.ndarray +reveal_type(nd.swapaxes(0, 1)) # E: ndarray # flatten -reveal_type(nd.flatten()) # E: numpy.ndarray -reveal_type(nd.flatten("C")) # E: numpy.ndarray +reveal_type(nd.flatten()) # E: ndarray +reveal_type(nd.flatten("C")) # E: ndarray # ravel -reveal_type(nd.ravel()) # E: numpy.ndarray -reveal_type(nd.ravel("C")) # E: numpy.ndarray +reveal_type(nd.ravel()) # E: ndarray +reveal_type(nd.ravel("C")) # E: ndarray # squeeze -reveal_type(nd.squeeze()) # E: numpy.ndarray -reveal_type(nd.squeeze(0)) # E: numpy.ndarray -reveal_type(nd.squeeze((0, 2))) # E: numpy.ndarray +reveal_type(nd.squeeze()) # E: ndarray +reveal_type(nd.squeeze(0)) # E: ndarray +reveal_type(nd.squeeze((0, 2))) # E: ndarray diff --git a/numpy/typing/tests/data/reveal/nditer.pyi b/numpy/typing/tests/data/reveal/nditer.pyi index 473e922a2..65861da54 100644 --- a/numpy/typing/tests/data/reveal/nditer.pyi +++ b/numpy/typing/tests/data/reveal/nditer.pyi @@ -2,12 +2,12 @@ import numpy as np nditer_obj: np.nditer -reveal_type(np.nditer([0, 1], flags=["c_index"])) # E: numpy.nditer -reveal_type(np.nditer([0, 1], op_flags=[["readonly", "readonly"]])) # E: numpy.nditer -reveal_type(np.nditer([0, 1], op_dtypes=np.int_)) # E: numpy.nditer -reveal_type(np.nditer([0, 1], order="C", casting="no")) # E: numpy.nditer +reveal_type(np.nditer([0, 1], flags=["c_index"])) # E: nditer +reveal_type(np.nditer([0, 1], op_flags=[["readonly", "readonly"]])) # E: nditer +reveal_type(np.nditer([0, 1], op_dtypes=np.int_)) # E: nditer +reveal_type(np.nditer([0, 1], order="C", casting="no")) # E: nditer -reveal_type(nditer_obj.dtypes) # E: tuple[numpy.dtype[Any]] +reveal_type(nditer_obj.dtypes) # E: tuple[dtype[Any]] reveal_type(nditer_obj.finished) # E: bool reveal_type(nditer_obj.has_delayed_bufalloc) # E: bool reveal_type(nditer_obj.has_index) # E: bool @@ -17,16 +17,16 @@ reveal_type(nditer_obj.iterationneedsapi) # E: bool reveal_type(nditer_obj.iterindex) # E: int reveal_type(nditer_obj.iterrange) # E: tuple[builtins.int] reveal_type(nditer_obj.itersize) # E: int -reveal_type(nditer_obj.itviews) # E: tuple[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(nditer_obj.itviews) # E: tuple[ndarray[Any, dtype[Any]]] reveal_type(nditer_obj.multi_index) # E: tuple[builtins.int] reveal_type(nditer_obj.ndim) # E: int reveal_type(nditer_obj.nop) # E: int -reveal_type(nditer_obj.operands) # E: tuple[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(nditer_obj.operands) # E: tuple[ndarray[Any, dtype[Any]]] reveal_type(nditer_obj.shape) # E: tuple[builtins.int] -reveal_type(nditer_obj.value) # E: tuple[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(nditer_obj.value) # E: tuple[ndarray[Any, dtype[Any]]] reveal_type(nditer_obj.close()) # E: None -reveal_type(nditer_obj.copy()) # E: numpy.nditer +reveal_type(nditer_obj.copy()) # E: nditer reveal_type(nditer_obj.debug_print()) # E: None reveal_type(nditer_obj.enable_external_loop()) # E: None reveal_type(nditer_obj.iternext()) # E: bool @@ -35,12 +35,12 @@ reveal_type(nditer_obj.remove_multi_index()) # E: None reveal_type(nditer_obj.reset()) # E: None reveal_type(len(nditer_obj)) # E: int -reveal_type(iter(nditer_obj)) # E: Iterator[builtins.tuple[numpy.ndarray[Any, numpy.dtype[Any]]]] -reveal_type(next(nditer_obj)) # E: tuple[numpy.ndarray[Any, numpy.dtype[Any]]] -reveal_type(nditer_obj.__copy__()) # E: numpy.nditer +reveal_type(iter(nditer_obj)) # E: Iterator[builtins.tuple[ndarray[Any, dtype[Any]]]] +reveal_type(next(nditer_obj)) # E: tuple[ndarray[Any, dtype[Any]]] +reveal_type(nditer_obj.__copy__()) # E: nditer with nditer_obj as f: - reveal_type(f) # E: numpy.nditer -reveal_type(nditer_obj[0]) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(nditer_obj[:]) # E: tuple[numpy.ndarray[Any, numpy.dtype[Any]]] + reveal_type(f) # E: nditer +reveal_type(nditer_obj[0]) # E: ndarray[Any, dtype[Any]] +reveal_type(nditer_obj[:]) # E: tuple[ndarray[Any, dtype[Any]]] nditer_obj[0] = 0 nditer_obj[:] = [0, 1] diff --git a/numpy/typing/tests/data/reveal/npyio.pyi b/numpy/typing/tests/data/reveal/npyio.pyi index bee97a8e1..f54fbf610 100644 --- a/numpy/typing/tests/data/reveal/npyio.pyi +++ b/numpy/typing/tests/data/reveal/npyio.pyi @@ -34,11 +34,11 @@ reveal_type(npz_file.fid) # E: Union[None, typing.IO[builtins.str]] reveal_type(npz_file.files) # E: list[builtins.str] reveal_type(npz_file.allow_pickle) # E: bool reveal_type(npz_file.pickle_kwargs) # E: Union[None, typing.Mapping[builtins.str, Any]] -reveal_type(npz_file.f) # E: numpy.lib.npyio.BagObj[numpy.lib.npyio.NpzFile] -reveal_type(npz_file["test"]) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(npz_file.f) # E: lib.npyio.BagObj[lib.npyio.NpzFile] +reveal_type(npz_file["test"]) # E: ndarray[Any, dtype[Any]] reveal_type(len(npz_file)) # E: int with npz_file as f: - reveal_type(f) # E: numpy.lib.npyio.NpzFile + reveal_type(f) # E: lib.npyio.NpzFile reveal_type(np.load(bytes_file)) # E: Any reveal_type(np.load(pathlib_path, allow_pickle=True)) # E: Any @@ -60,32 +60,32 @@ reveal_type(np.savez_compressed(pathlib_path, ar1=AR_i8, ar2=AR_i8)) # E: None reveal_type(np.savez_compressed(str_path, AR_LIKE_f8, ar1=AR_i8)) # E: None reveal_type(np.savez_compressed(bytes_writer, AR_LIKE_f8, ar1=AR_i8)) # E: None -reveal_type(np.loadtxt(bytes_file)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.loadtxt(pathlib_path, dtype=np.str_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.loadtxt(str_path, dtype=str, skiprows=2)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.loadtxt(str_file, comments="test")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.loadtxt(str_path, delimiter="\n")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.loadtxt(str_path, ndmin=2)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.loadtxt(["1", "2", "3"])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] - -reveal_type(np.fromregex(bytes_file, "test", np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.fromregex(str_file, b"test", dtype=float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.fromregex(str_path, re.compile("test"), dtype=np.str_, encoding="utf8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.fromregex(pathlib_path, "test", np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.fromregex(bytes_reader, "test", np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] - -reveal_type(np.genfromtxt(bytes_file)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.genfromtxt(pathlib_path, dtype=np.str_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(np.genfromtxt(str_path, dtype=str, skiprows=2)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.genfromtxt(str_file, comments="test")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.genfromtxt(str_path, delimiter="\n")) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.genfromtxt(str_path, ndmin=2)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.genfromtxt(["1", "2", "3"], ndmin=2)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] - -reveal_type(np.recfromtxt(bytes_file)) # E: numpy.recarray[Any, numpy.dtype[numpy.record]] -reveal_type(np.recfromtxt(pathlib_path, usemask=True)) # E: numpy.ma.mrecords.MaskedRecords[Any, numpy.dtype[numpy.void]] -reveal_type(np.recfromtxt(["1", "2", "3"])) # E: numpy.recarray[Any, numpy.dtype[numpy.record]] - -reveal_type(np.recfromcsv(bytes_file)) # E: numpy.recarray[Any, numpy.dtype[numpy.record]] -reveal_type(np.recfromcsv(pathlib_path, usemask=True)) # E: numpy.ma.mrecords.MaskedRecords[Any, numpy.dtype[numpy.void]] -reveal_type(np.recfromcsv(["1", "2", "3"])) # E: numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.loadtxt(bytes_file)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.loadtxt(pathlib_path, dtype=np.str_)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.loadtxt(str_path, dtype=str, skiprows=2)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.loadtxt(str_file, comments="test")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.loadtxt(str_path, delimiter="\n")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.loadtxt(str_path, ndmin=2)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.loadtxt(["1", "2", "3"])) # E: ndarray[Any, dtype[{float64}]] + +reveal_type(np.fromregex(bytes_file, "test", np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fromregex(str_file, b"test", dtype=float)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.fromregex(str_path, re.compile("test"), dtype=np.str_, encoding="utf8")) # E: ndarray[Any, dtype[str_]] +reveal_type(np.fromregex(pathlib_path, "test", np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.fromregex(bytes_reader, "test", np.float64)) # E: ndarray[Any, dtype[{float64}]] + +reveal_type(np.genfromtxt(bytes_file)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.genfromtxt(pathlib_path, dtype=np.str_)) # E: ndarray[Any, dtype[str_]] +reveal_type(np.genfromtxt(str_path, dtype=str, skiprows=2)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.genfromtxt(str_file, comments="test")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.genfromtxt(str_path, delimiter="\n")) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.genfromtxt(str_path, ndmin=2)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.genfromtxt(["1", "2", "3"], ndmin=2)) # E: ndarray[Any, dtype[{float64}]] + +reveal_type(np.recfromtxt(bytes_file)) # E: recarray[Any, dtype[record]] +reveal_type(np.recfromtxt(pathlib_path, usemask=True)) # E: ma.mrecords.MaskedRecords[Any, dtype[void]] +reveal_type(np.recfromtxt(["1", "2", "3"])) # E: recarray[Any, dtype[record]] + +reveal_type(np.recfromcsv(bytes_file)) # E: recarray[Any, dtype[record]] +reveal_type(np.recfromcsv(pathlib_path, usemask=True)) # E: ma.mrecords.MaskedRecords[Any, dtype[void]] +reveal_type(np.recfromcsv(["1", "2", "3"])) # E: recarray[Any, dtype[record]] diff --git a/numpy/typing/tests/data/reveal/numeric.pyi b/numpy/typing/tests/data/reveal/numeric.pyi index 9b3b1419d..bf5653937 100644 --- a/numpy/typing/tests/data/reveal/numeric.pyi +++ b/numpy/typing/tests/data/reveal/numeric.pyi @@ -1,5 +1,5 @@ """ -Tests for :mod:`numpy.core.numeric`. +Tests for :mod:`core.numeric`. Does not include tests which fall under ``array_constructors``. @@ -34,83 +34,83 @@ reveal_type(np.count_nonzero(AR_i8, axis=0)) # E: Any reveal_type(np.isfortran(i8)) # E: bool reveal_type(np.isfortran(AR_i8)) # E: bool -reveal_type(np.argwhere(i8)) # E: numpy.ndarray[Any, numpy.dtype[{intp}]] -reveal_type(np.argwhere(AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{intp}]] - -reveal_type(np.flatnonzero(i8)) # E: numpy.ndarray[Any, numpy.dtype[{intp}]] -reveal_type(np.flatnonzero(AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[{intp}]] - -reveal_type(np.correlate(B, AR_i8, mode="valid")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.correlate(AR_i8, AR_i8, mode="same")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.correlate(AR_b, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.correlate(AR_b, AR_u8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(np.correlate(AR_i8, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.correlate(AR_i8, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.correlate(AR_i8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.correlate(AR_i8, AR_m)) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(np.correlate(AR_O, AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] - -reveal_type(np.convolve(B, AR_i8, mode="valid")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.convolve(AR_i8, AR_i8, mode="same")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.convolve(AR_b, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.convolve(AR_b, AR_u8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(np.convolve(AR_i8, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.convolve(AR_i8, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.convolve(AR_i8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.convolve(AR_i8, AR_m)) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(np.convolve(AR_O, AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] - -reveal_type(np.outer(i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.outer(B, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.outer(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] +reveal_type(np.argwhere(i8)) # E: ndarray[Any, dtype[{intp}]] +reveal_type(np.argwhere(AR_i8)) # E: ndarray[Any, dtype[{intp}]] + +reveal_type(np.flatnonzero(i8)) # E: ndarray[Any, dtype[{intp}]] +reveal_type(np.flatnonzero(AR_i8)) # E: ndarray[Any, dtype[{intp}]] + +reveal_type(np.correlate(B, AR_i8, mode="valid")) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.correlate(AR_i8, AR_i8, mode="same")) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.correlate(AR_b, AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.correlate(AR_b, AR_u8)) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(np.correlate(AR_i8, AR_b)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.correlate(AR_i8, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.correlate(AR_i8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.correlate(AR_i8, AR_m)) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(np.correlate(AR_O, AR_O)) # E: ndarray[Any, dtype[object_]] + +reveal_type(np.convolve(B, AR_i8, mode="valid")) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.convolve(AR_i8, AR_i8, mode="same")) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.convolve(AR_b, AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.convolve(AR_b, AR_u8)) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(np.convolve(AR_i8, AR_b)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.convolve(AR_i8, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.convolve(AR_i8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.convolve(AR_i8, AR_m)) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(np.convolve(AR_O, AR_O)) # E: ndarray[Any, dtype[object_]] + +reveal_type(np.outer(i8, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.outer(B, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.outer(AR_i8, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] reveal_type(np.outer(AR_i8, AR_i8, out=C)) # E: SubClass -reveal_type(np.outer(AR_b, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.outer(AR_b, AR_u8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(np.outer(AR_i8, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.convolve(AR_i8, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.outer(AR_i8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.outer(AR_i8, AR_m)) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(np.outer(AR_O, AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] - -reveal_type(np.tensordot(B, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.tensordot(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.tensordot(AR_i8, AR_i8, axes=0)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.tensordot(AR_i8, AR_i8, axes=(0, 1))) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.tensordot(AR_b, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.tensordot(AR_b, AR_u8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(np.tensordot(AR_i8, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.tensordot(AR_i8, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.tensordot(AR_i8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.tensordot(AR_i8, AR_m)) # E: numpy.ndarray[Any, numpy.dtype[numpy.timedelta64]] -reveal_type(np.tensordot(AR_O, AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(np.outer(AR_b, AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.outer(AR_b, AR_u8)) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(np.outer(AR_i8, AR_b)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.convolve(AR_i8, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.outer(AR_i8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.outer(AR_i8, AR_m)) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(np.outer(AR_O, AR_O)) # E: ndarray[Any, dtype[object_]] + +reveal_type(np.tensordot(B, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.tensordot(AR_i8, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.tensordot(AR_i8, AR_i8, axes=0)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.tensordot(AR_i8, AR_i8, axes=(0, 1))) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.tensordot(AR_b, AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.tensordot(AR_b, AR_u8)) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(np.tensordot(AR_i8, AR_b)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.tensordot(AR_i8, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.tensordot(AR_i8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.tensordot(AR_i8, AR_m)) # E: ndarray[Any, dtype[timedelta64]] +reveal_type(np.tensordot(AR_O, AR_O)) # E: ndarray[Any, dtype[object_]] reveal_type(np.isscalar(i8)) # E: bool reveal_type(np.isscalar(AR_i8)) # E: bool reveal_type(np.isscalar(B)) # E: bool -reveal_type(np.roll(AR_i8, 1)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.roll(AR_i8, (1, 2))) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.roll(B, 1)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.roll(AR_i8, 1)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.roll(AR_i8, (1, 2))) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.roll(B, 1)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.rollaxis(AR_i8, 0, 1)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] +reveal_type(np.rollaxis(AR_i8, 0, 1)) # E: ndarray[Any, dtype[{int64}]] -reveal_type(np.moveaxis(AR_i8, 0, 1)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.moveaxis(AR_i8, (0, 1), (1, 2))) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] +reveal_type(np.moveaxis(AR_i8, 0, 1)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.moveaxis(AR_i8, (0, 1), (1, 2))) # E: ndarray[Any, dtype[{int64}]] -reveal_type(np.cross(B, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.cross(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.cross(AR_b, AR_u8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[Any]]] -reveal_type(np.cross(AR_i8, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.cross(AR_i8, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.cross(AR_i8, AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.cross(AR_O, AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(np.cross(B, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.cross(AR_i8, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.cross(AR_b, AR_u8)) # E: ndarray[Any, dtype[unsignedinteger[Any]]] +reveal_type(np.cross(AR_i8, AR_b)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.cross(AR_i8, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.cross(AR_i8, AR_c16)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.cross(AR_O, AR_O)) # E: ndarray[Any, dtype[object_]] -reveal_type(np.indices([0, 1, 2])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(np.indices([0, 1, 2], sparse=True)) # E: tuple[numpy.ndarray[Any, numpy.dtype[{int_}]]] -reveal_type(np.indices([0, 1, 2], dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.indices([0, 1, 2], sparse=True, dtype=np.float64)) # E: tuple[numpy.ndarray[Any, numpy.dtype[{float64}]]] -reveal_type(np.indices([0, 1, 2], dtype=float)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.indices([0, 1, 2], sparse=True, dtype=float)) # E: tuple[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.indices([0, 1, 2])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(np.indices([0, 1, 2], sparse=True)) # E: tuple[ndarray[Any, dtype[{int_}]]] +reveal_type(np.indices([0, 1, 2], dtype=np.float64)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.indices([0, 1, 2], sparse=True, dtype=np.float64)) # E: tuple[ndarray[Any, dtype[{float64}]]] +reveal_type(np.indices([0, 1, 2], dtype=float)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.indices([0, 1, 2], sparse=True, dtype=float)) # E: tuple[ndarray[Any, dtype[Any]]] reveal_type(np.binary_repr(1)) # E: str @@ -120,10 +120,10 @@ reveal_type(np.allclose(i8, AR_i8)) # E: bool reveal_type(np.allclose(B, AR_i8)) # E: bool reveal_type(np.allclose(AR_i8, AR_i8)) # E: bool -reveal_type(np.isclose(i8, i8)) # E: numpy.bool_ -reveal_type(np.isclose(i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isclose(B, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isclose(AR_i8, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.isclose(i8, i8)) # E: bool_ +reveal_type(np.isclose(i8, AR_i8)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isclose(B, AR_i8)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isclose(AR_i8, AR_i8)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.array_equal(i8, AR_i8)) # E: bool reveal_type(np.array_equal(B, AR_i8)) # E: bool diff --git a/numpy/typing/tests/data/reveal/numerictypes.pyi b/numpy/typing/tests/data/reveal/numerictypes.pyi index c50a3a3d6..cc2335264 100644 --- a/numpy/typing/tests/data/reveal/numerictypes.pyi +++ b/numpy/typing/tests/data/reveal/numerictypes.pyi @@ -21,7 +21,7 @@ reveal_type(np.issubclass_(1, 1)) # E: Literal[False] reveal_type(np.sctype2char("S8")) # E: str reveal_type(np.sctype2char(list)) # E: str -reveal_type(np.find_common_type([np.int64], [np.int64])) # E: numpy.dtype[Any] +reveal_type(np.find_common_type([np.int64], [np.int64])) # E: