diff options
Diffstat (limited to 'doc/source/reference/routines.polynomials.classes.rst')
-rw-r--r-- | doc/source/reference/routines.polynomials.classes.rst | 20 |
1 files changed, 8 insertions, 12 deletions
diff --git a/doc/source/reference/routines.polynomials.classes.rst b/doc/source/reference/routines.polynomials.classes.rst index 5f575bed1..2ce29d9d0 100644 --- a/doc/source/reference/routines.polynomials.classes.rst +++ b/doc/source/reference/routines.polynomials.classes.rst @@ -59,11 +59,11 @@ first is the coefficients, the second is the domain, and the third is the window:: >>> p.coef - array([ 1., 2., 3.]) + array([1., 2., 3.]) >>> p.domain - array([-1., 1.]) + array([-1, 1]) >>> p.window - array([-1., 1.]) + array([-1, 1]) Printing a polynomial yields the polynomial expression in a more familiar format:: @@ -77,7 +77,7 @@ representation is also available (default on Windows). The polynomial string format can be toggled at the package-level with the `~numpy.polynomial.set_default_printstyle` function:: - >>> numpy.polynomial.set_default_printstyle('ascii') + >>> np.polynomial.set_default_printstyle('ascii') >>> print(p) 1.0 + 2.0 x**1 + 3.0 x**2 @@ -137,9 +137,9 @@ Evaluation:: array([ 1., 6., 17., 34., 57.]) >>> x = np.arange(6).reshape(3,2) >>> p(x) - array([[ 1., 6.], - [ 17., 34.], - [ 57., 86.]]) + array([[ 1., 6.], + [17., 34.], + [57., 86.]]) Substitution: @@ -294,7 +294,6 @@ polynomials up to degree 5 are plotted below. ... ax = plt.plot(x, T.basis(i)(x), lw=2, label=f"$T_{i}$") ... >>> plt.legend(loc="upper left") - <matplotlib.legend.Legend object at 0x3b3ee10> >>> plt.show() In the range -1 <= `x` <= 1 they are nice, equiripple functions lying between +/- 1. @@ -309,7 +308,6 @@ The same plots over the range -2 <= `x` <= 2 look very different: ... ax = plt.plot(x, T.basis(i)(x), lw=2, label=f"$T_{i}$") ... >>> plt.legend(loc="lower right") - <matplotlib.legend.Legend object at 0x3b3ee10> >>> plt.show() As can be seen, the "good" parts have shrunk to insignificance. In using @@ -335,12 +333,10 @@ illustrated below for a fit to a noisy sine curve. >>> y = np.sin(x) + np.random.normal(scale=.1, size=x.shape) >>> p = T.fit(x, y, 5) >>> plt.plot(x, y, 'o') - [<matplotlib.lines.Line2D object at 0x2136c10>] >>> xx, yy = p.linspace() >>> plt.plot(xx, yy, lw=2) - [<matplotlib.lines.Line2D object at 0x1cf2890>] >>> p.domain - array([ 0. , 6.28318531]) + array([0. , 6.28318531]) >>> p.window array([-1., 1.]) >>> plt.show() |