diff options
Diffstat (limited to 'numpy/f2py/tests/test_symbolic.py')
-rw-r--r-- | numpy/f2py/tests/test_symbolic.py | 459 |
1 files changed, 245 insertions, 214 deletions
diff --git a/numpy/f2py/tests/test_symbolic.py b/numpy/f2py/tests/test_symbolic.py index 52cabac53..4b8993886 100644 --- a/numpy/f2py/tests/test_symbolic.py +++ b/numpy/f2py/tests/test_symbolic.py @@ -1,35 +1,55 @@ from numpy.testing import assert_raises from numpy.f2py.symbolic import ( - Expr, Op, ArithOp, Language, - as_symbol, as_number, as_string, as_array, as_complex, - as_terms, as_factors, eliminate_quotes, insert_quotes, - fromstring, as_expr, as_apply, - as_numer_denom, as_ternary, as_ref, as_deref, - normalize, as_eq, as_ne, as_lt, as_gt, as_le, as_ge - ) + Expr, + Op, + ArithOp, + Language, + as_symbol, + as_number, + as_string, + as_array, + as_complex, + as_terms, + as_factors, + eliminate_quotes, + insert_quotes, + fromstring, + as_expr, + as_apply, + as_numer_denom, + as_ternary, + as_ref, + as_deref, + normalize, + as_eq, + as_ne, + as_lt, + as_gt, + as_le, + as_ge, +) from . import util class TestSymbolic(util.F2PyTest): - def test_eliminate_quotes(self): def worker(s): r, d = eliminate_quotes(s) s1 = insert_quotes(r, d) assert s1 == s - for kind in ['', 'mykind_']: + for kind in ["", "mykind_"]: worker(kind + '"1234" // "ABCD"') worker(kind + '"1234" // ' + kind + '"ABCD"') - worker(kind + '"1234" // \'ABCD\'') - worker(kind + '"1234" // ' + kind + '\'ABCD\'') + worker(kind + "\"1234\" // 'ABCD'") + worker(kind + '"1234" // ' + kind + "'ABCD'") worker(kind + '"1\\"2\'AB\'34"') - worker('a = ' + kind + "'1\\'2\"AB\"34'") + worker("a = " + kind + "'1\\'2\"AB\"34'") def test_sanity(self): - x = as_symbol('x') - y = as_symbol('y') - z = as_symbol('z') + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") assert x.op == Op.SYMBOL assert repr(x) == "Expr(Op.SYMBOL, 'x')" @@ -70,7 +90,7 @@ class TestSymbolic(util.F2PyTest): assert s != s2 a = as_array((n, m)) - b = as_array((n,)) + b = as_array((n, )) assert a.op == Op.ARRAY assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4))," " Expr(Op.INTEGER, (456, 4))))") @@ -108,88 +128,90 @@ class TestSymbolic(util.F2PyTest): assert hash(e) is not None def test_tostring_fortran(self): - x = as_symbol('x') - y = as_symbol('y') - z = as_symbol('z') + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") n = as_number(123) m = as_number(456) a = as_array((n, m)) c = as_complex(n, m) - assert str(x) == 'x' - assert str(n) == '123' - assert str(a) == '[123, 456]' - assert str(c) == '(123, 456)' - - assert str(Expr(Op.TERMS, {x: 1})) == 'x' - assert str(Expr(Op.TERMS, {x: 2})) == '2 * x' - assert str(Expr(Op.TERMS, {x: -1})) == '-x' - assert str(Expr(Op.TERMS, {x: -2})) == '-2 * x' - assert str(Expr(Op.TERMS, {x: 1, y: 1})) == 'x + y' - assert str(Expr(Op.TERMS, {x: -1, y: -1})) == '-x - y' - assert str(Expr(Op.TERMS, {x: 2, y: 3})) == '2 * x + 3 * y' - assert str(Expr(Op.TERMS, {x: -2, y: 3})) == '-2 * x + 3 * y' - assert str(Expr(Op.TERMS, {x: 2, y: -3})) == '2 * x - 3 * y' - - assert str(Expr(Op.FACTORS, {x: 1})) == 'x' - assert str(Expr(Op.FACTORS, {x: 2})) == 'x ** 2' - assert str(Expr(Op.FACTORS, {x: -1})) == 'x ** -1' - assert str(Expr(Op.FACTORS, {x: -2})) == 'x ** -2' - assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == 'x * y' - assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == 'x ** 2 * y ** 3' + assert str(x) == "x" + assert str(n) == "123" + assert str(a) == "[123, 456]" + assert str(c) == "(123, 456)" + + assert str(Expr(Op.TERMS, {x: 1})) == "x" + assert