summaryrefslogtreecommitdiff
path: root/numpy/core
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/core')
-rw-r--r--numpy/core/defmatrix.py20
-rw-r--r--numpy/core/fromnumeric.py8
-rw-r--r--numpy/core/memmap.py3
-rw-r--r--numpy/core/numerictypes.py8
-rw-r--r--numpy/core/tests/test_numerictypes.py6
-rw-r--r--numpy/core/tests/test_regression.py8
-rw-r--r--numpy/core/tests/test_scalarmath.py2
7 files changed, 27 insertions, 28 deletions
diff --git a/numpy/core/defmatrix.py b/numpy/core/defmatrix.py
index 85eab179f..de37a2686 100644
--- a/numpy/core/defmatrix.py
+++ b/numpy/core/defmatrix.py
@@ -390,11 +390,11 @@ class matrix(N.ndarray):
-----
The standard deviation is the square root of the
average of the squared deviations from the mean, i.e. var =
- sqrt(mean(abs(x - x.mean())**2)). The computed standard
- deviation is computed by dividing by the number of elements,
- N-ddof. The option ddof defaults to zero, that is, a biased
- estimate. Note that for complex numbers std takes the absolute
- value before squaring, so that the result is always real
+ sqrt(mean(abs(x - x.mean())**2)). The computed standard
+ deviation is computed by dividing by the number of elements,
+ N-ddof. The option ddof defaults to zero, that is, a biased
+ estimate. Note that for complex numbers std takes the absolute
+ value before squaring, so that the result is always real
and nonnegative.
"""
@@ -439,11 +439,11 @@ class matrix(N.ndarray):
-----
The variance is the average of the squared deviations from the
- mean, i.e. var = mean(abs(x - x.mean())**2). The mean is
- computed by dividing by N-ddof, where N is the number of elements.
- The argument ddof defaults to zero; for an unbiased estimate
- supply ddof=1. Note that for complex numbers the absolute value
- is taken before squaring, so that the result is always real
+ mean, i.e. var = mean(abs(x - x.mean())**2). The mean is
+ computed by dividing by N-ddof, where N is the number of elements.
+ The argument ddof defaults to zero; for an unbiased estimate
+ supply ddof=1. Note that for complex numbers the absolute value
+ is taken before squaring, so that the result is always real
and nonnegative.
"""
return N.ndarray.var(self, axis, dtype, out)._align(axis)
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index 471a50a8c..35c2e9a65 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -1671,10 +1671,10 @@ def std(a, axis=None, dtype=None, out=None, ddof=0):
Notes
-----
The standard deviation is the square root of the average of the squared
- deviations from the mean, i.e. var = sqrt(mean(abs(x - x.mean())**2)).
- The computed standard deviation is computed by dividing by the number of
- elements, N-ddof. The option ddof defaults to zero, that is, a
- biased estimate. Note that for complex numbers std takes the absolute
+ deviations from the mean, i.e. var = sqrt(mean(abs(x - x.mean())**2)).
+ The computed standard deviation is computed by dividing by the number of
+ elements, N-ddof. The option ddof defaults to zero, that is, a
+ biased estimate. Note that for complex numbers std takes the absolute
value before squaring, so that the result is always real and nonnegative.
Examples
diff --git a/numpy/core/memmap.py b/numpy/core/memmap.py
index 93950c5c0..c7705d263 100644
--- a/numpy/core/memmap.py
+++ b/numpy/core/memmap.py
@@ -20,7 +20,7 @@ class memmap(ndarray):
Memory-mapped files are used for accessing small segments of large files
on disk, without reading the entire file into memory. Numpy's memmaps are
- array-like objects. This differs from python's mmap module which are
+ array-like objects. This differs from python's mmap module which are
file-like objects.
Parameters
@@ -250,4 +250,3 @@ class memmap(ndarray):
# flush any changes to disk, even if it's a view
self.flush()
self._close()
-
diff --git a/numpy/core/numerictypes.py b/numpy/core/numerictypes.py
index ae0b57eec..3c4e8ad8c 100644
--- a/numpy/core/numerictypes.py
+++ b/numpy/core/numerictypes.py
@@ -606,7 +606,7 @@ def _find_common_coerce(a, b):
return newdtype
thisind += 1
return None
-
+
def find_common_type(array_types, scalar_types):
"""Determine common type following standard coercion rules
@@ -617,13 +617,13 @@ def find_common_type(array_types, scalar_types):
A list of dtype convertible objects representing arrays
scalar_types : sequence
A list of dtype convertible objects representing scalars
-
+
Returns
-------
datatype : dtype
The common data-type which is the maximum of the array_types
ignoring the scalar_types unless the maximum of the scalar_types
- is of a different kind.
+ is of a different kind.
If the kinds is not understood, then None is returned.
"""
@@ -646,7 +646,7 @@ def find_common_type(array_types, scalar_types):
index_sc = _kind_list.index(maxsc.kind)
except ValueError:
return None
-
+
if index_sc > index_a:
return _find_common_coerce(maxsc,maxa)
else:
diff --git a/numpy/core/tests/test_numerictypes.py b/numpy/core/tests/test_numerictypes.py
index f0533e062..bfbd91fec 100644
--- a/numpy/core/tests/test_numerictypes.py
+++ b/numpy/core/tests/test_numerictypes.py
@@ -355,10 +355,10 @@ class TestCommonType(NumpyTestCase):
res = numpy.find_common_type(['u8','i8','i8'],['f8'])
assert(res == 'f8')
-
-
-
+
+
+
if __name__ == "__main__":
NumpyTest().run()
diff --git a/numpy/core/tests/test_regression.py b/numpy/core/tests/test_regression.py
index 4f9996227..68231e2ed 100644
--- a/numpy/core/tests/test_regression.py
+++ b/numpy/core/tests/test_regression.py
@@ -818,10 +818,10 @@ class TestRegression(NumpyTestCase):
np.indices((0,3,4)).T.reshape(-1,3)
def check_flat_byteorder(self, level=rlevel):
- """Ticket #657"""
- x = np.arange(10)
- assert_array_equal(x.astype('>i4'),x.astype('<i4').flat[:])
- assert_array_equal(x.astype('>i4').flat[:],x.astype('<i4'))
+ """Ticket #657"""
+ x = np.arange(10)
+ assert_array_equal(x.astype('>i4'),x.astype('<i4').flat[:])
+ assert_array_equal(x.astype('>i4').flat[:],x.astype('<i4'))
def check_uint64_from_negative(self, level=rlevel) :
assert_equal(np.uint64(-2), np.uint64(18446744073709551614))
diff --git a/numpy/core/tests/test_scalarmath.py b/numpy/core/tests/test_scalarmath.py
index a3175664b..d07460516 100644
--- a/numpy/core/tests/test_scalarmath.py
+++ b/numpy/core/tests/test_scalarmath.py
@@ -76,7 +76,7 @@ class TestRepr(NumpyTestCase):
def check_float_repr(self):
from numpy import nan, inf
for t in [np.float32, np.float64, np.longdouble]:
- if t is np.longdouble: # skip it for now.
+ if t is np.longdouble: # skip it for now.
continue
finfo=np.finfo(t)
last_fraction_bit_idx = finfo.nexp + finfo.nmant