summaryrefslogtreecommitdiff
path: root/numpy/core
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/core')
-rw-r--r--numpy/core/src/umath/loops.c.src75
-rw-r--r--numpy/core/tests/test_scalarmath.py8
2 files changed, 50 insertions, 33 deletions
diff --git a/numpy/core/src/umath/loops.c.src b/numpy/core/src/umath/loops.c.src
index 157b30e70..2720c361f 100644
--- a/numpy/core/src/umath/loops.c.src
+++ b/numpy/core/src/umath/loops.c.src
@@ -87,22 +87,25 @@
* combine with NPY_GCC_OPT_3 to allow autovectorization
* should only be used where its worthwhile to avoid code bloat
*/
+#define BASE_UNARY_LOOP(tin, tout, op) \
+ UNARY_LOOP { \
+ const tin in = *(tin *)ip1; \
+ tout * out = (tout *)op1; \
+ op; \
+ }
#define UNARY_LOOP_FAST(tin, tout, op) \
do { \
/* condition allows compiler to optimize the generic macro */ \
if (IS_UNARY_CONT(tin, tout)) { \
- UNARY_LOOP { \
- const tin in = *(tin *)ip1; \
- tout * out = (tout *)op1; \
- op; \
+ if (args[0] == args[1]) { \
+ BASE_UNARY_LOOP(tin, tout, op) \
+ } \
+ else { \
+ BASE_UNARY_LOOP(tin, tout, op) \
} \
} \
else { \
- UNARY_LOOP { \
- const tin in = *(tin *)ip1; \
- tout * out = (tout *)op1; \
- op; \
- } \
+ BASE_UNARY_LOOP(tin, tout, op) \
} \
} \
while (0)
@@ -128,40 +131,52 @@
* combine with NPY_GCC_OPT_3 to allow autovectorization
* should only be used where its worthwhile to avoid code bloat
*/
+#define BASE_BINARY_LOOP(tin, tout, op) \
+ BINARY_LOOP { \
+ const tin in1 = *(tin *)ip1; \
+ const tin in2 = *(tin *)ip2; \
+ tout * out = (tout *)op1; \
+ op; \
+ }
+#define BASE_BINARY_LOOP_S(tin, tout, cin, cinp, vin, vinp, op) \
+ const tin cin = *(tin *)cinp; \
+ BINARY_LOOP { \
+ const tin vin = *(tin *)vinp; \
+ tout * out = (tout *)op1; \
+ op; \
+ }
#define BINARY_LOOP_FAST(tin, tout, op) \
do { \
/* condition allows compiler to optimize the generic macro */ \
if (IS_BINARY_CONT(tin, tout)) { \
- BINARY_LOOP { \
- const tin in1 = *(tin *)ip1; \
- const tin in2 = *(tin *)ip2; \
- tout * out = (tout *)op1; \
- op; \
+ if (args[2] == args[0]) { \
+ BASE_BINARY_LOOP(tin, tout, op) \
+ } \
+ else if (args[2] == args[1]) { \
+ BASE_BINARY_LOOP(tin, tout, op) \
+ } \
+ else { \
+ BASE_BINARY_LOOP(tin, tout, op) \
} \
} \
else if (IS_BINARY_CONT_S1(tin, tout)) { \
- const tin in1 = *(tin *)args[0]; \
- BINARY_LOOP { \
- const tin in2 = *(tin *)ip2; \
- tout * out = (tout *)op1; \
- op; \
+ if (args[1] == args[2]) { \
+ BASE_BINARY_LOOP_S(tin, tout, in1, args[0], in2, ip2, op) \
+ } \
+ else { \
+ BASE_BINARY_LOOP_S(tin, tout, in1, args[0], in2, ip2, op) \
} \
} \
else if (IS_BINARY_CONT_S2(tin, tout)) { \
- const tin in2 = *(tin *)args[1]; \
- BINARY_LOOP { \
- const tin in1 = *(tin *)ip1; \
- tout * out = (tout *)op1; \
- op; \
+ if (args[0] == args[2]) { \
+ BASE_BINARY_LOOP_S(tin, tout, in2, args[1], in1, ip1, op) \
} \
+ else { \
+ BASE_BINARY_LOOP_S(tin, tout, in2, args[1], in1, ip1, op) \
+ }\
} \
else { \
- BINARY_LOOP { \
- const tin in1 = *(tin *)ip1; \
- const tin in2 = *(tin *)ip2; \
- tout * out = (tout *)op1; \
- op; \
- } \
+ BASE_BINARY_LOOP(tin, tout, op) \
} \
} \
while (0)
diff --git a/numpy/core/tests/test_scalarmath.py b/numpy/core/tests/test_scalarmath.py
index 1c71565f4..f9aeb6382 100644
--- a/numpy/core/tests/test_scalarmath.py
+++ b/numpy/core/tests/test_scalarmath.py
@@ -65,7 +65,7 @@ class TestBaseMath(TestCase):
def test_blocked(self):
# test alignments offsets for simd instructions
# alignments for vz + 2 * (vs - 1) + 1
- for dt, sz in [(np.float32, 11), (np.float64, 7)]:
+ for dt, sz in [(np.float32, 11), (np.float64, 7), (np.int32, 11)]:
for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt,
type='binary',
max_size=sz):
@@ -82,8 +82,10 @@ class TestBaseMath(TestCase):
inp2[...] += np.arange(inp2.size, dtype=dt) + 1
assert_almost_equal(np.square(inp2),
np.multiply(inp2, inp2), err_msg=msg)
- assert_almost_equal(np.reciprocal(inp2),
- np.divide(1, inp2), err_msg=msg)
+ # skip true divide for ints
+ if dt != np.int32 or sys.version_info.major < 3:
+ assert_almost_equal(np.reciprocal(inp2),
+ np.divide(1, inp2), err_msg=msg)
inp1[...] = np.ones_like(inp1)
inp2[...] = np.zeros_like(inp2)