str(Expr(Op.TERMS, {x: 2})) == "2 * x" + assert str(Expr(Op.TERMS, {x: -1})) == "-x" + assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x" + assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y" + assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y" + assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y" + assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y" + assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y" + + assert str(Expr(Op.FACTORS, {x: 1})) == "x" + assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2" + assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1" + assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2" + assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y" + assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3" v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3}) - assert str(v) == 'x ** 2 * (x + y) ** 3', str(v) + assert str(v) == "x ** 2 * (x + y) ** 3", str(v) v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3}) - assert str(v) == 'x ** 2 * (x * y) ** 3', str(v) + assert str(v) == "x ** 2 * (x * y) ** 3", str(v) - assert str(Expr(Op.APPLY, ('f', (), {}))) == 'f()' - assert str(Expr(Op.APPLY, ('f', (x,), {}))) == 'f(x)' - assert str(Expr(Op.APPLY, ('f', (x, y), {}))) == 'f(x, y)' - assert str(Expr(Op.INDEXING, ('f', x))) == 'f[x]' + assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()" + assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)" + assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)" + assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]" - assert str(as_ternary(x, y, z)) == 'merge(y, z, x)' - assert str(as_eq(x, y)) == 'x .eq. y' - assert str(as_ne(x, y)) == 'x .ne. y' - assert str(as_lt(x, y)) == 'x .lt. y' - assert str(as_le(x, y)) == 'x .le. y' - assert str(as_gt(x, y)) == 'x .gt. y' - assert str(as_ge(x, y)) == 'x .ge. y' + assert str(as_ternary(x, y, z)) == "merge(y, z, x)" + assert str(as_eq(x, y)) == "x .eq. y" + assert str(as_ne(x, y)) == "x .ne. y" + assert str(as_lt(x, y)) == "x .lt. y" + assert str(as_le(x, y)) == "x .le. y" + assert str(as_gt(x, y)) == "x .gt. y" + assert str(as_ge(x, y)) == "x .ge. y" def test_tostring_c(self): language = Language.C - x = as_symbol('x') - y = as_symbol('y') - z = as_symbol('z') + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") n = as_number(123) - assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == 'x * x' - assert Expr(Op.FACTORS, {x + y: 2}).tostring( - language=language) == '(x + y) * (x + y)' - assert Expr(Op.FACTORS, {x: 12}).tostring( - language=language) == 'pow(x, 12)' - - assert as_apply(ArithOp.DIV, x, y).tostring( - language=language) == 'x / y' - assert as_apply(ArithOp.DIV, x, x + y).tostring( - language=language) == 'x / (x + y)' - assert as_apply(ArithOp.DIV, x - y, x + y).tostring( - language=language) == '(x - y) / (x + y)' - assert (x + (x - y) / (x + y) + n).tostring( - language=language) == '123 + x + (x - y) / (x + y)' - - assert as_ternary(x, y, z).tostring(language=language) == '(x ? y : z)' - assert as_eq(x, y).tostring(language=language) == 'x == y' - assert as_ne(x, y).tostring(language=language) == 'x != y' - assert as_lt(x, y).tostring(language=language) == 'x < y' - assert as_le(x, y).tostring(language=language) == 'x <= y' - assert as_gt(x, y).tostring(language=language) == 'x > y' - assert as_ge(x, y).tostring(language=language) == 'x >= y' + assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x" + assert (Expr(Op.FACTORS, { + x + y: 2 + }).tostring(language=language) == "(x + y) * (x + y)") + assert