dtype[Any] reveal_type(np.cast[int]) # E: _CastFunc reveal_type(np.cast["i8"]) # E: _CastFunc diff --git a/numpy/typing/tests/data/reveal/random.pyi b/numpy/typing/tests/data/reveal/random.pyi index 6fc35aced..4e06aa7d5 100644 --- a/numpy/typing/tests/data/reveal/random.pyi +++ b/numpy/typing/tests/data/reveal/random.pyi @@ -12,23 +12,23 @@ sfc64 = np.random.SFC64() philox = np.random.Philox() seedless_seq = np.random.bit_generator.SeedlessSeedSequence() -reveal_type(def_rng) # E: numpy.random._generator.Generator -reveal_type(mt19937) # E: numpy.random._mt19937.MT19937 -reveal_type(pcg64) # E: numpy.random._pcg64.PCG64 -reveal_type(sfc64) # E: numpy.random._sfc64.SFC64 -reveal_type(philox) # E: numpy.random._philox.Philox -reveal_type(seed_seq) # E: numpy.random.bit_generator.SeedSequence -reveal_type(seedless_seq) # E: numpy.random.bit_generator.SeedlessSeedSequence +reveal_type(def_rng) # E: random._generator.Generator +reveal_type(mt19937) # E: random._mt19937.MT19937 +reveal_type(pcg64) # E: random._pcg64.PCG64 +reveal_type(sfc64) # E: random._sfc64.SFC64 +reveal_type(philox) # E: random._philox.Philox +reveal_type(seed_seq) # E: random.bit_generator.SeedSequence +reveal_type(seedless_seq) # E: random.bit_generator.SeedlessSeedSequence mt19937_jumped = mt19937.jumped() mt19937_jumped3 = mt19937.jumped(3) mt19937_raw = mt19937.random_raw() mt19937_raw_arr = mt19937.random_raw(5) -reveal_type(mt19937_jumped) # E: numpy.random._mt19937.MT19937 -reveal_type(mt19937_jumped3) # E: numpy.random._mt19937.MT19937 +reveal_type(mt19937_jumped) # E: random._mt19937.MT19937 +reveal_type(mt19937_jumped3) # E: random._mt19937.MT19937 reveal_type(mt19937_raw) # E: int -reveal_type(mt19937_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(mt19937_raw_arr) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] reveal_type(mt19937.lock) # E: threading.Lock pcg64_jumped = pcg64.jumped() @@ -37,11 +37,11 @@ pcg64_adv = pcg64.advance(3) pcg64_raw = pcg64.random_raw() pcg64_raw_arr = pcg64.random_raw(5) -reveal_type(pcg64_jumped) # E: numpy.random._pcg64.PCG64 -reveal_type(pcg64_jumped3) # E: numpy.random._pcg64.PCG64 -reveal_type(pcg64_adv) # E: numpy.random._pcg64.PCG64 +reveal_type(pcg64_jumped) # E: random._pcg64.PCG64 +reveal_type(pcg64_jumped3) # E: random._pcg64.PCG64 +reveal_type(pcg64_adv) # E: random._pcg64.PCG64 reveal_type(pcg64_raw) # E: int -reveal_type(pcg64_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(pcg64_raw_arr) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] reveal_type(pcg64.lock) # E: threading.Lock philox_jumped = philox.jumped() @@ -50,25 +50,25 @@ philox_adv = philox.advance(3) philox_raw = philox.random_raw() philox_raw_arr = philox.random_raw(5) -reveal_type(philox_jumped) # E: numpy.random._philox.Philox -reveal_type(philox_jumped3) # E: numpy.random._philox.Philox -reveal_type(philox_adv) # E: numpy.random._philox.Philox +reveal_type(philox_jumped) # E: random._philox.Philox +reveal_type(philox_jumped3) # E: random._philox.Philox +reveal_type(philox_adv) # E: random._philox.Philox reveal_type(philox_raw) # E: int -reveal_type(philox_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(philox_raw_arr) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] reveal_type(philox.lock) # E: threading.Lock sfc64_raw = sfc64.random_raw() sfc64_raw_arr = sfc64.random_raw(5) reveal_type(sfc64_raw) # E: int -reveal_type(sfc64_raw_arr) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(sfc64_raw_arr) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] reveal_type(sfc64.lock) # E: threading.Lock -reveal_type(seed_seq.pool) # numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] +reveal_type(seed_seq.pool) # ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] reveal_type(seed_seq.entropy) # E:Union[None, int, Sequence[int]] -reveal_type(seed_seq.spawn(1)) # E: list[numpy.random.bit_generator.SeedSequence] -reveal_type(seed_seq.generate_state(8, "uint32")) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.unsignedinteger[numpy.typing._32Bit], numpy.unsignedinteger[numpy.typing._64Bit]]]] -reveal_type(seed_seq.generate_state(8, "uint64")) # E: numpy.ndarray[Any, numpy.dtype[Union[numpy.unsignedinteger[numpy.typing._32Bit], numpy.unsignedinteger[numpy.typing._64Bit]]]] +reveal_type(seed_seq.spawn(1)) # E: list[random.bit_generator.SeedSequence] +reveal_type(seed_seq.generate_state(8, "uint32")) # E: ndarray[Any, dtype[Union[unsignedinteger[typing._32Bit], unsignedinteger[typing._64Bit]]]] +reveal_type(seed_seq.generate_state(8, "uint64")) # E: ndarray[Any, dtype[Union[unsignedinteger[typing._32Bit], unsignedinteger[typing._64Bit]]]] def_gen: np.random.Generator = np.random.default_rng() @@ -96,17 +96,17 @@ reveal_type(def_gen.standard_normal(dtype="float32")) # E: float reveal_type(def_gen.standard_normal(dtype="double")) # E: float reveal_type(def_gen.standard_normal(dtype=np.float64)) # E: float reveal_type(def_gen.standard_normal(size=None)) # E: float -reveal_type(def_gen.standard_normal(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_normal(size=1, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_normal(size=1, dtype="f4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_normal(size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_normal(dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_normal(size=1, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_normal(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_normal(size=1, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_normal(out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_normal(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_normal(size=1, dtype="float64", out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] +reveal_type(def_gen.standard_normal(size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_normal(size=1, dtype=np.float32)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_normal(size=1, dtype="f4")) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_normal(size=1, dtype="float32", out=S_out)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_normal(dtype=np.float32, out=S_out)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_normal(size=1, dtype=np.float64)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_normal(size=1, dtype="float64")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_normal(size=1, dtype="f8")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_normal(out=D_out)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_normal(size=1, dtype="float64")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_normal(size=1, dtype="float64", out=D_out)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] reveal_type(def_gen.random()) # E: float reveal_type(def_gen.random(dtype=np.float32)) # E: float @@ -114,21 +114,21 @@ reveal_type(def_gen.random(dtype="float32")) # E: float reveal_type(def_gen.random(dtype="double")) # E: float reveal_type(def_gen.random(dtype=np.float64)) # E: float reveal_type(def_gen.random(size=None)) # E: float -reveal_type(def_gen.random(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.random(size=1, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.random(size=1, dtype="f4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.random(size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.random(dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.random(size=1, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.random(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.random(size=1, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.random(out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.random(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.random(size=1, dtype="float64", out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] +reveal_type(def_gen.random(size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.random(size=1, dtype=np.float32)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.random(size=1, dtype="f4")) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.random(size=1, dtype="float32", out=S_out)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.random(dtype=np.float32, out=S_out)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.random(size=1, dtype=np.float64)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.random(size=1, dtype="float64")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.random(size=1, dtype="f8")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.random(out=D_out)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.random(size=1, dtype="float64")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.random(size=1, dtype="float64", out=D_out)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] reveal_type(def_gen.standard_cauchy()) # E: float reveal_type(def_gen.standard_cauchy(size=None)) # E: float -reveal_type(def_gen.standard_cauchy(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.standard_cauchy(size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.standard_exponential()) # E: float reveal_type(def_gen.standard_exponential(method="inv")) # E: float @@ -138,367 +138,367 @@ reveal_type(def_gen.standard_exponential(dtype="double")) # E: float reveal_type(def_gen.standard_exponential(dtype=np.float64)) # E: float reveal_type(def_gen.standard_exponential(size=None)) # E: float reveal_type(def_gen.standard_exponential(size=None, method="inv")) # E: float -reveal_type(def_gen.standard_exponential(size=1, method="inv")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_exponential(size=1, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_exponential(size=1, dtype="f4", method="inv")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_exponential(size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_exponential(dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_exponential(size=1, dtype=np.float64, method="inv")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_exponential(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_exponential(size=1, dtype="f8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_exponential(out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_exponential(size=1, dtype="float64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_exponential(size=1, dtype="float64", out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] +reveal_type(def_gen.standard_exponential(size=1, method="inv")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_exponential(size=1, dtype=np.float32)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_exponential(size=1, dtype="f4", method="inv")) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_exponential(size=1, dtype="float32", out=S_out)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_exponential(dtype=np.float32, out=S_out)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_exponential(size=1, dtype=np.float64, method="inv")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_exponential(size=1, dtype="float64")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_exponential(size=1, dtype="f8")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_exponential(out=D_out)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_exponential(size=1, dtype="float64")) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_exponential(size=1, dtype="float64", out=D_out)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] reveal_type(def_gen.zipf(1.5)) # E: int reveal_type(def_gen.zipf(1.5, size=None)) # E: int -reveal_type(def_gen.zipf(1.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.zipf(D_arr_1p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.zipf(D_arr_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.zipf(D_arr_like_1p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.zipf(D_arr_like_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.zipf(1.5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.zipf(D_arr_1p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.zipf(D_arr_1p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.zipf(D_arr_like_1p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.zipf(D_arr_like_1p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.weibull(0.5)) # E: float reveal_type(def_gen.weibull(0.5, size=None)) # E: float -reveal_type(def_gen.weibull(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.weibull(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.weibull(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.weibull(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.weibull(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.weibull(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.weibull(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.weibull(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.weibull(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.weibull(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.standard_t(0.5)) # E: float reveal_type(def_gen.standard_t(0.5, size=None)) # E: float -reveal_type(def_gen.standard_t(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.standard_t(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.standard_t(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.standard_t(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.standard_t(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.standard_t(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.standard_t(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.standard_t(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.standard_t(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.standard_t(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.poisson(0.5)) # E: int reveal_type(def_gen.poisson(0.5, size=None)) # E: int -reveal_type(def_gen.poisson(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.poisson(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.poisson(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.poisson(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.poisson(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.poisson(0.5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.poisson(D_arr_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.poisson(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.poisson(D_arr_like_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.poisson(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.power(0.5)) # E: float reveal_type(def_gen.power(0.5, size=None)) # E: float -reveal_type(def_gen.power(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.power(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.power(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.power(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.power(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.power(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.power(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.power(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.power(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.power(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.pareto(0.5)) # E: float reveal_type(def_gen.pareto(0.5, size=None)) # E: float -reveal_type(def_gen.pareto(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.pareto(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.pareto(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.pareto(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.pareto(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.pareto(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.pareto(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.pareto(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.pareto(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.pareto(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.chisquare(0.5)) # E: float reveal_type(def_gen.chisquare(0.5, size=None)) # E: float -reveal_type(def_gen.chisquare(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.chisquare(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.chisquare(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.chisquare(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.chisquare(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.chisquare(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.chisquare(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.chisquare(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.chisquare(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.chisquare(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.exponential(0.5)) # E: float reveal_type(def_gen.exponential(0.5, size=None)) # E: float -reveal_type(def_gen.exponential(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.exponential(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.exponential(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.exponential(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.exponential(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.exponential(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.exponential(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.exponential(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.exponential(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.exponential(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.geometric(0.5)) # E: int reveal_type(def_gen.geometric(0.5, size=None)) # E: int -reveal_type(def_gen.geometric(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.geometric(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.geometric(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.geometric(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.geometric(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.geometric(0.5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.geometric(D_arr_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.geometric(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.geometric(D_arr_like_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.geometric(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.logseries(0.5)) # E: int reveal_type(def_gen.logseries(0.5, size=None)) # E: int -reveal_type(def_gen.logseries(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.logseries(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.logseries(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.logseries(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.logseries(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.logseries(0.5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.logseries(D_arr_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.logseries(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.logseries(D_arr_like_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.logseries(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.rayleigh(0.5)) # E: float reveal_type(def_gen.rayleigh(0.5, size=None)) # E: float -reveal_type(def_gen.rayleigh(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.rayleigh(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.rayleigh(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.rayleigh(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.rayleigh(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.rayleigh(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.rayleigh(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.rayleigh(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.rayleigh(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.rayleigh(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.standard_gamma(0.5)) # E: float reveal_type(def_gen.standard_gamma(0.5, size=None)) # E: float reveal_type(def_gen.standard_gamma(0.5, dtype="float32")) # E: float reveal_type(def_gen.standard_gamma(0.5, size=None, dtype="float32")) # E: float -reveal_type(def_gen.standard_gamma(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_gamma(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_gamma(D_arr_0p5, dtype="f4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_gamma(0.5, size=1, dtype="float32", out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_gamma(D_arr_0p5, dtype=np.float32, out=S_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._32Bit]]] -reveal_type(def_gen.standard_gamma(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_gamma(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_gamma(0.5, out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_gamma(D_arr_like_0p5, out=D_out)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1, out=D_out, dtype=np.float64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] +reveal_type(def_gen.standard_gamma(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_0p5, dtype="f4")) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_gamma(0.5, size=1, dtype="float32", out=S_out)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_0p5, dtype=np.float32, out=S_out)) # E: ndarray[Any, dtype[floating[typing._32Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_gamma(0.5, out=D_out)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_like_0p5, out=D_out)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(def_gen.standard_gamma(D_arr_like_0p5, size=1, out=D_out, dtype=np.float64)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] reveal_type(def_gen.vonmises(0.5, 0.5)) # E: float