diff options
Diffstat (limited to 'numpy/_array_api/_creation_functions.py')
-rw-r--r-- | numpy/_array_api/_creation_functions.py | 84 |
1 files changed, 42 insertions, 42 deletions
diff --git a/numpy/_array_api/_creation_functions.py b/numpy/_array_api/_creation_functions.py index 9845dd70f..8fb2a8b12 100644 --- a/numpy/_array_api/_creation_functions.py +++ b/numpy/_array_api/_creation_functions.py @@ -19,14 +19,14 @@ def asarray(obj: Union[float, NestedSequence[bool|int|float], SupportsDLPack, Su """ # _array_object imports in this file are inside the functions to avoid # circular imports - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") if copy is not None: # Note: copy is not yet implemented in np.asarray raise NotImplementedError("The copy keyword argument to asarray is not yet implemented") - if isinstance(obj, ndarray) and (dtype is None or obj.dtype == dtype): + if isinstance(obj, Array) and (dtype is None or obj.dtype == dtype): return obj if dtype is None and isinstance(obj, int) and (obj > 2**64 or obj < -2**63): # Give a better error message in this case. NumPy would convert this @@ -35,7 +35,7 @@ def asarray(obj: Union[float, NestedSequence[bool|int|float], SupportsDLPack, Su res = np.asarray(obj, dtype=dtype) if res.dtype not in _all_dtypes: raise TypeError(f"The array_api namespace does not support the dtype '{res.dtype}'") - return ndarray._new(res) + return Array._new(res) def arange(start: Union[int, float], /, stop: Optional[Union[int, float]] = None, step: Union[int, float] = 1, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: """ @@ -43,11 +43,11 @@ def arange(start: Union[int, float], /, stop: Optional[Union[int, float]] = None See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - return ndarray._new(np.arange(start, stop=stop, step=step, dtype=dtype)) + return Array._new(np.arange(start, stop=stop, step=step, dtype=dtype)) def empty(shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: """ @@ -55,11 +55,11 @@ def empty(shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - return ndarray._new(np.empty(shape, dtype=dtype)) + return Array._new(np.empty(shape, dtype=dtype)) def empty_like(x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: """ @@ -67,11 +67,11 @@ def empty_like(x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[D See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - return ndarray._new(np.empty_like(x._array, dtype=dtype)) + return Array._new(np.empty_like(x._array, dtype=dtype)) def eye(n_rows: int, n_cols: Optional[int] = None, /, *, k: Optional[int] = 0, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: """ @@ -79,14 +79,14 @@ def eye(n_rows: int, n_cols: Optional[int] = None, /, *, k: Optional[int] = 0, d See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - return ndarray._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype)) + return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype)) def from_dlpack(x: object, /) -> Array: - # Note: dlpack support is not yet implemented on ndarray + # Note: dlpack support is not yet implemented on Array raise NotImplementedError("DLPack support is not yet implemented") def full(shape: Union[int, Tuple[int, ...]], fill_value: Union[int, float], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: @@ -95,18 +95,18 @@ def full(shape: Union[int, Tuple[int, ...]], fill_value: Union[int, float], *, d See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - if isinstance(fill_value, ndarray) and fill_value.ndim == 0: - fill_value = fill_value._array[...] + if isinstance(fill_value, Array) and fill_value.ndim == 0: + fill_value = fill_value._array[...] res = np.full(shape, fill_value, dtype=dtype) if res.dtype not in _all_dtypes: # This will happen if the fill value is not something that NumPy # coerces to one of the acceptable dtypes. raise TypeError("Invalid input to full") - return ndarray._new(res) + return Array._new(res) def full_like(x: Array, /, fill_value: Union[int, float], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: """ @@ -114,16 +114,16 @@ def full_like(x: Array, /, fill_value: Union[int, float], *, dtype: Optional[Dty See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") res = np.full_like(x._array, fill_value, dtype=dtype) if res.dtype not in _all_dtypes: # This will happen if the fill value is not something that NumPy # coerces to one of the acceptable dtypes. raise TypeError("Invalid input to full_like") - return ndarray._new(res) + return Array._new(res) def linspace(start: Union[int, float], stop: Union[int, float], /, num: int, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, endpoint: bool = True) -> Array: """ @@ -131,11 +131,11 @@ def linspace(start: Union[int, float], stop: Union[int, float], /, num: int, *, See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - return ndarray._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint)) + return Array._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint)) def meshgrid(*arrays: Sequence[Array], indexing: str = 'xy') -> List[Array, ...]: """ @@ -143,8 +143,8 @@ def meshgrid(*arrays: Sequence[Array], indexing: str = 'xy') -> List[Array, ...] See its docstring for more information. """ - from ._array_object import ndarray - return [ndarray._new(array) for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing)] + from ._array_object import Array + return [Array._new(array) for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing)] def ones(shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: """ @@ -152,11 +152,11 @@ def ones(shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, d See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - return ndarray._new(np.ones(shape, dtype=dtype)) + return Array._new(np.ones(shape, dtype=dtype)) def ones_like(x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: """ @@ -164,11 +164,11 @@ def ones_like(x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[De See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - return ndarray._new(np.ones_like(x._array, dtype=dtype)) + return Array._new(np.ones_like(x._array, dtype=dtype)) def zeros(shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: """ @@ -176,11 +176,11 @@ def zeros(shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - return ndarray._new(np.zeros(shape, dtype=dtype)) + return Array._new(np.zeros(shape, dtype=dtype)) def zeros_like(x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None) -> Array: """ @@ -188,8 +188,8 @@ def zeros_like(x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[D See its docstring for more information. """ - from ._array_object import ndarray + from ._array_object import Array if device is not None: - # Note: Device support is not yet implemented on ndarray + # Note: Device support is not yet implemented on Array raise NotImplementedError("Device support is not yet implemented") - return ndarray._new(np.zeros_like(x._array, dtype=dtype)) + return Array._new(np.zeros_like(x._array, dtype=dtype)) |