Expr(Op.FACTORS, { + x: 12 + }).tostring(language=language) == "pow(x, 12)" + + assert as_apply(ArithOp.DIV, x, + y).tostring(language=language) == "x / y" + assert (as_apply(ArithOp.DIV, x, + x + y).tostring(language=language) == "x / (x + y)") + assert (as_apply(ArithOp.DIV, x - y, x + + y).tostring(language=language) == "(x - y) / (x + y)") + assert (x + (x - y) / (x + y) + + n).tostring(language=language) == "123 + x + (x - y) / (x + y)" + + assert as_ternary(x, y, z).tostring(language=language) == "(x ? y : z)" + assert as_eq(x, y).tostring(language=language) == "x == y" + assert as_ne(x, y).tostring(language=language) == "x != y" + assert as_lt(x, y).tostring(language=language) == "x < y" + assert as_le(x, y).tostring(language=language) == "x <= y" + assert as_gt(x, y).tostring(language=language) == "x > y" + assert as_ge(x, y).tostring(language=language) == "x >= y" def test_operations(self): - x = as_symbol('x') - y = as_symbol('y') - z = as_symbol('z') + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") assert x + x == Expr(Op.TERMS, {x: 2}) assert x - x == Expr(Op.INTEGER, (0, 4)) @@ -205,28 +227,35 @@ class TestSymbolic(util.F2PyTest): assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3}) assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2}) - assert x ** 2 == Expr(Op.FACTORS, {x: 2}) - assert (x + y) ** 2 == Expr(Op.TERMS, - {Expr(Op.FACTORS, {x: 2}): 1, - Expr(Op.FACTORS, {y: 2}): 1, - Expr(Op.FACTORS, {x: 1, y: 1}): 2}) - assert (x + y) * x == x ** 2 + x * y - assert (x + y) ** 2 == x ** 2 + 2 * x * y + y ** 2 - assert (x + y) ** 2 + (x - y) ** 2 == 2 * x ** 2 + 2 * y ** 2 + assert x**2 == Expr(Op.FACTORS, {x: 2}) + assert (x + y)**2 == Expr( + Op.TERMS, + { + Expr(Op.FACTORS, {x: 2}): 1, + Expr(Op.FACTORS, {y: 2}): 1, + Expr(Op.FACTORS, { + x: 1, + y: 1 + }): 2, + }, + ) + assert (x + y) * x == x**2 + x * y + assert (x + y)**2 == x**2 + 2 * x * y + y**2 + assert (x + y)**2 + (x - y)**2 == 2 * x**2 + 2 * y**2 assert (x + y) * z == x * z + y * z assert z * (x + y) == x * z + y * z assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2)) assert (2 * x / 2) == x - assert (3 * x / 2) == as_apply(ArithOp.DIV, 3*x, as_number(2)) + assert (3 * x / 2) == as_apply(ArithOp.DIV, 3 * x, as_number(2)) assert (4 * x / 2) == 2 * x - assert (5 * x / 2) == as_apply(ArithOp.DIV, 5*x, as_number(2)) + assert (5 * x / 2) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) assert (6 * x / 2) == 3 * x - assert ((3*5) * x / 6) == as_apply(ArithOp.DIV, 5*x, as_number(2)) - assert (30*x**2*y**4 / (24*x**3*y**3)) == as_apply(ArithOp.DIV, - 5*y, 4*x) - assert ((15 * x / 6) / 5) == as_apply( - ArithOp.DIV, x, as_number(2)), ((15 * x / 6) / 5) + assert ((3 * 5) * x / 6) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) + assert (30 * x**2 * y**4 / (24 * x**3 * y**3)) == as_apply( + ArithOp.DIV, 5 * y, 4 * x) + assert ((15 * x / 6) / 5) == as_apply(ArithOp.DIV, x, + as_number(2)), (15 * x / 6) / 5 assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5)) assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5}) @@ -238,127 +267,128 @@ class TestSymbolic(util.F2PyTest): assert s // x == Expr(Op.CONCAT, (s, x)) assert x // s == Expr(Op.CONCAT, (x, s)) - c = as_complex(1., 2.) - assert -c == as_complex(-1., -2.) - assert c + c == as_expr((1+2j)*2) - assert c * c == as_expr((1+2j)**2) + c = as_complex(1.0, 2.0) + assert -c == as_complex(-1.0, -2.0) + assert c + c == as_expr((1 + 2j) * 2) + assert c * c == as_expr((1 + 2j)**2) def test_substitute(self): - x = as_symbol('x') - y = as_symbol('y') - z = as_symbol('z') + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") a = as_array((x, y)) assert x.substitute({x: y}) == y assert (x + y).substitute({x: z}) == y + z assert (x * y).substitute({x: z}) == y * z - assert (x ** 4).substitute({x: z}) == z ** 4 + assert (x**4).substitute({x: z}) == z**4 assert (x / y).substitute({x: z}) == z / y assert x.substitute({x: y + z}) == y + z assert a.substitute({x: y + z}) == as_array((y + z, y)) - assert as_ternary(x, y, z).substitute( - {x: y + z}) == as_ternary(y + z, y, z) - assert as_eq(x, y).substitute( - {x: y + z}) == as_eq(y + z, y) + assert as_ternary(x, y, + z).substitute({x: y + z}) == as_ternary(y + z, y, z) + assert as_eq(x, y).substitute({x: y + z}) == as_eq(y + z, y) def test_fromstring(self): - x = as_symbol('x') - y = as_symbol('y') - z = as_symbol('z') - f = as_symbol('f') + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + f = as_symbol("f") s = as_string('"ABC"') t = as_string('"123"') a = as_array((x, y)) - assert fromstring('x') == x - assert fromstring('+ x') == x - assert fromstring('- x') == -x - assert fromstring('x + y') == x + y - assert fromstring('x + 1') == x + 1 - assert fromstring('x * y') == x * y - assert fromstring('x * 2') == x * 2 - assert fromstring('x / y') == x / y - assert fromstring('x ** 2', - language=Language.Python) == x ** 2 - assert fromstring('x ** 2 ** 3', - language=Language.Python) == x ** 2 ** 3 - assert fromstring('(x + y) * z') == (x + y) * z - - assert fromstring('f(x)') == f(x) - assert fromstring('f(x,y)') == f(x, y) - assert fromstring('f[x]') == f[x] - assert fromstring('f[x][y]') == f[x][y] + assert fromstring("x") == x + assert fromstring("+ x") == x + assert fromstring("- x") == -x + assert fromstring("x + y") == x + y + assert fromstring("x + 1") == x + 1 + assert fromstring("x * y") == x * y + assert fromstring("x * 2") == x * 2 + assert fromstring("x / y") == x / y + assert fromstring("x ** 2", language=Language.Python) == x**2 + assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3 + assert fromstring("(x + y) * z") == (x + y) * z + + assert fromstring("f(x)") == f(x) + assert fromstring("f(x,y)") == f(x, y) + assert fromstring("f[x]") == f[x] + assert fromstring("f[x][y]") == f[x][y] assert fromstring('"ABC"') == s - assert normalize(fromstring('"ABC" // "123" ', - language=Language.Fortran)) == s // t + assert (normalize( + fromstring('"ABC" // "123" ', + language=Language.Fortran)) == s // t) assert fromstring('f("ABC")') == f(s) - assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', 'MYSTRKIND') - - assert fromstring('(/x, y/)') == a, fromstring('(/x, y/)') - assert fromstring('f((/x, y/))') == f(a) - assert fromstring('(/(x+y)*z/)') == as_array(((x+y)*z,)) - - assert fromstring('123') == as_number(123) - assert fromstring('123_2') == as_number(123, 2) - assert fromstring('123_myintkind') == as_number(123, 'myintkind') - - assert fromstring('123.0') == as_number(123.0, 4) - assert fromstring('123.0_4') == as_number(123.0, 4) - assert fromstring('123.0_8') == as_number(123.0, 8) - assert fromstring('123.0e0') == as_number(123.0, 4) - assert fromstring('123.0d0') == as_number(123.0, 8) - assert fromstring('123d0') == as_number(123.0, 8) - assert fromstring('123e-0') == as_number(123.0, 4) - assert fromstring('123d+0') == as_number(123.0, 8) - assert fromstring('123.0_myrealkind') == as_number(123.0, 'myrealkind') - assert fromstring('3E4') == as_number(30000.0, 4) - - assert fromstring('(1, 2)') == as_complex(1, 2) - assert fromstring('(1e2, PI)') == as_complex( - as_number(100.0), as_symbol('PI')) - - assert