reveal_type(def_gen.vonmises(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.vonmises(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.vonmises(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.wald(0.5, 0.5)) # E: float reveal_type(def_gen.wald(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.wald(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.wald(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.uniform(0.5, 0.5)) # E: float reveal_type(def_gen.uniform(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.uniform(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.uniform(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.beta(0.5, 0.5)) # E: float reveal_type(def_gen.beta(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.beta(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.beta(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.f(0.5, 0.5)) # E: float reveal_type(def_gen.f(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.f(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.f(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.gamma(0.5, 0.5)) # E: float reveal_type(def_gen.gamma(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.gamma(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gamma(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.gumbel(0.5, 0.5)) # E: float reveal_type(def_gen.gumbel(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.gumbel(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.gumbel(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.laplace(0.5, 0.5)) # E: float reveal_type(def_gen.laplace(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.laplace(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.laplace(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.logistic(0.5, 0.5)) # E: float reveal_type(def_gen.logistic(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.logistic(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.logistic(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.lognormal(0.5, 0.5)) # E: float reveal_type(def_gen.lognormal(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.lognormal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.lognormal(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.noncentral_chisquare(0.5, 0.5)) # E: float reveal_type(def_gen.noncentral_chisquare(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.noncentral_chisquare(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.normal(0.5, 0.5)) # E: float reveal_type(def_gen.normal(0.5, 0.5, size=None)) # E: float -reveal_type(def_gen.normal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.normal(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.triangular(0.1, 0.5, 0.9)) # E: float reveal_type(def_gen.triangular(0.1, 0.5, 0.9, size=None)) # E: float -reveal_type(def_gen.triangular(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.triangular(0.1, 0.5, 0.9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_0p1, 0.5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(0.5, D_arr_like_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9)) # E: float reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=None)) # E: float -reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(def_gen.binomial(10, 0.5)) # E: int reveal_type(def_gen.binomial(10, 0.5, size=None)) # E: int -reveal_type(def_gen.binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.binomial(10, 0.5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(I_arr_10, 0.5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(10, D_arr_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(I_arr_10, 0.5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(10, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(I_arr_like_10, 0.5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(10, D_arr_like_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(I_arr_10, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.negative_binomial(10, 0.5)) # E: int reveal_type(def_gen.negative_binomial(10, 0.5, size=None)) # E: int -reveal_type(def_gen.negative_binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.negative_binomial(10, 0.5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(I_arr_10, 0.5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(10, D_arr_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(I_arr_10, 0.5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(10, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(I_arr_like_10, 0.5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(10, D_arr_like_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.hypergeometric(20, 20, 10)) # E: int reveal_type(def_gen.hypergeometric(20, 20, 10, size=None)) # E: int -reveal_type(def_gen.hypergeometric(20, 20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(I_arr_20, 20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(20, I_arr_20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.hypergeometric(20, 20, 10, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(I_arr_20, 20, 10)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(20, I_arr_20, 10)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(20, I_arr_20, 10, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(20, I_arr_like_20, 10)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, 10)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] I_int64_100: np.ndarray[Any, np.dtype[np.int64]] = np.array([100], dtype=np.int64) reveal_type(def_gen.integers(0, 100)) # E: int reveal_type(def_gen.integers(100)) # E: int -reveal_type(def_gen.integers([100])) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(0, [100])) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.integers([100])) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(0, [100])) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] I_bool_low: np.ndarray[Any, np.dtype[np.bool_]] = np.array([0], dtype=np.bool_) I_bool_low_like: List[int] = [0] @@ -509,25 +509,25 @@ reveal_type(def_gen.integers(2, dtype=bool)) # E: builtins.bool reveal_type(def_gen.integers(0, 2, dtype=bool)) # E: builtins.bool reveal_type(def_gen.integers(1, dtype=bool, endpoint=True)) # E: builtins.bool reveal_type(def_gen.integers(0, 1, dtype=bool, endpoint=True)) # E: builtins.bool -reveal_type(def_gen.integers(I_bool_low_like, 1, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(0, I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(I_bool_high_closed, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(0, I_bool_high_closed, dtype=bool, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] +reveal_type(def_gen.integers(I_bool_low_like, 1, dtype=bool, endpoint=True)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(I_bool_high_open, dtype=bool)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=bool)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(0, I_bool_high_open, dtype=bool)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(I_bool_high_closed, dtype=bool, endpoint=True)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=bool, endpoint=True)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(0, I_bool_high_closed, dtype=bool, endpoint=True)) # E: ndarray[Any, dtype[bool_] reveal_type(def_gen.integers(2, dtype=np.bool_)) # E: builtins.bool reveal_type(def_gen.integers(0, 2, dtype=np.bool_)) # E: builtins.bool reveal_type(def_gen.integers(1, dtype=np.bool_, endpoint=True)) # E: builtins.bool reveal_type(def_gen.integers(0, 1, dtype=np.bool_, endpoint=True)) # E: builtins.bool -reveal_type(def_gen.integers(I_bool_low_like, 1, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(0, I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(def_gen.integers(0, I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] +reveal_type(def_gen.integers(I_bool_low_like, 1, dtype=np.bool_, endpoint=True)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(I_bool_high_open, dtype=np.bool_)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=np.bool_)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(0, I_bool_high_open, dtype=np.bool_)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: ndarray[Any, dtype[bool_] +reveal_type(def_gen.integers(0, I_bool_high_closed, dtype=np.bool_, endpoint=True)) # E: ndarray[Any, dtype[bool_] I_u1_low: np.ndarray[Any, np.dtype[np.uint8]] = np.array([0], dtype=np.uint8) I_u1_low_like: List[int] = [0] @@ -538,37 +538,37 @@ reveal_type(def_gen.integers(256, dtype="u1")) # E: int reveal_type(def_gen.integers(0, 256, dtype="u1")) # E: int reveal_type(def_gen.integers(255, dtype="u1", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 255, dtype="u1", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u1_low_like, 255, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(0, I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_high_closed, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(0, I_u1_high_closed, dtype="u1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_low_like, 255, dtype="u1", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_high_open, dtype="u1")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="u1")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(0, I_u1_high_open, dtype="u1")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_high_closed, dtype="u1", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="u1", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(0, I_u1_high_closed, dtype="u1", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] reveal_type(def_gen.integers(256, dtype="uint8")) # E: int reveal_type(def_gen.integers(0, 256, dtype="uint8")) # E: int reveal_type(def_gen.integers(255, dtype="uint8", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 255, dtype="uint8", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u1_low_like, 255, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(0, I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_high_closed, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(0, I_u1_high_closed, dtype="uint8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_low_like, 255, dtype="uint8", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_high_open, dtype="uint8")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="uint8")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(0, I_u1_high_open, dtype="uint8")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_high_closed, dtype="uint8", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="uint8", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(0, I_u1_high_closed, dtype="uint8", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] reveal_type(def_gen.integers(256, dtype=np.uint8)) # E: int reveal_type(def_gen.integers(0, 256, dtype=np.uint8)) # E: int reveal_type(def_gen.integers(255, dtype=np.uint8, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 255, dtype=np.uint8, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u1_low_like, 255, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(0, I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(0, I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_low_like, 255, dtype=np.uint8, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_high_open, dtype=np.uint8)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype=np.uint8)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(0, I_u1_high_open, dtype=np.uint8)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(0, I_u1_high_closed, dtype=np.uint8, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] I_u2_low: np.ndarray[Any, np.dtype[np.uint16]] = np.array([0], dtype=np.uint16) I_u2_low_like: List[int] = [0] @@ -579,37 +579,37 @@ reveal_type(def_gen.integers(65536, dtype="u2")) # E: int reveal_type(def_gen.integers(0, 65536, dtype="u2")) # E: int reveal_type(def_gen.integers(65535, dtype="u2", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 65535, dtype="u2", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(0, I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_high_closed, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(0, I_u2_high_closed, dtype="u2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype="u2", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_high_open, dtype="u2")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="u2")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(0, I_u2_high_open, dtype="u2")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_high_closed, dtype="u2", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="u2", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(0, I_u2_high_closed, dtype="u2", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] reveal_type(def_gen.integers(65536, dtype="uint16")) # E: int reveal_type(def_gen.integers(0, 65536, dtype="uint16")) # E: int reveal_type(def_gen.integers(65535, dtype="uint16", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 65535, dtype="uint16", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(0, I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_high_closed, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(0, I_u2_high_closed, dtype="uint16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype="uint16", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_high_open, dtype="uint16")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="uint16")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(0, I_u2_high_open, dtype="uint16")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_high_closed, dtype="uint16", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="uint16", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(0, I_u2_high_closed, dtype="uint16", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] reveal_type(def_gen.integers(65536, dtype=np.uint16)) # E: int reveal_type(def_gen.integers(0, 65536, dtype=np.uint16)) # E: int reveal_type(def_gen.integers(65535, dtype=np.uint16, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 65535, dtype=np.uint16, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(0, I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(0, I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_low_like, 65535, dtype=np.uint16, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_high_open, dtype=np.uint16)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype=np.uint16)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(0, I_u2_high_open, dtype=np.uint16)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(0, I_u2_high_closed, dtype=np.uint16, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] I_u4_low: np.ndarray[Any, np.dtype[np.uint32]] = np.array([0], dtype=np.uint32) I_u4_low_like: List[int] = [0] @@ -620,62 +620,62 @@ reveal_type(def_gen.integers(4294967296, dtype=np.int_)) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype=np.int_)) # E: int reveal_type(def_gen.integers(4294967295, dtype=np.int_, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype=np.int_, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(def_gen.integers(I_u4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.int_, endpoint=True)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(def_gen.integers(I_u4_high_open, dtype=np.int_)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.int_)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.int_)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.int_, endpoint=True)) # E: ndarray[Any, dtype[{int_}]] reveal_type(def_gen.integers(4294967296, dtype="u4")) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype="u4")) # E: int reveal_type(def_gen.integers(4294967295, dtype="u4", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype="u4", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(0, I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_high_closed, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(0, I_u4_high_closed, dtype="u4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="u4", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_high_open, dtype="u4")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="u4")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(0, I_u4_high_open, dtype="u4")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_high_closed, dtype="u4", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="u4", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(0, I_u4_high_closed, dtype="u4", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] reveal_type(def_gen.integers(4294967296, dtype="uint32")) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype="uint32")) # E: int reveal_type(def_gen.integers(4294967295, dtype="uint32", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype="uint32", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(0, I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_high_closed, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(0, I_u4_high_closed, dtype="uint32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="uint32", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_high_open, dtype="uint32")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="uint32")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(0, I_u4_high_open, dtype="uint32")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_high_closed, dtype="uint32", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="uint32", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(0, I_u4_high_closed, dtype="uint32", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] reveal_type(def_gen.integers(4294967296, dtype=np.uint32)) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype=np.uint32)) # E: int reveal_type(def_gen.integers(4294967295, dtype=np.uint32, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype=np.uint32, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint32, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_high_open, dtype=np.uint32)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint32)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint32)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint32, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] reveal_type(def_gen.integers(4294967296, dtype=np.uint)) # E: int reveal_type(def_gen.integers(0, 4294967296, dtype=np.uint)) # E: int reveal_type(def_gen.integers(4294967295, dtype=np.uint, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 4294967295, dtype=np.uint, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] -reveal_type(def_gen.integers(I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] -reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] -reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] -reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] -reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] +reveal_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint, endpoint=True)) # E: ndarray[Any, dtype[{uint}]] +reveal_type(def_gen.integers(I_u4_high_open, dtype=np.uint)) # E: ndarray[Any, dtype[{uint}]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint)) # E: ndarray[Any, dtype[{uint}]] +reveal_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint)) # E: ndarray[Any, dtype[{uint}]] +reveal_type(def_gen.integers(I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: ndarray[Any, dtype[{uint}]] +reveal_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: ndarray[Any, dtype[{uint}]] +reveal_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint, endpoint=True)) # E: ndarray[Any, dtype[{uint}]] I_u8_low: np.ndarray[Any, np.dtype[np.uint64]] = np.array([0], dtype=np.uint64) I_u8_low_like: List[int] = [0] @@ -686,37 +686,37 @@ reveal_type(def_gen.integers(18446744073709551616, dtype="u8")) # E: int reveal_type(def_gen.integers(0, 18446744073709551616, dtype="u8")) # E: int reveal_type(def_gen.integers(18446744073709551615, dtype="u8", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 18446744073709551615, dtype="u8", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(0, I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_high_closed, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(0, I_u8_high_closed, dtype="u8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="u8", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_high_open, dtype="u8")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="u8")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(0, I_u8_high_open, dtype="u8")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_high_closed, dtype="u8", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="u8", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(0, I_u8_high_closed, dtype="u8", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] reveal_type(def_gen.integers(18446744073709551616, dtype="uint64")) # E: int reveal_type(def_gen.integers(0, 18446744073709551616, dtype="uint64")) # E: int reveal_type(def_gen.integers(18446744073709551615, dtype="uint64", endpoint=True)) # E: int reveal_type(def_gen.integers(0, 18446744073709551615, dtype="uint64", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(0, I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_high_closed, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(0, I_u8_high_closed, dtype="uint64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="uint64", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_high_open, dtype="uint64")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="uint64")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(0, I_u8_high_open, dtype="uint64")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_high_closed, dtype="uint64", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="uint64", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(0, I_u8_high_closed, dtype="uint64", endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] reveal_type(def_gen.integers(18446744073709551616, dtype=np.uint64)) # E: int reveal_type(def_gen.integers(0, 18446744073709551616, dtype=np.uint64)) # E: int reveal_type(def_gen.integers(18446744073709551615, dtype=np.uint64, endpoint=True)) # E: int reveal_type(def_gen.integers(0, 18446744073709551615, dtype=np.uint64, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(0, I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(0, I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype=np.uint64, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_high_open, dtype=np.uint64)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype=np.uint64)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(0, I_u8_high_open, dtype=np.uint64)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(0, I_u8_high_closed, dtype=np.uint64, endpoint=True)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] I_i1_low: np.ndarray[Any, np.dtype[np.int8]] = np.array([-128], dtype=np.int8) I_i1_low_like: List[int] = [-128] @@ -727,37 +727,37 @@ reveal_type(def_gen.integers(128, dtype="i1")) # E: int reveal_type(def_gen.integers(-128, 128, dtype="i1")) # E: int reveal_type(def_gen.integers(127, dtype="i1", endpoint=True)) # E: int reveal_type(def_gen.integers(-128, 127, dtype="i1", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i1_low_like, 127, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(-128, I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_high_closed, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype="i1", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_low_like, 127, dtype="i1", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_high_open, dtype="i1")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="i1")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(-128, I_i1_high_open, dtype="i1")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_high_closed, dtype="i1", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="i1", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype="i1", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] reveal_type(def_gen.integers(128, dtype="int8")) # E: int reveal_type(def_gen.integers(-128, 128, dtype="int8")) # E: int reveal_type(def_gen.integers(127, dtype="int8", endpoint=True)) # E: int reveal_type(def_gen.integers(-128, 127, dtype="int8", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i1_low_like, 127, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(-128, I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_high_closed, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype="int8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_low_like, 127, dtype="int8", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_high_open, dtype="int8")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="int8")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(-128, I_i1_high_open, dtype="int8")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_high_closed, dtype="int8", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="int8", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype="int8", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] reveal_type(def_gen.integers(128, dtype=np.int8)) # E: int reveal_type(def_gen.integers(-128, 128, dtype=np.int8)) # E: int reveal_type(def_gen.integers(127, dtype=np.int8, endpoint=True)) # E: int reveal_type(def_gen.integers(-128, 127, dtype=np.int8, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i1_low_like, 127, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(-128, I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_low_like, 127, dtype=np.int8, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_high_open, dtype=np.int8)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype=np.int8)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(-128, I_i1_high_open, dtype=np.int8)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(def_gen.integers(-128, I_i1_high_closed, dtype=np.int8, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] I_i2_low: np.ndarray[Any, np.dtype[np.int16]] = np.array([-32768], dtype=np.int16) I_i2_low_like: List[int] = [-32768] @@ -768,37 +768,37 @@ reveal_type(def_gen.integers(32768, dtype="i2")) # E: int reveal_type(def_gen.integers(-32768, 32768, dtype="i2")) # E: int reveal_type(def_gen.integers(32767, dtype="i2", endpoint=True)) # E: int reveal_type(def_gen.integers(-32768, 32767, dtype="i2", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_high_closed, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype="i2", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype="i2", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_high_open, dtype="i2")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="i2")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype="i2")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_high_closed, dtype="i2", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="i2", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype="i2", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] reveal_type(def_gen.integers(32768, dtype="int16")) # E: int reveal_type(def_gen.integers(-32768, 32768, dtype="int16")) # E: int reveal_type(def_gen.integers(32767, dtype="int16", endpoint=True)) # E: int reveal_type(def_gen.integers(-32768, 32767, dtype="int16", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_high_closed, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype="int16", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype="int16", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_high_open, dtype="int16")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="int16")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype="int16")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_high_closed, dtype="int16", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="int16", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype="int16", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] reveal_type(def_gen.integers(32768, dtype=np.int16)) # E: int reveal_type(def_gen.integers(-32768, 32768, dtype=np.int16)) # E: int reveal_type(def_gen.integers(32767, dtype=np.int16, endpoint=True)) # E: int reveal_type(def_gen.integers(-32768, 32767, dtype=np.int16, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_low_like, 32767, dtype=np.int16, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_high_open, dtype=np.int16)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype=np.int16)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(-32768, I_i2_high_open, dtype=np.int16)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(def_gen.integers(-32768, I_i2_high_closed, dtype=np.int16, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] I_i4_low: np.ndarray[Any, np.dtype[np.int32]] = np.array([-2147483648], dtype=np.int32) I_i4_low_like: List[int] = [-2147483648] @@ -809,37 +809,37 @@ reveal_type(def_gen.integers(2147483648, dtype="i4")) # E: int reveal_type(def_gen.integers(-2147483648, 2147483648, dtype="i4")) # E: int reveal_type(def_gen.integers(2147483647, dtype="i4", endpoint=True)) # E: int reveal_type(def_gen.integers(-2147483648, 2147483647, dtype="i4", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_high_closed, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="i4", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="i4", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_high_open, dtype="i4")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="i4")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="i4")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_high_closed, dtype="i4", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="i4", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="i4", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] reveal_type(def_gen.integers(2147483648, dtype="int32")) # E: int reveal_type(def_gen.integers(-2147483648, 2147483648, dtype="int32")) # E: int reveal_type(def_gen.integers(2147483647, dtype="int32", endpoint=True)) # E: int reveal_type(def_gen.integers(-2147483648, 2147483647, dtype="int32", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_high_closed, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="int32", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="int32", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_high_open, dtype="int32")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="int32")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="int32")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_high_closed, dtype="int32", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="int32", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="int32", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] reveal_type(def_gen.integers(2147483648, dtype=np.int32)) # E: int reveal_type(def_gen.integers(-2147483648, 2147483648, dtype=np.int32)) # E: int reveal_type(def_gen.integers(2147483647, dtype=np.int32, endpoint=True)) # E: int reveal_type(def_gen.integers(-2147483648, 2147483647, dtype=np.int32, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_low_like, 2147483647, dtype=np.int32, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_high_open, dtype=np.int32)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype=np.int32)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(-2147483648, I_i4_high_open, dtype=np.int32)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype=np.int32, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] I_i8_low: np.ndarray[Any, np.dtype[np.int64]] = np.array([-9223372036854775808], dtype=np.int64) I_i8_low_like: List[int] = [-9223372036854775808] @@ -850,37 +850,37 @@ reveal_type(def_gen.integers(9223372036854775808, dtype="i8")) # E: int reveal_type(def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="i8")) # E: int reveal_type(def_gen.integers(9223372036854775807, dtype="i8", endpoint=True)) # E: int reveal_type(def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="i8", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="i8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_high_open, dtype="i8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_low, I_i8_high_open, dtype="i8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="i8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_high_closed, dtype="i8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_low, I_i8_high_closed, dtype="i8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="i8", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="i8", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_high_open, dtype="i8")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_low, I_i8_high_open, dtype="i8")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="i8")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_high_closed, dtype="i8", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_low, I_i8_high_closed, dtype="i8", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="i8", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.integers(9223372036854775808, dtype="int64")) # E: int reveal_type(def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="int64")) # E: int reveal_type(def_gen.integers(9223372036854775807, dtype="int64", endpoint=True)) # E: int reveal_type(def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="int64", endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="int64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_high_open, dtype="int64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_low, I_i8_high_open, dtype="int64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="int64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_high_closed, dtype="int64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_low, I_i8_high_closed, dtype="int64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="int64", endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="int64", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_high_open, dtype="int64")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_low, I_i8_high_open, dtype="int64")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="int64")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_high_closed, dtype="int64", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_low, I_i8_high_closed, dtype="int64", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="int64", endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.integers(9223372036854775808, dtype=np.int64)) # E: int reveal_type(def_gen.integers(-9223372036854775808, 9223372036854775808, dtype=np.int64)) # E: int reveal_type(def_gen.integers(9223372036854775807, dtype=np.int64, endpoint=True)) # E: int reveal_type(def_gen.integers(-9223372036854775808, 9223372036854775807, dtype=np.int64, endpoint=True)) # E: int -reveal_type(def_gen.integers(I_i8_low_like, 9223372036854775807, dtype=np.int64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_high_open, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_low, I_i8_high_open, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_open, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_high_closed, dtype=np.int64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(I_i8_low, I_i8_high_closed, dtype=np.int64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype=np.int64, endpoint=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_low_like, 9223372036854775807, dtype=np.int64, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_high_open, dtype=np.int64)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_low, I_i8_high_open, dtype=np.int64)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_open, dtype=np.int64)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_high_closed, dtype=np.int64, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(I_i8_low, I_i8_high_closed, dtype=np.int64, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype=np.int64, endpoint=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.bit_generator) # E: BitGenerator @@ -888,50 +888,50 @@ reveal_type(def_gen.bit_generator) # E: BitGenerator reveal_type(def_gen.bytes(2)) # E: bytes reveal_type(def_gen.choice(5)) # E: int -reveal_type(def_gen.choice(5, 3)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.choice(5, 3, replace=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.choice(5, 3, p=[1 / 5] * 5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.choice(5, 3, p=[1 / 5] * 5, replace=False)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(def_gen.choice(5, 3)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.choice(5, 3, replace=True)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.choice(5, 3, p=[1 / 5] * 5)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.choice(5, 3, p=[1 / 5] * 5, replace=False)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"])) # E: Any -reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4]))) # E: numpy.ndarray[Any, Any] - -reveal_type(def_gen.dirichlet([0.5, 0.5])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.dirichlet(np.array([0.5, 0.5]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.dirichlet(np.array([0.5, 0.5]), size=3)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] - -reveal_type(def_gen.multinomial(20, [1 / 6.0] * 6)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.multinomial(20, np.array([0.5, 0.5]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.multinomial(20, [1 / 6.0] * 6, size=2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.multinomial([[10], [20]], [1 / 6.0] * 6, size=(2, 2))) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.multinomial(np.array([[10], [20]]), np.array([0.5, 0.5]), size=(2, 2))) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] - -reveal_type(def_gen.multivariate_hypergeometric([3, 5, 7], 2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=4)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=(4, 7))) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.multivariate_hypergeometric([3, 5, 7], 2, method="count")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, method="marginals")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] - -reveal_type(def_gen.multivariate_normal([0.0], [[1.0]])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.multivariate_normal([0.0], np.array([[1.0]]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.multivariate_normal(np.array([0.0]), [[1.0]])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(def_gen.multivariate_normal([0.0], np.array([[1.0]]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] - -reveal_type(def_gen.permutation(10)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(def_gen.permutation([1, 2, 3, 4])) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.permutation(np.array([1, 2, 3, 4]))) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.permutation(D_2D, axis=1)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.permuted(D_2D)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.permuted(D_2D_like)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.permuted(D_2D, axis=1)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.permuted(D_2D, out=D_2D)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.permuted(D_2D_like, out=D_2D)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.permuted(D_2D_like, out=D_2D)) # E: numpy.ndarray[Any, Any] -reveal_type(def_gen.permuted(D_2D, axis=1, out=D_2D)) # E: numpy.ndarray[Any, Any] +reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3)) # E: ndarray[Any, Any] +reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4)) # E: ndarray[Any, Any] +reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True)) # E: ndarray[Any, Any] +reveal_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4]))) # E: ndarray[Any, Any] + +reveal_type(def_gen.dirichlet([0.5, 0.5])) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.dirichlet(np.array([0.5, 0.5]))) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.dirichlet(np.array([0.5, 0.5]), size=3)) # E: ndarray[Any, dtype[floating[typing._64Bit]] + +reveal_type(def_gen.multinomial(20, [1 / 6.0] * 6)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.multinomial(20, np.array([0.5, 0.5]))) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.multinomial(20, [1 / 6.0] * 6, size=2)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.multinomial([[10], [20]], [1 / 6.0] * 6, size=(2, 2))) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.multinomial(np.array([[10], [20]]), np.array([0.5, 0.5]), size=(2, 2))) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] + +reveal_type(def_gen.multivariate_hypergeometric([3, 5, 7], 2)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=4)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=(4, 7))) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.multivariate_hypergeometric([3, 5, 7], 2, method="count")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, method="marginals")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] + +reveal_type(def_gen.multivariate_normal([0.0], [[1.0]])) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.multivariate_normal([0.0], np.array([[1.0]]))) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.multivariate_normal(np.array([0.0]), [[1.0]])) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(def_gen.multivariate_normal([0.0], np.array([[1.0]]))) # E: ndarray[Any, dtype[floating[typing._64Bit]] + +reveal_type(def_gen.permutation(10)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(def_gen.permutation([1, 2, 3, 4])) # E: ndarray[Any, Any] +reveal_type(def_gen.permutation(np.array([1, 2, 3, 4]))) # E: ndarray[Any, Any] +reveal_type(def_gen.permutation(D_2D, axis=1)) # E: ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D)) # E: ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D_like)) # E: ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D, axis=1)) # E: ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D, out=D_2D)) # E: ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D_like, out=D_2D)) # E: ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D_like, out=D_2D)) # E: ndarray[Any, Any] +reveal_type(def_gen.permuted(D_2D, axis=1, out=D_2D)) # E: ndarray[Any, Any] reveal_type(def_gen.shuffle(np.arange(10))) # E: None reveal_type(def_gen.shuffle([1, 2, 3, 4, 5])) # E: None @@ -949,559 +949,559 @@ random_st: np.random.RandomState = np.random.RandomState() reveal_type(random_st.standard_normal()) # E: float reveal_type(random_st.standard_normal(size=None)) # E: float -reveal_type(random_st.standard_normal(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] +reveal_type(random_st.standard_normal(size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] reveal_type(random_st.random()) # E: float reveal_type(random_st.random(size=None)) # E: float -reveal_type(random_st.random(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] +reveal_type(random_st.random(size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] reveal_type(random_st.standard_cauchy()) # E: float reveal_type(random_st.standard_cauchy(size=None)) # E: float -reveal_type(random_st.standard_cauchy(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.standard_cauchy(size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.standard_exponential()) # E: float reveal_type(random_st.standard_exponential(size=None)) # E: float -reveal_type(random_st.standard_exponential(size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] +reveal_type(random_st.standard_exponential(size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] reveal_type(random_st.zipf(1.5)) # E: int reveal_type(random_st.zipf(1.5, size=None)) # E: int -reveal_type(random_st.zipf(1.