fromstring('[1, 2]') == as_array((as_number(1), as_number(2))) - - assert fromstring('POINT(x, y=1)') == as_apply( - as_symbol('POINT'), x, y=as_number(1)) - assert (fromstring('PERSON(name="John", age=50, shape=(/34, 23/))') - == as_apply(as_symbol('PERSON'), - name=as_string('"John"'), - age=as_number(50), - shape=as_array((as_number(34), as_number(23))))) - - assert fromstring('x?y:z') == as_ternary(x, y, z) - - assert fromstring('*x') == as_deref(x) - assert fromstring('**x') == as_deref(as_deref(x)) - assert fromstring('&x') == as_ref(x) - assert fromstring('(*x) * (*y)') == as_deref(x) * as_deref(y) - assert fromstring('(*x) * *y') == as_deref(x) * as_deref(y) - assert fromstring('*x * *y') == as_deref(x) * as_deref(y) - assert fromstring('*x**y') == as_deref(x) * as_deref(y) - - assert fromstring('x == y') == as_eq(x, y) - assert fromstring('x != y') == as_ne(x, y) - assert fromstring('x < y') == as_lt(x, y) - assert fromstring('x > y') == as_gt(x, y) - assert fromstring('x <= y') == as_le(x, y) - assert fromstring('x >= y') == as_ge(x, y) - - assert fromstring('x .eq. y', language=Language.Fortran) == as_eq(x, y) - assert fromstring('x .ne. y', language=Language.Fortran) == as_ne(x, y) - assert fromstring('x .lt. y', language=Language.Fortran) == as_lt(x, y) - assert fromstring('x .gt. y', language=Language.Fortran) == as_gt(x, y) - assert fromstring('x .le. y', language=Language.Fortran) == as_le(x, y) - assert fromstring('x .ge. y', language=Language.Fortran) == as_ge(x, y) + assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND") + + assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)") + assert fromstring("f((/x, y/))") == f(a) + assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, )) + + assert fromstring("123") == as_number(123) + assert fromstring("123_2") == as_number(123, 2) + assert fromstring("123_myintkind") == as_number(123, "myintkind") + + assert fromstring("123.0") == as_number(123.0, 4) + assert fromstring("123.0_4") == as_number(123.0, 4) + assert fromstring("123.0_8") == as_number(123.0, 8) + assert fromstring("123.0e0") == as_number(123.0, 4) + assert fromstring("123.0d0") == as_number(123.0, 8) + assert fromstring("123d0") == as_number(123.0, 8) + assert fromstring("123e-0") == as_number(123.0, 4) + assert fromstring("123d+0") == as_number(123.0, 8) + assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind") + assert fromstring("3E4") == as_number(30000.0, 4) + + assert fromstring("(1, 2)") == as_complex(1, 2) + assert fromstring("(1e2, PI)") == as_complex(as_number(100.0), + as_symbol("PI")) + + assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2))) + + assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"), + x, + y=as_number(1)) + assert fromstring( + 'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply( + as_symbol("PERSON"), + name=as_string('"John"'), + age=as_number(50), + shape=as_array((as_number(34), as_number(23))), + ) + + assert fromstring("x?y:z") == as_ternary(x, y, z) + + assert fromstring("*x") == as_deref(x) + assert fromstring("**x") == as_deref(as_deref(x)) + assert fromstring("&x") == as_ref(x) + assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y) + assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y) + assert fromstring("*x * *y") == as_deref(x) * as_deref(y) + assert fromstring("*x**y") == as_deref(x) * as_deref(y) + + assert fromstring("x == y") == as_eq(x, y) + assert fromstring("x != y") == as_ne(x, y) + assert fromstring("x < y") == as_lt(x, y) + assert fromstring("x > y") == as_gt(x, y) + assert fromstring("x <= y") == as_le(x, y) + assert fromstring("x >= y") == as_ge(x, y) + + assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y) + assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y) + assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y) + assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y) + assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y) + assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y) def test_traverse(self): - x = as_symbol('x') - y = as_symbol('y') - z = as_symbol('z') - f = as_symbol('f') + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + f = as_symbol("f") # Use traverse to substitute a symbol def replace_visit(s, r=z): @@ -373,8 +403,9 @@ class TestSymbolic(util.F2PyTest): assert (f[y]).traverse(replace_visit) == f[y] assert (f[z]).traverse(replace_visit) == f[z] assert (x + y + z).traverse(replace_visit) == (2 * z + y) - assert (x + f(y, x - z)).traverse( - replace_visit) == (z + f(y, as_number(0))) + assert (x + + f(y, x - z)).traverse(replace_visit) == (z + + f(y, as_number(0))) assert as_eq(x, y).traverse(replace_visit) == as_eq(z, y) # Use traverse to collect symbols, method 1 @@ -416,28 +447,28 @@ class TestSymbolic(util.F2PyTest): assert symbols == {x} def test_linear_solve(self): - x = as_symbol('x') - y = as_symbol('y') - z = as_symbol('z') + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") assert x.linear_solve(x) == (as_number(1), as_number(0)) - assert (x+1).linear_solve(x) == (as_number(1), as_number(1)) - assert (2*x).linear_solve(x) == (as_number(2), as_number(0)) - assert (2*x+3).linear_solve(x) == (as_number(2), as_number(3)) + assert (x + 1).linear_solve(x) == (as_number(1), as_number(1)) + assert (2 * x).linear_solve(x) == (as_number(2), as_number(0)) + assert (2 * x + 3).linear_solve(x) == (as_number(2), as_number(3)) assert as_number(3).linear_solve(x) == (as_number(0), as_number(3)) assert y.linear_solve(x) == (as_number(0), y) - assert (y*z).linear_solve(x) == (as_number(0), y * z) + assert (y * z).linear_solve(x) == (as_number(0), y * z) - assert (x+y).linear_solve(x) == (as_number(1), y) - assert (z*x+y).linear_solve(x) == (z, y) - assert ((z+y)*x+y).linear_solve(x) == (z + y, y) - assert (z*y*x+y).linear_solve(x) == (z * y, y) + assert (x + y).linear_solve(x) == (as_number(1), y) + assert (z * x + y).linear_solve(x) == (z, y) + assert ((z + y) * x + y).linear_solve(x) == (z + y, y) + assert (z * y * x + y).linear_solve(x) == (z * y, y) - assert_raises(RuntimeError, lambda: (x*x).linear_solve(x)) + assert_raises(RuntimeError, lambda: (x * x).linear_solve(x)) def test_as_numer_denom(self): - x = as_symbol('x') - y = as_symbol('y') + x = as_symbol("x") + y = as_symbol("y") n = as_number(123) assert as_numer_denom(x) == (x, as_number(1)) @@ -446,11 +477,11 @@ class TestSymbolic(util.F2PyTest): assert as_numer_denom(x / y) == (x, y) assert as_numer_denom(x * y) == (x * y, as_number(1)) assert as_numer_denom(n + x / y) == (x + n * y, y) - assert as_numer_denom(n + x / (y - x / n)) == (y * n ** 2, y * n - x) + assert as_numer_denom(n + x / (y - x / n)) == (y * n**2, y * n - x) def test_polynomial_atoms(self): - x = as_symbol('x') - y = as_symbol('y') + x = as_symbol("x") + y = as_symbol("y") n = as_number(123) assert x.polynomial_atoms() == {x} @@ -459,4 +490,4 @@ class TestSymbolic(util.F2PyTest): assert (y(x)).polynomial_atoms() == {y(x)} assert (y(x) + x).polynomial_atoms() == {y(x), x} assert (y(x) * x[y]).polynomial_atoms() == {y(x), x[y]} - assert (y(x) ** x).polynomial_atoms() == {y(x)} + assert (y(x)**x).polynomial_atoms() == {y(x)} |