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.zipf(D_arr_1p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.zipf(D_arr_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.zipf(D_arr_like_1p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.zipf(D_arr_like_1p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.zipf(1.5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.zipf(D_arr_1p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.zipf(D_arr_1p5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.zipf(D_arr_like_1p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.zipf(D_arr_like_1p5, size=1)) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.weibull(0.5)) # E: float reveal_type(random_st.weibull(0.5, size=None)) # E: float -reveal_type(random_st.weibull(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.weibull(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.weibull(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.weibull(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.weibull(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.weibull(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.weibull(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.weibull(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.weibull(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.weibull(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.standard_t(0.5)) # E: float reveal_type(random_st.standard_t(0.5, size=None)) # E: float -reveal_type(random_st.standard_t(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.standard_t(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.standard_t(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.standard_t(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.standard_t(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.standard_t(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.standard_t(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.standard_t(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.standard_t(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.standard_t(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.poisson(0.5)) # E: int reveal_type(random_st.poisson(0.5, size=None)) # E: int -reveal_type(random_st.poisson(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.poisson(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.poisson(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.poisson(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.poisson(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.poisson(0.5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.poisson(D_arr_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.poisson(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.poisson(D_arr_like_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.poisson(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.power(0.5)) # E: float reveal_type(random_st.power(0.5, size=None)) # E: float -reveal_type(random_st.power(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.power(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.power(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.power(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.power(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.power(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.power(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.power(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.power(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.power(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.pareto(0.5)) # E: float reveal_type(random_st.pareto(0.5, size=None)) # E: float -reveal_type(random_st.pareto(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.pareto(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.pareto(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.pareto(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.pareto(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.pareto(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.pareto(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.pareto(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.pareto(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.pareto(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.chisquare(0.5)) # E: float reveal_type(random_st.chisquare(0.5, size=None)) # E: float -reveal_type(random_st.chisquare(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.chisquare(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.chisquare(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.chisquare(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.chisquare(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.chisquare(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.chisquare(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.chisquare(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.chisquare(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.chisquare(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.exponential(0.5)) # E: float reveal_type(random_st.exponential(0.5, size=None)) # E: float -reveal_type(random_st.exponential(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.exponential(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.exponential(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.exponential(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.exponential(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.exponential(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.exponential(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.exponential(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.exponential(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.exponential(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.geometric(0.5)) # E: int reveal_type(random_st.geometric(0.5, size=None)) # E: int -reveal_type(random_st.geometric(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.geometric(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.geometric(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.geometric(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.geometric(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.geometric(0.5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.geometric(D_arr_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.geometric(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.geometric(D_arr_like_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.geometric(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.logseries(0.5)) # E: int reveal_type(random_st.logseries(0.5, size=None)) # E: int -reveal_type(random_st.logseries(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.logseries(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.logseries(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.logseries(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.logseries(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.logseries(0.5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.logseries(D_arr_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.logseries(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.logseries(D_arr_like_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.logseries(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.rayleigh(0.5)) # E: float reveal_type(random_st.rayleigh(0.5, size=None)) # E: float -reveal_type(random_st.rayleigh(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.rayleigh(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.rayleigh(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.rayleigh(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.rayleigh(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.rayleigh(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.rayleigh(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.rayleigh(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.rayleigh(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.rayleigh(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.standard_gamma(0.5)) # E: float reveal_type(random_st.standard_gamma(0.5, size=None)) # E: float -reveal_type(random_st.standard_gamma(0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(random_st.standard_gamma(D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(random_st.standard_gamma(D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(random_st.standard_gamma(D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(random_st.standard_gamma(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] -reveal_type(random_st.standard_gamma(D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]]] +reveal_type(random_st.standard_gamma(0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(random_st.standard_gamma(D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(random_st.standard_gamma(D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(random_st.standard_gamma(D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(random_st.standard_gamma(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] +reveal_type(random_st.standard_gamma(D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]]] reveal_type(random_st.vonmises(0.5, 0.5)) # E: float reveal_type(random_st.vonmises(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.vonmises(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.vonmises(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.wald(0.5, 0.5)) # E: float reveal_type(random_st.wald(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.wald(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.wald(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.wald(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.wald(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.uniform(0.5, 0.5)) # E: float reveal_type(random_st.uniform(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.uniform(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.uniform(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.beta(0.5, 0.5)) # E: float reveal_type(random_st.beta(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.beta(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.beta(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.beta(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.beta(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.f(0.5, 0.5)) # E: float reveal_type(random_st.f(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.f(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.f(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.f(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.f(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.gamma(0.5, 0.5)) # E: float reveal_type(random_st.gamma(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.gamma(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.gamma(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.gumbel(0.5, 0.5)) # E: float reveal_type(random_st.gumbel(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.gumbel(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.gumbel(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.laplace(0.5, 0.5)) # E: float reveal_type(random_st.laplace(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.laplace(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.laplace(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.logistic(0.5, 0.5)) # E: float reveal_type(random_st.logistic(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.logistic(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.logistic(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.lognormal(0.5, 0.5)) # E: float reveal_type(random_st.lognormal(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.lognormal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.lognormal(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.noncentral_chisquare(0.5, 0.5)) # E: float reveal_type(random_st.noncentral_chisquare(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.noncentral_chisquare(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.normal(0.5, 0.5)) # E: float reveal_type(random_st.normal(0.5, 0.5, size=None)) # E: float -reveal_type(random_st.normal(0.5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(D_arr_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(0.5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(D_arr_0p5, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(0.5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(D_arr_like_0p5, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(0.5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(D_arr_0p5, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(D_arr_like_0p5, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(D_arr_0p5, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.normal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.normal(0.5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(D_arr_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(0.5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(D_arr_0p5, 0.5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(0.5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(D_arr_like_0p5, 0.5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(0.5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(D_arr_0p5, D_arr_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(D_arr_like_0p5, D_arr_like_0p5)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(D_arr_0p5, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.normal(D_arr_like_0p5, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.triangular(0.1, 0.5, 0.9)) # E: float reveal_type(random_st.triangular(0.1, 0.5, 0.9, size=None)) # E: float -reveal_type(random_st.triangular(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.triangular(0.1, 0.5, 0.9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(D_arr_0p1, 0.5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(0.1, D_arr_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(0.1, D_arr_0p5, 0.9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(0.5, D_arr_like_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(D_arr_0p1, D_arr_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.noncentral_f(0.1, 0.5, 0.9)) # E: float reveal_type(random_st.noncentral_f(0.1, 0.5, 0.9, size=None)) # E: float -reveal_type(random_st.noncentral_f(0.1, 0.5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(D_arr_0p1, 0.5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(0.1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(0.1, D_arr_0p5, 0.9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(0.5, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.noncentral_f(0.1, 0.5, 0.9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(D_arr_0p1, 0.5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(0.1, D_arr_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(0.1, D_arr_0p5, 0.9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(0.5, D_arr_like_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.binomial(10, 0.5)) # E: int reveal_type(random_st.binomial(10, 0.5, size=None)) # E: int -reveal_type(random_st.binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.binomial(10, 0.5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(I_arr_10, 0.5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(10, D_arr_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(I_arr_10, 0.5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(10, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(I_arr_like_10, 0.5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(10, D_arr_like_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(I_arr_10, D_arr_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(I_arr_like_10, D_arr_like_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(I_arr_10, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.negative_binomial(10, 0.5)) # E: int reveal_type(random_st.negative_binomial(10, 0.5, size=None)) # E: int -reveal_type(random_st.negative_binomial(10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(I_arr_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(I_arr_10, 0.5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(I_arr_like_10, 0.5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(I_arr_10, D_arr_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(I_arr_10, D_arr_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.negative_binomial(10, 0.5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(I_arr_10, 0.5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(10, D_arr_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(I_arr_10, 0.5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(10, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(I_arr_like_10, 0.5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(10, D_arr_like_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(I_arr_10, D_arr_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(I_arr_10, D_arr_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1)) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.hypergeometric(20, 20, 10)) # E: int reveal_type(random_st.hypergeometric(20, 20, 10, size=None)) # E: int -reveal_type(random_st.hypergeometric(20, 20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(I_arr_20, 20, 10)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(20, I_arr_20, 10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(I_arr_like_20, 20, I_arr_10)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(I_arr_20, I_arr_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(I_arr_like_20, I_arr_like_20, 10)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.hypergeometric(20, 20, 10, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(I_arr_20, 20, 10)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(20, I_arr_20, 10)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(20, I_arr_20, 10, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(I_arr_like_20, 20, I_arr_10)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(20, I_arr_like_20, 10)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(I_arr_20, I_arr_20, 10)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(I_arr_like_20, I_arr_like_20, 10)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1)) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.randint(0, 100)) # E: int reveal_type(random_st.randint(100)) # E: int -reveal_type(random_st.randint([100])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.randint(0, [100])) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.randint([100])) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.randint(0, [100])) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.randint(2, dtype=bool)) # E: builtins.bool reveal_type(random_st.randint(0, 2, dtype=bool)) # E: builtins.bool -reveal_type(random_st.randint(I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(random_st.randint(I_bool_low, I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(random_st.randint(0, I_bool_high_open, dtype=bool)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] +reveal_type(random_st.randint(I_bool_high_open, dtype=bool)) # E: ndarray[Any, dtype[bool_] +reveal_type(random_st.randint(I_bool_low, I_bool_high_open, dtype=bool)) # E: ndarray[Any, dtype[bool_] +reveal_type(random_st.randint(0, I_bool_high_open, dtype=bool)) # E: ndarray[Any, dtype[bool_] reveal_type(random_st.randint(2, dtype=np.bool_)) # E: builtins.bool reveal_type(random_st.randint(0, 2, dtype=np.bool_)) # E: builtins.bool -reveal_type(random_st.randint(I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(random_st.randint(I_bool_low, I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] -reveal_type(random_st.randint(0, I_bool_high_open, dtype=np.bool_)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_] +reveal_type(random_st.randint(I_bool_high_open, dtype=np.bool_)) # E: ndarray[Any, dtype[bool_] +reveal_type(random_st.randint(I_bool_low, I_bool_high_open, dtype=np.bool_)) # E: ndarray[Any, dtype[bool_] +reveal_type(random_st.randint(0, I_bool_high_open, dtype=np.bool_)) # E: ndarray[Any, dtype[bool_] reveal_type(random_st.randint(256, dtype="u1")) # E: int reveal_type(random_st.randint(0, 256, dtype="u1")) # E: int -reveal_type(random_st.randint(I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(I_u1_low, I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(0, I_u1_high_open, dtype="u1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] +reveal_type(random_st.randint(I_u1_high_open, dtype="u1")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(random_st.randint(I_u1_low, I_u1_high_open, dtype="u1")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(random_st.randint(0, I_u1_high_open, dtype="u1")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] reveal_type(random_st.randint(256, dtype="uint8")) # E: int reveal_type(random_st.randint(0, 256, dtype="uint8")) # E: int -reveal_type(random_st.randint(I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(I_u1_low, I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(0, I_u1_high_open, dtype="uint8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] +reveal_type(random_st.randint(I_u1_high_open, dtype="uint8")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(random_st.randint(I_u1_low, I_u1_high_open, dtype="uint8")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(random_st.randint(0, I_u1_high_open, dtype="uint8")) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] reveal_type(random_st.randint(256, dtype=np.uint8)) # E: int reveal_type(random_st.randint(0, 256, dtype=np.uint8)) # E: int -reveal_type(random_st.randint(I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(I_u1_low, I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(0, I_u1_high_open, dtype=np.uint8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._8Bit]]] +reveal_type(random_st.randint(I_u1_high_open, dtype=np.uint8)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(random_st.randint(I_u1_low, I_u1_high_open, dtype=np.uint8)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] +reveal_type(random_st.randint(0, I_u1_high_open, dtype=np.uint8)) # E: ndarray[Any, dtype[unsignedinteger[typing._8Bit]]] reveal_type(random_st.randint(65536, dtype="u2")) # E: int reveal_type(random_st.randint(0, 65536, dtype="u2")) # E: int -reveal_type(random_st.randint(I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(I_u2_low, I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(0, I_u2_high_open, dtype="u2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] +reveal_type(random_st.randint(I_u2_high_open, dtype="u2")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(random_st.randint(I_u2_low, I_u2_high_open, dtype="u2")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(random_st.randint(0, I_u2_high_open, dtype="u2")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] reveal_type(random_st.randint(65536, dtype="uint16")) # E: int reveal_type(random_st.randint(0, 65536, dtype="uint16")) # E: int -reveal_type(random_st.randint(I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(I_u2_low, I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(0, I_u2_high_open, dtype="uint16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] +reveal_type(random_st.randint(I_u2_high_open, dtype="uint16")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(random_st.randint(I_u2_low, I_u2_high_open, dtype="uint16")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(random_st.randint(0, I_u2_high_open, dtype="uint16")) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] reveal_type(random_st.randint(65536, dtype=np.uint16)) # E: int reveal_type(random_st.randint(0, 65536, dtype=np.uint16)) # E: int -reveal_type(random_st.randint(I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(I_u2_low, I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(0, I_u2_high_open, dtype=np.uint16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._16Bit]]] +reveal_type(random_st.randint(I_u2_high_open, dtype=np.uint16)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(random_st.randint(I_u2_low, I_u2_high_open, dtype=np.uint16)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] +reveal_type(random_st.randint(0, I_u2_high_open, dtype=np.uint16)) # E: ndarray[Any, dtype[unsignedinteger[typing._16Bit]]] reveal_type(random_st.randint(4294967296, dtype="u4")) # E: int reveal_type(random_st.randint(0, 4294967296, dtype="u4")) # E: int -reveal_type(random_st.randint(I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(I_u4_low, I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(0, I_u4_high_open, dtype="u4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] +reveal_type(random_st.randint(I_u4_high_open, dtype="u4")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(random_st.randint(I_u4_low, I_u4_high_open, dtype="u4")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(random_st.randint(0, I_u4_high_open, dtype="u4")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] reveal_type(random_st.randint(4294967296, dtype="uint32")) # E: int reveal_type(random_st.randint(0, 4294967296, dtype="uint32")) # E: int -reveal_type(random_st.randint(I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(I_u4_low, I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(0, I_u4_high_open, dtype="uint32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] +reveal_type(random_st.randint(I_u4_high_open, dtype="uint32")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(random_st.randint(I_u4_low, I_u4_high_open, dtype="uint32")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(random_st.randint(0, I_u4_high_open, dtype="uint32")) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] reveal_type(random_st.randint(4294967296, dtype=np.uint32)) # E: int reveal_type(random_st.randint(0, 4294967296, dtype=np.uint32)) # E: int -reveal_type(random_st.randint(I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(I_u4_low, I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(0, I_u4_high_open, dtype=np.uint32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]] +reveal_type(random_st.randint(I_u4_high_open, dtype=np.uint32)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(random_st.randint(I_u4_low, I_u4_high_open, dtype=np.uint32)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] +reveal_type(random_st.randint(0, I_u4_high_open, dtype=np.uint32)) # E: ndarray[Any, dtype[unsignedinteger[typing._32Bit]]] reveal_type(random_st.randint(4294967296, dtype=np.uint)) # E: int reveal_type(random_st.randint(0, 4294967296, dtype=np.uint)) # E: int -reveal_type(random_st.randint(I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] -reveal_type(random_st.randint(I_u4_low, I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] -reveal_type(random_st.randint(0, I_u4_high_open, dtype=np.uint)) # E: numpy.ndarray[Any, numpy.dtype[{uint}]] +reveal_type(random_st.randint(I_u4_high_open, dtype=np.uint)) # E: ndarray[Any, dtype[{uint}]] +reveal_type(random_st.randint(I_u4_low, I_u4_high_open, dtype=np.uint)) # E: ndarray[Any, dtype[{uint}]] +reveal_type(random_st.randint(0, I_u4_high_open, dtype=np.uint)) # E: ndarray[Any, dtype[{uint}]] reveal_type(random_st.randint(18446744073709551616, dtype="u8")) # E: int reveal_type(random_st.randint(0, 18446744073709551616, dtype="u8")) # E: int -reveal_type(random_st.randint(I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(I_u8_low, I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(0, I_u8_high_open, dtype="u8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(random_st.randint(I_u8_high_open, dtype="u8")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(random_st.randint(I_u8_low, I_u8_high_open, dtype="u8")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(random_st.randint(0, I_u8_high_open, dtype="u8")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] reveal_type(random_st.randint(18446744073709551616, dtype="uint64")) # E: int reveal_type(random_st.randint(0, 18446744073709551616, dtype="uint64")) # E: int -reveal_type(random_st.randint(I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(I_u8_low, I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(0, I_u8_high_open, dtype="uint64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(random_st.randint(I_u8_high_open, dtype="uint64")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(random_st.randint(I_u8_low, I_u8_high_open, dtype="uint64")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(random_st.randint(0, I_u8_high_open, dtype="uint64")) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] reveal_type(random_st.randint(18446744073709551616, dtype=np.uint64)) # E: int reveal_type(random_st.randint(0, 18446744073709551616, dtype=np.uint64)) # E: int -reveal_type(random_st.randint(I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(I_u8_low, I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(0, I_u8_high_open, dtype=np.uint64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._64Bit]]] +reveal_type(random_st.randint(I_u8_high_open, dtype=np.uint64)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(random_st.randint(I_u8_low, I_u8_high_open, dtype=np.uint64)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] +reveal_type(random_st.randint(0, I_u8_high_open, dtype=np.uint64)) # E: ndarray[Any, dtype[unsignedinteger[typing._64Bit]]] reveal_type(random_st.randint(128, dtype="i1")) # E: int reveal_type(random_st.randint(-128, 128, dtype="i1")) # E: int -reveal_type(random_st.randint(I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(I_i1_low, I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(-128, I_i1_high_open, dtype="i1")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] +reveal_type(random_st.randint(I_i1_high_open, dtype="i1")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(random_st.randint(I_i1_low, I_i1_high_open, dtype="i1")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(random_st.randint(-128, I_i1_high_open, dtype="i1")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] reveal_type(random_st.randint(128, dtype="int8")) # E: int reveal_type(random_st.randint(-128, 128, dtype="int8")) # E: int -reveal_type(random_st.randint(I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(I_i1_low, I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(-128, I_i1_high_open, dtype="int8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] +reveal_type(random_st.randint(I_i1_high_open, dtype="int8")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(random_st.randint(I_i1_low, I_i1_high_open, dtype="int8")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(random_st.randint(-128, I_i1_high_open, dtype="int8")) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] reveal_type(random_st.randint(128, dtype=np.int8)) # E: int reveal_type(random_st.randint(-128, 128, dtype=np.int8)) # E: int -reveal_type(random_st.randint(I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(I_i1_low, I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] -reveal_type(random_st.randint(-128, I_i1_high_open, dtype=np.int8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._8Bit]]] +reveal_type(random_st.randint(I_i1_high_open, dtype=np.int8)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(random_st.randint(I_i1_low, I_i1_high_open, dtype=np.int8)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] +reveal_type(random_st.randint(-128, I_i1_high_open, dtype=np.int8)) # E: ndarray[Any, dtype[signedinteger[typing._8Bit]]] reveal_type(random_st.randint(32768, dtype="i2")) # E: int reveal_type(random_st.randint(-32768, 32768, dtype="i2")) # E: int -reveal_type(random_st.randint(I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(I_i2_low, I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(-32768, I_i2_high_open, dtype="i2")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] +reveal_type(random_st.randint(I_i2_high_open, dtype="i2")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(random_st.randint(I_i2_low, I_i2_high_open, dtype="i2")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(random_st.randint(-32768, I_i2_high_open, dtype="i2")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] reveal_type(random_st.randint(32768, dtype="int16")) # E: int reveal_type(random_st.randint(-32768, 32768, dtype="int16")) # E: int -reveal_type(random_st.randint(I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(I_i2_low, I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(-32768, I_i2_high_open, dtype="int16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] +reveal_type(random_st.randint(I_i2_high_open, dtype="int16")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(random_st.randint(I_i2_low, I_i2_high_open, dtype="int16")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(random_st.randint(-32768, I_i2_high_open, dtype="int16")) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] reveal_type(random_st.randint(32768, dtype=np.int16)) # E: int reveal_type(random_st.randint(-32768, 32768, dtype=np.int16)) # E: int -reveal_type(random_st.randint(I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(I_i2_low, I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] -reveal_type(random_st.randint(-32768, I_i2_high_open, dtype=np.int16)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._16Bit]]] +reveal_type(random_st.randint(I_i2_high_open, dtype=np.int16)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(random_st.randint(I_i2_low, I_i2_high_open, dtype=np.int16)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] +reveal_type(random_st.randint(-32768, I_i2_high_open, dtype=np.int16)) # E: ndarray[Any, dtype[signedinteger[typing._16Bit]]] reveal_type(random_st.randint(2147483648, dtype="i4")) # E: int reveal_type(random_st.randint(-2147483648, 2147483648, dtype="i4")) # E: int -reveal_type(random_st.randint(I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(I_i4_low, I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(-2147483648, I_i4_high_open, dtype="i4")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] +reveal_type(random_st.randint(I_i4_high_open, dtype="i4")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(random_st.randint(I_i4_low, I_i4_high_open, dtype="i4")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(random_st.randint(-2147483648, I_i4_high_open, dtype="i4")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] reveal_type(random_st.randint(2147483648, dtype="int32")) # E: int reveal_type(random_st.randint(-2147483648, 2147483648, dtype="int32")) # E: int -reveal_type(random_st.randint(I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(I_i4_low, I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(-2147483648, I_i4_high_open, dtype="int32")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] +reveal_type(random_st.randint(I_i4_high_open, dtype="int32")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(random_st.randint(I_i4_low, I_i4_high_open, dtype="int32")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(random_st.randint(-2147483648, I_i4_high_open, dtype="int32")) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] reveal_type(random_st.randint(2147483648, dtype=np.int32)) # E: int reveal_type(random_st.randint(-2147483648, 2147483648, dtype=np.int32)) # E: int -reveal_type(random_st.randint(I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(I_i4_low, I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] -reveal_type(random_st.randint(-2147483648, I_i4_high_open, dtype=np.int32)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._32Bit]]] +reveal_type(random_st.randint(I_i4_high_open, dtype=np.int32)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(random_st.randint(I_i4_low, I_i4_high_open, dtype=np.int32)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] +reveal_type(random_st.randint(-2147483648, I_i4_high_open, dtype=np.int32)) # E: ndarray[Any, dtype[signedinteger[typing._32Bit]]] reveal_type(random_st.randint(2147483648, dtype=np.int_)) # E: int reveal_type(random_st.randint(-2147483648, 2147483648, dtype=np.int_)) # E: int -reveal_type(random_st.randint(I_i4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.randint(I_i4_low, I_i4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.randint(-2147483648, I_i4_high_open, dtype=np.int_)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.randint(I_i4_high_open, dtype=np.int_)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.randint(I_i4_low, I_i4_high_open, dtype=np.int_)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.randint(-2147483648, I_i4_high_open, dtype=np.int_)) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.randint(9223372036854775808, dtype="i8")) # E: int reveal_type(random_st.randint(-9223372036854775808, 9223372036854775808, dtype="i8")) # E: int -reveal_type(random_st.randint(I_i8_high_open, dtype="i8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(I_i8_low, I_i8_high_open, dtype="i8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(-9223372036854775808, I_i8_high_open, dtype="i8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(random_st.randint(I_i8_high_open, dtype="i8")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(random_st.randint(I_i8_low, I_i8_high_open, dtype="i8")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(random_st.randint(-9223372036854775808, I_i8_high_open, dtype="i8")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(random_st.randint(9223372036854775808, dtype="int64")) # E: int reveal_type(random_st.randint(-9223372036854775808, 9223372036854775808, dtype="int64")) # E: int -reveal_type(random_st.randint(I_i8_high_open, dtype="int64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(I_i8_low, I_i8_high_open, dtype="int64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(-9223372036854775808, I_i8_high_open, dtype="int64")) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(random_st.randint(I_i8_high_open, dtype="int64")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(random_st.randint(I_i8_low, I_i8_high_open, dtype="int64")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(random_st.randint(-9223372036854775808, I_i8_high_open, dtype="int64")) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(random_st.randint(9223372036854775808, dtype=np.int64)) # E: int reveal_type(random_st.randint(-9223372036854775808, 9223372036854775808, dtype=np.int64)) # E: int -reveal_type(random_st.randint(I_i8_high_open, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(I_i8_low, I_i8_high_open, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] -reveal_type(random_st.randint(-9223372036854775808, I_i8_high_open, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[numpy.typing._64Bit]]] +reveal_type(random_st.randint(I_i8_high_open, dtype=np.int64)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(random_st.randint(I_i8_low, I_i8_high_open, dtype=np.int64)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] +reveal_type(random_st.randint(-9223372036854775808, I_i8_high_open, dtype=np.int64)) # E: ndarray[Any, dtype[signedinteger[typing._64Bit]]] reveal_type(random_st._bit_generator) # E: BitGenerator reveal_type(random_st.bytes(2)) # E: bytes reveal_type(random_st.choice(5)) # E: int -reveal_type(random_st.choice(5, 3)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.choice(5, 3, replace=True)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.choice(5, 3, p=[1 / 5] * 5)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.choice(5, 3, p=[1 / 5] * 5, replace=False)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.choice(5, 3)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.choice(5, 3, replace=True)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.choice(5, 3, p=[1 / 5] * 5)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.choice(5, 3, p=[1 / 5] * 5, replace=False)) # E: ndarray[Any, dtype[{int_}]] reveal_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"])) # E: Any -reveal_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3)) # E: numpy.ndarray[Any, Any] -reveal_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4)) # E: numpy.ndarray[Any, Any] -reveal_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True)) # E: numpy.ndarray[Any, Any] -reveal_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4]))) # E: numpy.ndarray[Any, Any] +reveal_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3)) # E: ndarray[Any, Any] +reveal_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4)) # E: ndarray[Any, Any] +reveal_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True)) # E: ndarray[Any, Any] +reveal_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4]))) # E: ndarray[Any, Any] -reveal_type(random_st.dirichlet([0.5, 0.5])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.dirichlet(np.array([0.5, 0.5]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.dirichlet(np.array([0.5, 0.5]), size=3)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.dirichlet([0.5, 0.5])) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.dirichlet(np.array([0.5, 0.5]))) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.dirichlet(np.array([0.5, 0.5]), size=3)) # E: ndarray[Any, dtype[floating[typing._64Bit]] -reveal_type(random_st.multinomial(20, [1 / 6.0] * 6)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.multinomial(20, np.array([0.5, 0.5]))) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.multinomial(20, [1 / 6.0] * 6, size=2)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.multinomial(20, [1 / 6.0] * 6)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.multinomial(20, np.array([0.5, 0.5]))) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.multinomial(20, [1 / 6.0] * 6, size=2)) # E: ndarray[Any, dtype[{int_}]] -reveal_type(random_st.multivariate_normal([0.0], [[1.0]])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.multivariate_normal([0.0], np.array([[1.0]]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.multivariate_normal(np.array([0.0]), [[1.0]])) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.multivariate_normal([0.0], np.array([[1.0]]))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.multivariate_normal([0.0], [[1.0]])) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.multivariate_normal([0.0], np.array([[1.0]]))) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.multivariate_normal(np.array([0.0]), [[1.0]])) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.multivariate_normal([0.0], np.array([[1.0]]))) # E: ndarray[Any, dtype[floating[typing._64Bit]] -reveal_type(random_st.permutation(10)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.permutation([1, 2, 3, 4])) # E: numpy.ndarray[Any, Any] -reveal_type(random_st.permutation(np.array([1, 2, 3, 4]))) # E: numpy.ndarray[Any, Any] -reveal_type(random_st.permutation(D_2D)) # E: numpy.ndarray[Any, Any] +reveal_type(random_st.permutation(10)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.permutation([1, 2, 3, 4])) # E: ndarray[Any, Any] +reveal_type(random_st.permutation(np.array([1, 2, 3, 4]))) # E: ndarray[Any, Any] +reveal_type(random_st.permutation(D_2D)) # E: ndarray[Any, Any] reveal_type(random_st.shuffle(np.arange(10))) # E: None reveal_type(random_st.shuffle([1, 2, 3, 4, 5])) # E: None @@ -1521,19 +1521,19 @@ reveal_type(random_st.seed([0, 1])) # E: None random_st_get_state = random_st.get_state() reveal_type(random_st_state) # E: builtins.dict[builtins.str, Any] random_st_get_state_legacy = random_st.get_state(legacy=True) -reveal_type(random_st_get_state_legacy) # E: Union[builtins.dict[builtins.str, Any], Tuple[builtins.str, numpy.ndarray[Any, numpy.dtype[numpy.unsignedinteger[numpy.typing._32Bit]]], builtins.int, builtins.int, builtins.float]] +reveal_type(random_st_get_state_legacy) # E: Union[builtins.dict[builtins.str, Any], Tuple[builtins.str, ndarray[Any, dtype[unsignedinteger[typing._32Bit]]], builtins.int, builtins.int, builtins.float]] reveal_type(random_st.set_state(random_st_get_state)) # E: None reveal_type(random_st.rand()) # E: float -reveal_type(random_st.rand(1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.rand(1, 2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.rand(1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.rand(1, 2)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.randn()) # E: float -reveal_type(random_st.randn(1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.randn(1, 2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.randn(1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.randn(1, 2)) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.random_sample()) # E: float -reveal_type(random_st.random_sample(1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] -reveal_type(random_st.random_sample(size=(1, 2))) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[numpy.typing._64Bit]] +reveal_type(random_st.random_sample(1)) # E: ndarray[Any, dtype[floating[typing._64Bit]] +reveal_type(random_st.random_sample(size=(1, 2))) # E: ndarray[Any, dtype[floating[typing._64Bit]] reveal_type(random_st.tomaxint()) # E: int -reveal_type(random_st.tomaxint(1)) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] -reveal_type(random_st.tomaxint((1,))) # E: numpy.ndarray[Any, numpy.dtype[{int_}]] +reveal_type(random_st.tomaxint(1)) # E: ndarray[Any, dtype[{int_}]] +reveal_type(random_st.tomaxint((1,))) # E: ndarray[Any, dtype[{int_}]] diff --git a/numpy/typing/tests/data/reveal/rec.pyi b/numpy/typing/tests/data/reveal/rec.pyi index 2fa8cc7b9..bf51c82a3 100644 --- a/numpy/typing/tests/data/reveal/rec.pyi +++ b/numpy/typing/tests/data/reveal/rec.pyi @@ -12,13 +12,13 @@ format_parser: np.format_parser record: np.record file_obj: io.BufferedIOBase -reveal_type(np.format_parser( # E: numpy.format_parser +reveal_type(np.format_parser( # E: format_parser formats=[np.float64, np.int64, np.bool_], names=["f8", "i8", "?"], titles=None, aligned=True, )) -reveal_type(format_parser.dtype) # E: numpy.dtype[numpy.void] +reveal_type(format_parser.dtype) # E: dtype[void] reveal_type(record.field_a) # E: Any reveal_type(record.field_b) # E: Any @@ -34,72 +34,72 @@ reveal_type(REC_AR_V.field("field_a", AR_i8)) # E: None reveal_type(REC_AR_V["field_a"]) # E: Any reveal_type(REC_AR_V.field_a) # E: Any -reveal_type(np.recarray( # numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.recarray( # recarray[Any, dtype[record]] shape=(10, 5), formats=[np.float64, np.int64, np.bool_], order="K", byteorder="|", )) -reveal_type(np.recarray( # numpy.recarray[Any, numpy.dtype[Any]] +reveal_type(np.recarray( # recarray[Any, dtype[Any]] shape=(10, 5), dtype=[("f8", np.float64), ("i8", np.int64)], strides=(5, 5), )) -reveal_type(np.rec.fromarrays( # numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.rec.fromarrays( # recarray[Any, dtype[record]] AR_LIST, )) -reveal_type(np.rec.fromarrays( # numpy.recarray[Any, numpy.dtype[Any]] +reveal_type(np.rec.fromarrays( # recarray[Any, dtype[Any]] AR_LIST, dtype=np.int64, )) -reveal_type(np.rec.fromarrays( # numpy.recarray[Any, numpy.dtype[Any]] +reveal_type(np.rec.fromarrays( # recarray[Any, dtype[Any]] AR_LIST, formats=[np.int64, np.float64], names=["i8", "f8"] )) -reveal_type(np.rec.fromrecords( # numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.rec.fromrecords( # recarray[Any, dtype[record]] (1, 1.5), )) -reveal_type(np.rec.fromrecords( # numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.rec.fromrecords( # recarray[Any, dtype[record]] [(1, 1.5)], dtype=[("i8", np.int64), ("f8", np.float64)], )) -reveal_type(np.rec.fromrecords( # numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.rec.fromrecords( # recarray[Any, dtype[record]] REC_AR_V, formats=[np.int64, np.float64], names=["i8", "f8"] )) -reveal_type(np.rec.fromstring( # numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.rec.fromstring( # recarray[Any, dtype[record]] b"(1, 1.5)", dtype=[("i8", np.int64), ("f8", np.float64)], )) -reveal_type(np.rec.fromstring( # numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.rec.fromstring( # recarray[Any, dtype[record]] REC_AR_V, formats=[np.int64, np.float64], names=["i8", "f8"] )) -reveal_type(np.rec.fromfile( # numpy.recarray[Any, numpy.dtype[Any]] +reveal_type(np.rec.fromfile( # recarray[Any, dtype[Any]] "test_file.txt", dtype=[("i8", np.int64), ("f8", np.float64)], )) -reveal_type(np.rec.fromfile( # numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.rec.fromfile( # recarray[Any, dtype[record]] file_obj, formats=[np.int64, np.float64], names=["i8", "f8"] )) -reveal_type(np.rec.array( # numpy.recarray[Any, numpy.dtype[{int64}]] +reveal_type(np.rec.array( # recarray[Any, dtype[{int64}]] AR_i8, )) -reveal_type(np.rec.array( # numpy.recarray[Any, numpy.dtype[Any]] +reveal_type(np.rec.array( # recarray[Any, dtype[Any]] [(1, 1.5)], dtype=[("i8", np.int64), ("f8", np.float64)], )) -reveal_type(np.rec.array( # numpy.recarray[Any, numpy.dtype[numpy.record]] +reveal_type(np.rec.array( # recarray[Any, dtype[record]] [(1, 1.5)], formats=[np.int64, np.float64], names=["i8", "f8"] diff --git a/numpy/typing/tests/data/reveal/scalars.pyi b/numpy/typing/tests/data/reveal/scalars.pyi index a95f8f6f2..383e40ef0 100644 --- a/numpy/typing/tests/data/reveal/scalars.pyi +++ b/numpy/typing/tests/data/reveal/scalars.pyi @@ -29,27 +29,27 @@ reveal_type(c8.squeeze()) # E: {complex64} reveal_type(c8.byteswap()) # E: {complex64} reveal_type(c8.transpose()) # E: {complex64} -reveal_type(c8.dtype) # E: numpy.dtype[{complex64}] +reveal_type(c8.dtype) # E: dtype[{complex64}] reveal_type(c8.real) # E: {float32} reveal_type(c16.imag) # E: {float64} -reveal_type(np.unicode_('foo')) # E: numpy.str_ -reveal_type(np.str0('foo')) # E: numpy.str_ +reveal_type(np.unicode_('foo')) # E: str_ +reveal_type(np.str0('foo')) # E: str_ reveal_type(V[0]) # E: Any reveal_type(V["field1"]) # E: Any -reveal_type(V[["field1", "field2"]]) # E: numpy.void +reveal_type(V[["field1", "field2"]]) # E: void V[0] = 5 # Aliases -reveal_type(np.unicode_()) # E: numpy.str_ -reveal_type(np.str0()) # E: numpy.str_ -reveal_type(np.bool8()) # E: numpy.bool_ -reveal_type(np.bytes0()) # E: numpy.bytes_ -reveal_type(np.string_()) # E: numpy.bytes_ -reveal_type(np.object0()) # E: numpy.object_ -reveal_type(np.void0(0)) # E: numpy.void +reveal_type(np.unicode_()) # E: str_ +reveal_type(np.str0()) # E: str_ +reveal_type(np.bool8()) # E: bool_ +reveal_type(np.bytes0()) # E: bytes_ +reveal_type(np.string_()) # E: bytes_ +reveal_type(np.object0()) # E: object_ +reveal_type(np.void0(0)) # E: void reveal_type(np.byte()) # E: {byte} reveal_type(np.short()) # E: {short} @@ -99,29 +99,29 @@ reveal_type(c16.tolist()) # E: complex reveal_type(U.tolist()) # E: str reveal_type(S.tolist()) # E: bytes -reveal_type(b.ravel()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(i8.ravel()) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(u8.ravel()) # E: numpy.ndarray[Any, numpy.dtype[{uint64}]] -reveal_type(f8.ravel()) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(c16.ravel()) # E: numpy.ndarray[Any, numpy.dtype[{complex128}]] -reveal_type(U.ravel()) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(S.ravel()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] - -reveal_type(b.flatten()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(i8.flatten()) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(u8.flatten()) # E: numpy.ndarray[Any, numpy.dtype[{uint64}]] -reveal_type(f8.flatten()) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(c16.flatten()) # E: numpy.ndarray[Any, numpy.dtype[{complex128}]] -reveal_type(U.flatten()) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(S.flatten()) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] - -reveal_type(b.reshape(1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(i8.reshape(1)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(u8.reshape(1)) # E: numpy.ndarray[Any, numpy.dtype[{uint64}]] -reveal_type(f8.reshape(1)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(c16.reshape(1)) # E: numpy.ndarray[Any, numpy.dtype[{complex128}]] -reveal_type(U.reshape(1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] -reveal_type(S.reshape(1)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bytes_]] +reveal_type(b.ravel()) # E: ndarray[Any, dtype[bool_]] +reveal_type(i8.ravel()) # E: ndarray[Any, dtype[{int64}]] +reveal_type(u8.ravel()) # E: ndarray[Any, dtype[{uint64}]] +reveal_type(f8.ravel()) # E: ndarray[Any, dtype[{float64}]] +reveal_type(c16.ravel()) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(U.ravel()) # E: ndarray[Any, dtype[str_]] +reveal_type(S.ravel()) # E: ndarray[Any, dtype[bytes_]] + +reveal_type(b.flatten()) # E: ndarray[Any, dtype[bool_]] +reveal_type(i8.flatten()) # E: ndarray[Any, dtype[{int64}]] +reveal_type(u8.flatten()) # E: ndarray[Any, dtype[{uint64}]] +reveal_type(f8.flatten()) # E: ndarray[Any, dtype[{float64}]] +reveal_type(c16.flatten()) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(U.flatten()) # E: ndarray[Any, dtype[str_]] +reveal_type(S.flatten()) # E: ndarray[Any, dtype[bytes_]] + +reveal_type(b.reshape(1)) # E: ndarray[Any, dtype[bool_]] +reveal_type(i8.reshape(1)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(u8.reshape(1)) # E: ndarray[Any, dtype[{uint64}]] +reveal_type(f8.reshape(1)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(c16.reshape(1)) # E: ndarray[Any, dtype[{complex128}]] +reveal_type(U.reshape(1)) # E: ndarray[Any, dtype[str_]] +reveal_type(S.reshape(1)) # E: ndarray[Any, dtype[bytes_]] reveal_type(i8.astype(float)) # E: Any reveal_type(i8.astype(np.float64)) # E: {float64} @@ -149,7 +149,7 @@ reveal_type(i8.numerator) # E: {int64} reveal_type(i8.denominator) # E: Literal[1] reveal_type(u8.numerator) # E: {uint64} reveal_type(u8.denominator) # E: Literal[1] -reveal_type(m.numerator) # E: numpy.timedelta64 +reveal_type(m.numerator) # E: timedelta64 reveal_type(m.denominator) # E: Literal[1] reveal_type(round(i8)) # E: int diff --git a/numpy/typing/tests/data/reveal/shape_base.pyi b/numpy/typing/tests/data/reveal/shape_base.pyi index 57633defb..f13678c3a 100644 --- a/numpy/typing/tests/data/reveal/shape_base.pyi +++ b/numpy/typing/tests/data/reveal/shape_base.pyi @@ -11,47 +11,47 @@ AR_f8: NDArray[np.float64] AR_LIKE_f8: List[float] -reveal_type(np.take_along_axis(AR_f8, AR_i8, axis=1)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.take_along_axis(f8, AR_i8, axis=None)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.take_along_axis(AR_f8, AR_i8, axis=1)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.take_along_axis(f8, AR_i8, axis=None)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.put_along_axis(AR_f8, AR_i8, "1.0", axis=1)) # E: None -reveal_type(np.expand_dims(AR_i8, 2)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.expand_dims(AR_LIKE_f8, 2)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.expand_dims(AR_i8, 2)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.expand_dims(AR_LIKE_f8, 2)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.column_stack([AR_i8])) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.column_stack([AR_LIKE_f8])) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.column_stack([AR_i8])) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.column_stack([AR_LIKE_f8])) # E: ndarray[Any, dtype[Any]] -reveal_type(np.dstack([AR_i8])) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.dstack([AR_LIKE_f8])) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.dstack([AR_i8])) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.dstack([AR_LIKE_f8])) # E: ndarray[Any, dtype[Any]] -reveal_type(np.row_stack([AR_i8])) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.row_stack([AR_LIKE_f8])) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.row_stack([AR_i8])) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.row_stack([AR_LIKE_f8])) # E: ndarray[Any, dtype[Any]] -reveal_type(np.array_split(AR_i8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[{int64}]]] -reveal_type(np.array_split(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.array_split(AR_i8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[{int64}]]] +reveal_type(np.array_split(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[Any]]] -reveal_type(np.split(AR_i8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[{int64}]]] -reveal_type(np.split(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.split(AR_i8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[{int64}]]] +reveal_type(np.split(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[Any]]] -reveal_type(np.hsplit(AR_i8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[{int64}]]] -reveal_type(np.hsplit(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.hsplit(AR_i8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[{int64}]]] +reveal_type(np.hsplit(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[Any]]] -reveal_type(np.vsplit(AR_i8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[{int64}]]] -reveal_type(np.vsplit(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.vsplit(AR_i8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[{int64}]]] +reveal_type(np.vsplit(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[Any]]] -reveal_type(np.dsplit(AR_i8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[{int64}]]] -reveal_type(np.dsplit(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.dsplit(AR_i8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[{int64}]]] +reveal_type(np.dsplit(AR_LIKE_f8, [3, 5, 6, 10])) # E: list[ndarray[Any, dtype[Any]]] -reveal_type(np.lib.shape_base.get_array_prepare(AR_i8)) # E: numpy.lib.shape_base._ArrayPrepare -reveal_type(np.lib.shape_base.get_array_prepare(AR_i8, 1)) # E: Union[None, numpy.lib.shape_base._ArrayPrepare] +reveal_type(np.lib.shape_base.get_array_prepare(AR_i8)) # E: lib.shape_base._ArrayPrepare +reveal_type(np.lib.shape_base.get_array_prepare(AR_i8, 1)) # E: Union[None, lib.shape_base._ArrayPrepare] -reveal_type(np.get_array_wrap(AR_i8)) # E: numpy.lib.shape_base._ArrayWrap -reveal_type(np.get_array_wrap(AR_i8, 1)) # E: Union[None, numpy.lib.shape_base._ArrayWrap] +reveal_type(np.get_array_wrap(AR_i8)) # E: lib.shape_base._ArrayWrap +reveal_type(np.get_array_wrap(AR_i8, 1)) # E: Union[None, lib.shape_base._ArrayWrap] -reveal_type(np.kron(AR_b, AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.kron(AR_b, AR_i8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.kron(AR_f8, AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(np.kron(AR_b, AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.kron(AR_b, AR_i8)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.kron(AR_f8, AR_f8)) # E: ndarray[Any, dtype[floating[Any]]] -reveal_type(np.tile(AR_i8, 5)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.tile(AR_LIKE_f8, [2, 2])) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.tile(AR_i8, 5)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.tile(AR_LIKE_f8, [2, 2])) # E: ndarray[Any, dtype[Any]] diff --git a/numpy/typing/tests/data/reveal/stride_tricks.pyi b/numpy/typing/tests/data/reveal/stride_tricks.pyi index 152d9cea6..0d6dcd388 100644 --- a/numpy/typing/tests/data/reveal/stride_tricks.pyi +++ b/numpy/typing/tests/data/reveal/stride_tricks.pyi @@ -6,23 +6,23 @@ AR_f8: npt.NDArray[np.float64] AR_LIKE_f: List[float] interface_dict: Dict[str, Any] -reveal_type(np.lib.stride_tricks.DummyArray(interface_dict)) # E: numpy.lib.stride_tricks.DummyArray +reveal_type(np.lib.stride_tricks.DummyArray(interface_dict)) # E: lib.stride_tricks.DummyArray -reveal_type(np.lib.stride_tricks.as_strided(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.lib.stride_tricks.as_strided(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.lib.stride_tricks.as_strided(AR_f8, strides=(1, 5))) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.lib.stride_tricks.as_strided(AR_f8, shape=[9, 20])) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.lib.stride_tricks.as_strided(AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.lib.stride_tricks.as_strided(AR_LIKE_f)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.lib.stride_tricks.as_strided(AR_f8, strides=(1, 5))) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.lib.stride_tricks.as_strided(AR_f8, shape=[9, 20])) # E: ndarray[Any, dtype[{float64}]] -reveal_type(np.lib.stride_tricks.sliding_window_view(AR_f8, 5)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.lib.stride_tricks.sliding_window_view(AR_LIKE_f, (1, 5))) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.lib.stride_tricks.sliding_window_view(AR_f8, [9], axis=1)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.lib.stride_tricks.sliding_window_view(AR_f8, 5)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.lib.stride_tricks.sliding_window_view(AR_LIKE_f, (1, 5))) # E: ndarray[Any, dtype[Any]] +reveal_type(np.lib.stride_tricks.sliding_window_view(AR_f8, [9], axis=1)) # E: ndarray[Any, dtype[{float64}]] -reveal_type(np.broadcast_to(AR_f8, 5)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.broadcast_to(AR_LIKE_f, (1, 5))) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.broadcast_to(AR_f8, [4, 6], subok=True)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] +reveal_type(np.broadcast_to(AR_f8, 5)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.broadcast_to(AR_LIKE_f, (1, 5))) # E: ndarray[Any, dtype[Any]] +reveal_type(np.broadcast_to(AR_f8, [4, 6], subok=True)) # E: ndarray[Any, dtype[{float64}]] reveal_type(np.broadcast_shapes((1, 2), [3, 1], (3, 2))) # E: tuple[builtins.int] reveal_type(np.broadcast_shapes((6, 7), (5, 6, 1), 7, (5, 1, 7))) # E: tuple[builtins.int] -reveal_type(np.broadcast_arrays(AR_f8, AR_f8)) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] -reveal_type(np.broadcast_arrays(AR_f8, AR_LIKE_f)) # E: list[numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.broadcast_arrays(AR_f8, AR_f8)) # E: list[ndarray[Any, dtype[Any]]] +reveal_type(np.broadcast_arrays(AR_f8, AR_LIKE_f)) # E: list[ndarray[Any, dtype[Any]]] diff --git a/numpy/typing/tests/data/reveal/testing.pyi b/numpy/typing/tests/data/reveal/testing.pyi index 2b040ff60..9813dc723 100644 --- a/numpy/typing/tests/data/reveal/testing.pyi +++ b/numpy/typing/tests/data/reveal/testing.pyi @@ -147,8 +147,8 @@ reveal_type(np.testing.assert_allclose(AR_i8, AR_f8, verbose=False)) # E: None reveal_type(np.testing.assert_array_almost_equal_nulp(AR_i8, AR_f8, nulp=2)) # E: None -reveal_type(np.testing.assert_array_max_ulp(AR_i8, AR_f8, maxulp=2)) # E: numpy.ndarray[Any, numpy.dtype[Any]] -reveal_type(np.testing.assert_array_max_ulp(AR_i8, AR_f8, dtype=np.float32)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.testing.assert_array_max_ulp(AR_i8, AR_f8, maxulp=2)) # E: ndarray[Any, dtype[Any]] +reveal_type(np.testing.assert_array_max_ulp(AR_i8, AR_f8, dtype=np.float32)) # E: ndarray[Any, dtype[Any]] reveal_type(np.testing.assert_warns(RuntimeWarning)) # E: _GeneratorContextManager[None] reveal_type(np.testing.assert_warns(RuntimeWarning, func3, 5)) # E: bool diff --git a/numpy/typing/tests/data/reveal/twodim_base.pyi b/numpy/typing/tests/data/reveal/twodim_base.pyi index b95fbc71e..0318c3cf1 100644 --- a/numpy/typing/tests/data/reveal/twodim_base.pyi +++ b/numpy/typing/tests/data/reveal/twodim_base.pyi @@ -23,50 +23,50 @@ AR_O: npt.NDArray[np.object_] AR_LIKE_b: List[bool] -reveal_type(np.fliplr(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.fliplr(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.fliplr(AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.fliplr(AR_LIKE_b)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.flipud(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.flipud(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.flipud(AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.flipud(AR_LIKE_b)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.eye(10)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.eye(10, M=20, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.eye(10, k=2, dtype=int)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.eye(10)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.eye(10, M=20, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.eye(10, k=2, dtype=int)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.diag(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.diag(AR_LIKE_b, k=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.diag(AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.diag(AR_LIKE_b, k=0)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.diagflat(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.diagflat(AR_LIKE_b, k=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.diagflat(AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.diagflat(AR_LIKE_b, k=0)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.tri(10)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.tri(10, M=20, dtype=np.int64)) # E: numpy.ndarray[Any, numpy.dtype[{int64}]] -reveal_type(np.tri(10, k=2, dtype=int)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.tri(10)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.tri(10, M=20, dtype=np.int64)) # E: ndarray[Any, dtype[{int64}]] +reveal_type(np.tri(10, k=2, dtype=int)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.tril(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.tril(AR_LIKE_b, k=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.tril(AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.tril(AR_LIKE_b, k=0)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.triu(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.triu(AR_LIKE_b, k=0)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.triu(AR_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.triu(AR_LIKE_b, k=0)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.vander(AR_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.vander(AR_u)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.vander(AR_i, N=2)) # E: numpy.ndarray[Any, numpy.dtype[numpy.signedinteger[Any]]] -reveal_type(np.vander(AR_f, increasing=True)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.vander(AR_c)) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.vander(AR_O)) # E: numpy.ndarray[Any, numpy.dtype[numpy.object_]] +reveal_type(np.vander(AR_b)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.vander(AR_u)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.vander(AR_i, N=2)) # E: ndarray[Any, dtype[signedinteger[Any]]] +reveal_type(np.vander(AR_f, increasing=True)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.vander(AR_c)) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.vander(AR_O)) # E: ndarray[Any, dtype[object_]] -reveal_type(np.histogram2d(AR_i, AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.histogram2d(AR_f, AR_f)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]], numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]]] -reveal_type(np.histogram2d(AR_f, AR_c, weights=AR_LIKE_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]], numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]]] +reveal_type(np.histogram2d(AR_i, AR_b)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.histogram2d(AR_f, AR_f)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[floating[Any]]], ndarray[Any, dtype[floating[Any]]]] +reveal_type(np.histogram2d(AR_f, AR_c, weights=AR_LIKE_b)) # E: Tuple[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[complexfloating[Any, Any]]], ndarray[Any, dtype[complexfloating[Any, Any]]]] -reveal_type(np.mask_indices(10, func1)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] -reveal_type(np.mask_indices(8, func2, "0")) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{intp}]], numpy.ndarray[Any, numpy.dtype[{intp}]]] +reveal_type(np.mask_indices(10, func1)) # E: Tuple[ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] +reveal_type(np.mask_indices(8, func2, "0")) # E: Tuple[ndarray[Any, dtype[{intp}]], ndarray[Any, dtype[{intp}]]] -reveal_type(np.tril_indices(10)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{int_}]], numpy.ndarray[Any, numpy.dtype[{int_}]]] +reveal_type(np.tril_indices(10)) # E: Tuple[ndarray[Any, dtype[{int_}]], ndarray[Any, dtype[{int_}]]] -reveal_type(np.tril_indices_from(AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{int_}]], numpy.ndarray[Any, numpy.dtype[{int_}]]] +reveal_type(np.tril_indices_from(AR_b)) # E: Tuple[ndarray[Any, dtype[{int_}]], ndarray[Any, dtype[{int_}]]] -reveal_type(np.triu_indices(10)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{int_}]], numpy.ndarray[Any, numpy.dtype[{int_}]]] +reveal_type(np.triu_indices(10)) # E: Tuple[ndarray[Any, dtype[{int_}]], ndarray[Any, dtype[{int_}]]] -reveal_type(np.triu_indices_from(AR_b)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[{int_}]], numpy.ndarray[Any, numpy.dtype[{int_}]]] +reveal_type(np.triu_indices_from(AR_b)) # E: Tuple[ndarray[Any, dtype[{int_}]], ndarray[Any, dtype[{int_}]]] diff --git a/numpy/typing/tests/data/reveal/type_check.pyi b/numpy/typing/tests/data/reveal/type_check.pyi index 416dd42a8..13d41d844 100644 --- a/numpy/typing/tests/data/reveal/type_check.pyi +++ b/numpy/typing/tests/data/reveal/type_check.pyi @@ -24,41 +24,41 @@ class ImagObj: reveal_type(np.mintypecode(["f8"], typeset="qfQF")) -reveal_type(np.asfarray(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.asfarray(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.asfarray(AR_f8, dtype="c16")) # E: numpy.ndarray[Any, numpy.dtype[numpy.complexfloating[Any, Any]]] -reveal_type(np.asfarray(AR_f8, dtype="i8")) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(np.asfarray(AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.asfarray(AR_LIKE_f)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.asfarray(AR_f8, dtype="c16")) # E: ndarray[Any, dtype[complexfloating[Any, Any]]] +reveal_type(np.asfarray(AR_f8, dtype="i8")) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(np.real(RealObj())) # E: slice -reveal_type(np.real(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.real(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.real(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.real(AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.real(AR_c16)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.real(AR_LIKE_f)) # E: ndarray[Any, dtype[Any]] reveal_type(np.imag(ImagObj())) # E: slice -reveal_type(np.imag(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.imag(AR_c16)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.imag(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.imag(AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.imag(AR_c16)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.imag(AR_LIKE_f)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.iscomplex(f8)) # E: numpy.bool_ -reveal_type(np.iscomplex(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.iscomplex(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.iscomplex(f8)) # E: bool_ +reveal_type(np.iscomplex(AR_f8)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.iscomplex(AR_LIKE_f)) # E: ndarray[Any, dtype[bool_]] -reveal_type(np.isreal(f8)) # E: numpy.bool_ -reveal_type(np.isreal(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isreal(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] +reveal_type(np.isreal(f8)) # E: bool_ +reveal_type(np.isreal(AR_f8)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isreal(AR_LIKE_f)) # E: ndarray[Any, dtype[bool_]] reveal_type(np.iscomplexobj(f8)) # E: bool reveal_type(np.isrealobj(f8)) # E: bool reveal_type(np.nan_to_num(f8)) # E: {float64} reveal_type(np.nan_to_num(f, copy=True)) # E: Any -reveal_type(np.nan_to_num(AR_f8, nan=1.5)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.nan_to_num(AR_LIKE_f, posinf=9999)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.nan_to_num(AR_f8, nan=1.5)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.nan_to_num(AR_LIKE_f, posinf=9999)) # E: ndarray[Any, dtype[Any]] -reveal_type(np.real_if_close(AR_f8)) # E: numpy.ndarray[Any, numpy.dtype[{float64}]] -reveal_type(np.real_if_close(AR_c16)) # E: Union[numpy.ndarray[Any, numpy.dtype[{float64}]], numpy.ndarray[Any, numpy.dtype[{complex128}]]] -reveal_type(np.real_if_close(AR_c8)) # E: Union[numpy.ndarray[Any, numpy.dtype[{float32}]], numpy.ndarray[Any, numpy.dtype[{complex64}]]] -reveal_type(np.real_if_close(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[Any]] +reveal_type(np.real_if_close(AR_f8)) # E: ndarray[Any, dtype[{float64}]] +reveal_type(np.real_if_close(AR_c16)) # E: Union[ndarray[Any, dtype[{float64}]], ndarray[Any, dtype[{complex128}]]] +reveal_type(np.real_if_close(AR_c8)) # E: Union[ndarray[Any, dtype[{float32}]], ndarray[Any, dtype[{complex64}]]] +reveal_type(np.real_if_close(AR_LIKE_f)) # E: ndarray[Any, dtype[Any]] reveal_type(np.typename("h")) # E: Literal['short'] reveal_type(np.typename("B")) # E: Literal['unsigned char'] diff --git a/numpy/typing/tests/data/reveal/ufunc_config.pyi b/numpy/typing/tests/data/reveal/ufunc_config.pyi index 6848a3cb5..2c6fadf92 100644 --- a/numpy/typing/tests/data/reveal/ufunc_config.pyi +++ b/numpy/typing/tests/data/reveal/ufunc_config.pyi @@ -1,4 +1,4 @@ -"""Typing tests for `numpy.core._ufunc_config`.""" +"""Typing tests for `core._ufunc_config`.""" import numpy as np @@ -7,19 +7,19 @@ def func(a: str, b: int) -> None: ... class Write: def write(self, value: str) -> None: ... -reveal_type(np.seterr(all=None)) # E: TypedDict('numpy.core._ufunc_config._ErrDict' -reveal_type(np.seterr(divide="ignore")) # E: TypedDict('numpy.core._ufunc_config._ErrDict' -reveal_type(np.seterr(over="warn")) # E: TypedDict('numpy.core._ufunc_config._ErrDict' -reveal_type(np.seterr(under="call")) # E: TypedDict('numpy.core._ufunc_config._ErrDict' -reveal_type(np.seterr(invalid="raise")) # E: TypedDict('numpy.core._ufunc_config._ErrDict' -reveal_type(np.geterr()) # E: TypedDict('numpy.core._ufunc_config._ErrDict' +reveal_type(np.seterr(all=None)) # E: TypedDict('core._ufunc_config._ErrDict' +reveal_type(np.seterr(divide="ignore")) # E: TypedDict('core._ufunc_config._ErrDict' +reveal_type(np.seterr(over="warn")) # E: TypedDict('core._ufunc_config._ErrDict' +reveal_type(np.seterr(under="call")) # E: TypedDict('core._ufunc_config._ErrDict' +reveal_type(np.seterr(invalid="raise")) # E: TypedDict('core._ufunc_config._ErrDict' +reveal_type(np.geterr()) # E: TypedDict('core._ufunc_config._ErrDict' reveal_type(np.setbufsize(4096)) # E: int reveal_type(np.getbufsize()) # E: int -reveal_type(np.seterrcall(func)) # E: Union[None, def (builtins.str, builtins.int) -> Any, numpy._SupportsWrite[builtins.str]] -reveal_type(np.seterrcall(Write())) # E: Union[None, def (builtins.str, builtins.int) -> Any, numpy._SupportsWrite[builtins.str]] -reveal_type(np.geterrcall()) # E: Union[None, def (builtins.str, builtins.int) -> Any, numpy._SupportsWrite[builtins.str]] +reveal_type(np.seterrcall(func)) # E: Union[None, def (builtins.str, builtins.int) -> Any, _SupportsWrite[builtins.str]] +reveal_type(np.seterrcall(Write())) # E: Union[None, def (builtins.str, builtins.int) -> Any, _SupportsWrite[builtins.str]] +reveal_type(np.geterrcall()) # E: Union[None, def (builtins.str, builtins.int) -> Any, _SupportsWrite[builtins.str]] -reveal_type(np.errstate(call=func, all="call")) # E: numpy.errstate[def (a: builtins.str, b: builtins.int)] -reveal_type(np.errstate(call=Write(), divide="log", over="log")) # E: numpy.errstate[ufunc_config.Write] +reveal_type(np.errstate(call=func, all="call")) # E: errstate[def (a: builtins.str, b: builtins.int)] +reveal_type(np.errstate(call=Write(), divide="log", over="log")) # E: errstate[ufunc_config.Write] diff --git a/numpy/typing/tests/data/reveal/ufunclike.pyi b/numpy/typing/tests/data/reveal/ufunclike.pyi index 8b3aea7ce..2d67c923f 100644 --- a/numpy/typing/tests/data/reveal/ufunclike.pyi +++ b/numpy/typing/tests/data/reveal/ufunclike.pyi @@ -9,21 +9,21 @@ AR_LIKE_O: List[np.object_] AR_U: np.ndarray[Any, np.dtype[np.str_]] -reveal_type(np.fix(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.fix(AR_LIKE_u)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.fix(AR_LIKE_i)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] -reveal_type(np.fix(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[numpy.floating[Any]]] +reveal_type(np.fix(AR_LIKE_b)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.fix(AR_LIKE_u)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.fix(AR_LIKE_i)) # E: ndarray[Any, dtype[floating[Any]]] +reveal_type(np.fix(AR_LIKE_f)) # E: ndarray[Any, dtype[floating[Any]]] reveal_type(np.fix(AR_LIKE_O)) # E: Any -reveal_type(np.fix(AR_LIKE_f, out=AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] +reveal_type(np.fix(AR_LIKE_f, out=AR_U)) # E: ndarray[Any, dtype[str_]] -reveal_type(np.isposinf(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isposinf(AR_LIKE_u)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isposinf(AR_LIKE_i)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isposinf(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isposinf(AR_LIKE_f, out=AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] +reveal_type(np.isposinf(AR_LIKE_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isposinf(AR_LIKE_u)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isposinf(AR_LIKE_i)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isposinf(AR_LIKE_f)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isposinf(AR_LIKE_f, out=AR_U)) # E: ndarray[Any, dtype[str_]] -reveal_type(np.isneginf(AR_LIKE_b)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isneginf(AR_LIKE_u)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isneginf(AR_LIKE_i)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isneginf(AR_LIKE_f)) # E: numpy.ndarray[Any, numpy.dtype[numpy.bool_]] -reveal_type(np.isneginf(AR_LIKE_f, out=AR_U)) # E: numpy.ndarray[Any, numpy.dtype[numpy.str_]] +reveal_type(np.isneginf(AR_LIKE_b)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isneginf(AR_LIKE_u)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isneginf(AR_LIKE_i)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isneginf(AR_LIKE_f)) # E: ndarray[Any, dtype[bool_]] +reveal_type(np.isneginf(AR_LIKE_f, out=AR_U)) # E: ndarray[Any, dtype[str_]] diff --git a/numpy/typing/tests/data/reveal/ufuncs.pyi b/numpy/typing/tests/data/reveal/ufuncs.pyi index ade45577c..3bf83c820 100644 --- a/numpy/typing/tests/data/reveal/ufuncs.pyi +++ b/numpy/typing/tests/data/reveal/ufuncs.pyi @@ -17,7 +17,7 @@ reveal_type(np.absolute.nout) # E: Literal[1] reveal_type(np.absolute.nargs) # E: Literal[2] reveal_type(np.absolute.signature) # E: None reveal_type(np.absolute(f8)) # E: Any -reveal_type(np.absolute(AR_f8)) # E: numpy.ndarray +reveal_type(np.absolute(AR_f8)) # E: ndarray reveal_type(np.absolute.at(AR_f8, AR_i8)) # E: None reveal_type(np.add.__name__) # E: Literal['add'] @@ -28,13 +28,13 @@ reveal_type(np.add.nout) # E: Literal[1] reveal_type(np.add.nargs) # E: Literal[3] reveal_type(np.add.signature) # E: None reveal_type(np.add(f8, f8)) # E: Any -reveal_type(np.add(AR_f8, f8)) # E: numpy.ndarray +reveal_type(np.add(AR_f8, f8)) # E: ndarray reveal_type(np.add.at(AR_f8, AR_i8, f8)) # E: None reveal_type(np.add.reduce(AR_f8, axis=0)) # E: Any -reveal_type(np.add.accumulate(AR_f8)) # E: numpy.ndarray -reveal_type(np.add.reduceat(AR_f8, AR_i8)) # E: numpy.ndarray +reveal_type(np.add.accumulate(AR_f8)) # E: ndarray +reveal_type(np.add.reduceat(AR_f8, AR_i8)) # E: ndarray reveal_type(np.add.outer(f8, f8)) # E: Any -reveal_type(np.add.outer(AR_f8, f8)) # E: numpy.ndarray +reveal_type(np.add.outer(AR_f8, f8)) # E: ndarray reveal_type(np.frexp.__name__) # E: Literal['frexp'] reveal_type(np.frexp.ntypes) # E: Literal[4] @@ -44,7 +44,7 @@ reveal_type(np.frexp.nout) # E: Literal[2] reveal_type(np.frexp.nargs) # E: Literal[3] reveal_type(np.frexp.signature) # E: None reveal_type(np.frexp(f8)) # E: Tuple[Any, Any] -reveal_type(np.frexp(AR_f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.frexp(AR_f8)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]] reveal_type(np.divmod.__name__) # E: Literal['divmod'] reveal_type(np.divmod.ntypes) # E: Literal[15] @@ -54,7 +54,7 @@ reveal_type(np.divmod.nout) # E: Literal[2] reveal_type(np.divmod.nargs) # E: Literal[4] reveal_type(np.divmod.signature) # E: None reveal_type(np.divmod(f8, f8)) # E: Tuple[Any, Any] -reveal_type(np.divmod(AR_f8, f8)) # E: Tuple[numpy.ndarray[Any, numpy.dtype[Any]], numpy.ndarray[Any, numpy.dtype[Any]]] +reveal_type(np.divmod(AR_f8, f8)) # E: Tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]] reveal_type(np.matmul.__name__) # E: Literal['matmul'] reveal_type(np.matmul.ntypes) # E: Literal[19] diff --git a/numpy/typing/tests/data/reveal/warnings_and_errors.pyi b/numpy/typing/tests/data/reveal/warnings_and_errors.pyi index 3f20a0135..d5c50448a 100644 --- a/numpy/typing/tests/data/reveal/warnings_and_errors.pyi +++ b/numpy/typing/tests/data/reveal/warnings_and_errors.pyi @@ -2,10 +2,10 @@ from typing import Type import numpy as np -reveal_type(np.ModuleDeprecationWarning()) # E: numpy.ModuleDeprecationWarning -reveal_type(np.VisibleDeprecationWarning()) # E: numpy.VisibleDeprecationWarning -reveal_type(np.ComplexWarning()) # E: numpy.ComplexWarning -reveal_type(np.RankWarning()) # E: numpy.RankWarning -reveal_type(np.TooHardError()) # E: numpy.TooHardError -reveal_type(np.AxisError("test")) # E: numpy.AxisError -reveal_type(np.AxisError(5, 1)) # E: numpy.AxisError +reveal_type(np.ModuleDeprecationWarning()) # E: ModuleDeprecationWarning +reveal_type(np.VisibleDeprecationWarning()) # E: VisibleDeprecationWarning +reveal_type(np.ComplexWarning()) # E: ComplexWarning +reveal_type(np.RankWarning()) # E: RankWarning +reveal_type(np.TooHardError()) # E: TooHardError +reveal_type(np.AxisError("test")) # E: AxisError +reveal_type(np.AxisError(5, 1)) # E: AxisError diff --git a/numpy/typing/tests/test_generic_alias.py b/numpy/typing/tests/test_generic_alias.py index 3021d9859..39343420b 100644 --- a/numpy/typing/tests/test_generic_alias.py +++ b/numpy/typing/tests/test_generic_alias.py @@ -1,6 +1,7 @@ from __future__ import annotations import sys +import copy import types import pickle import weakref @@ -80,6 +81,21 @@ class TestGenericAlias: value_ref = func(NDArray_ref) assert value == value_ref + @pytest.mark.parametrize("name,func", [ + ("__copy__", lambda n: n == copy.copy(n)), + ("__deepcopy__", lambda n: n == copy.deepcopy(n)), + ]) + def test_copy(self, name: str, func: FuncType) -> None: + value = func(NDArray) + + # xref bpo-45167 + GE_398 = ( + sys.version_info[:2] == (3, 9) and sys.version_info >= (3, 9, 8) + ) + if GE_398 or sys.version_info >= (3, 10, 1): + value_ref = func(NDArray_ref) + assert value == value_ref + def test_weakref(self) -> None: """Test ``__weakref__``.""" value = weakref.ref(NDArray)() diff --git a/numpy/typing/tests/test_typing.py b/numpy/typing/tests/test_typing.py index 2dcfd6082..fe58a8f4c 100644 --- a/numpy/typing/tests/test_typing.py +++ b/numpy/typing/tests/test_typing.py @@ -58,6 +58,11 @@ def _strip_filename(msg: str) -> str: return tail.split(":", 1)[-1] +def strip_func(match: re.Match[str]) -> str: + """`re.sub` helper function for stripping module names.""" + return match.groups()[1] + + @pytest.mark.slow @pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") @pytest.fixture(scope="module", autouse=True) @@ -373,9 +378,15 @@ def _test_reveal( lineno: int, ) -> None: """Error-reporting helper function for `test_reveal`.""" - if reveal not in expected_reveal: + strip_pattern = re.compile(r"(\w+\.)+(\w+)") + stripped_reveal = strip_pattern.sub(strip_func, reveal) + stripped_expected_reveal = strip_pattern.sub(strip_func, expected_reveal) + if stripped_reveal not in stripped_expected_reveal: raise AssertionError( - _REVEAL_MSG.format(lineno, expression, expected_reveal, reveal) + _REVEAL_MSG.format(lineno, + expression, + stripped_expected_reveal, + stripped_reveal) ) @@ -30,8 +30,7 @@ import re # Python supported version checks. Keep right after stdlib imports to ensure we # get a sensible error for older Python versions -# This needs to be changed to 3.8 for 1.22 release, but 3.7 is needed for LGTM. -if sys.version_info[:2] < (3, 7): +if sys.version_info[:2] < (3, 8): raise RuntimeError("Python version >= 3.8 required.") @@ -411,7 +410,8 @@ def setup_package(): python_requires='>=3.8', zip_safe=False, entry_points={ - 'console_scripts': f2py_cmds + 'console_scripts': f2py_cmds, + 'array_api': ['numpy = numpy.array_api'], }, ) |
