summaryrefslogtreecommitdiff
path: root/numpy/f2py/tests/test_symbolic.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/f2py/tests/test_symbolic.py')
-rw-r--r--numpy/f2py/tests/test_symbolic.py459
1 files changed, 245 insertions, 214 deletions
diff --git a/numpy/f2py/tests/test_symbolic.py b/numpy/f2py/tests/test_symbolic.py
index 52cabac53..4b8993886 100644
--- a/numpy/f2py/tests/test_symbolic.py
+++ b/numpy/f2py/tests/test_symbolic.py
@@ -1,35 +1,55 @@
from numpy.testing import assert_raises
from numpy.f2py.symbolic import (
- Expr, Op, ArithOp, Language,
- as_symbol, as_number, as_string, as_array, as_complex,
- as_terms, as_factors, eliminate_quotes, insert_quotes,
- fromstring, as_expr, as_apply,
- as_numer_denom, as_ternary, as_ref, as_deref,
- normalize, as_eq, as_ne, as_lt, as_gt, as_le, as_ge
- )
+ Expr,
+ Op,
+ ArithOp,
+ Language,
+ as_symbol,
+ as_number,
+ as_string,
+ as_array,
+ as_complex,
+ as_terms,
+ as_factors,
+ eliminate_quotes,
+ insert_quotes,
+ fromstring,
+ as_expr,
+ as_apply,
+ as_numer_denom,
+ as_ternary,
+ as_ref,
+ as_deref,
+ normalize,
+ as_eq,
+ as_ne,
+ as_lt,
+ as_gt,
+ as_le,
+ as_ge,
+)
from . import util
class TestSymbolic(util.F2PyTest):
-
def test_eliminate_quotes(self):
def worker(s):
r, d = eliminate_quotes(s)
s1 = insert_quotes(r, d)
assert s1 == s
- for kind in ['', 'mykind_']:
+ for kind in ["", "mykind_"]:
worker(kind + '"1234" // "ABCD"')
worker(kind + '"1234" // ' + kind + '"ABCD"')
- worker(kind + '"1234" // \'ABCD\'')
- worker(kind + '"1234" // ' + kind + '\'ABCD\'')
+ worker(kind + "\"1234\" // 'ABCD'")
+ worker(kind + '"1234" // ' + kind + "'ABCD'")
worker(kind + '"1\\"2\'AB\'34"')
- worker('a = ' + kind + "'1\\'2\"AB\"34'")
+ worker("a = " + kind + "'1\\'2\"AB\"34'")
def test_sanity(self):
- x = as_symbol('x')
- y = as_symbol('y')
- z = as_symbol('z')
+ x = as_symbol("x")
+ y = as_symbol("y")
+ z = as_symbol("z")
assert x.op == Op.SYMBOL
assert repr(x) == "Expr(Op.SYMBOL, 'x')"
@@ -70,7 +90,7 @@ class TestSymbolic(util.F2PyTest):
assert s != s2
a = as_array((n, m))
- b = as_array((n,))
+ b = as_array((n, ))
assert a.op == Op.ARRAY
assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4)),"
" Expr(Op.INTEGER, (456, 4))))")
@@ -108,88 +128,90 @@ class TestSymbolic(util.F2PyTest):
assert hash(e) is not None
def test_tostring_fortran(self):
- x = as_symbol('x')
- y = as_symbol('y')
- z = as_symbol('z')
+ x = as_symbol("x")
+ y = as_symbol("y")
+ z = as_symbol("z")
n = as_number(123)
m = as_number(456)
a = as_array((n, m))
c = as_complex(n, m)
- assert str(x) == 'x'
- assert str(n) == '123'
- assert str(a) == '[123, 456]'
- assert str(c) == '(123, 456)'
-
- assert str(Expr(Op.TERMS, {x: 1})) == 'x'
- assert str(Expr(Op.TERMS, {x: 2})) == '2 * x'
- assert str(Expr(Op.TERMS, {x: -1})) == '-x'
- assert str(Expr(Op.TERMS, {x: -2})) == '-2 * x'
- assert str(Expr(Op.TERMS, {x: 1, y: 1})) == 'x + y'
- assert str(Expr(Op.TERMS, {x: -1, y: -1})) == '-x - y'
- assert str(Expr(Op.TERMS, {x: 2, y: 3})) == '2 * x + 3 * y'
- assert str(Expr(Op.TERMS, {x: -2, y: 3})) == '-2 * x + 3 * y'
- assert str(Expr(Op.TERMS, {x: 2, y: -3})) == '2 * x - 3 * y'
-
- assert str(Expr(Op.FACTORS, {x: 1})) == 'x'
- assert str(Expr(Op.FACTORS, {x: 2})) == 'x ** 2'
- assert str(Expr(Op.FACTORS, {x: -1})) == 'x ** -1'
- assert str(Expr(Op.FACTORS, {x: -2})) == 'x ** -2'
- assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == 'x * y'
- assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == 'x ** 2 * y ** 3'
+ assert str(x) == "x"
+ assert str(n) == "123"
+ assert str(a) == "[123, 456]"
+ assert str(c) == "(123, 456)"
+
+ assert str(Expr(Op.TERMS, {x: 1})) == "x"
+ assert str(Expr(Op.TERMS, {x: 2})) == "2 * x"
+ assert str(Expr(Op.TERMS, {x: -1})) == "-x"
+ assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x"
+ assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y"
+ assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y"
+ assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y"
+ assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y"
+ assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y"
+
+ assert str(Expr(Op.FACTORS, {x: 1})) == "x"
+ assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2"
+ assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1"
+ assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2"
+ assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y"
+ assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3"
v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3})
- assert str(v) == 'x ** 2 * (x + y) ** 3', str(v)
+ assert str(v) == "x ** 2 * (x + y) ** 3", str(v)
v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3})
- assert str(v) == 'x ** 2 * (x * y) ** 3', str(v)
+ assert str(v) == "x ** 2 * (x * y) ** 3", str(v)
- assert str(Expr(Op.APPLY, ('f', (), {}))) == 'f()'
- assert str(Expr(Op.APPLY, ('f', (x,), {}))) == 'f(x)'
- assert str(Expr(Op.APPLY, ('f', (x, y), {}))) == 'f(x, y)'
- assert str(Expr(Op.INDEXING, ('f', x))) == 'f[x]'
+ assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()"
+ assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)"
+ assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)"
+ assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]"
- assert str(as_ternary(x, y, z)) == 'merge(y, z, x)'
- assert str(as_eq(x, y)) == 'x .eq. y'
- assert str(as_ne(x, y)) == 'x .ne. y'
- assert str(as_lt(x, y)) == 'x .lt. y'
- assert str(as_le(x, y)) == 'x .le. y'
- assert str(as_gt(x, y)) == 'x .gt. y'
- assert str(as_ge(x, y)) == 'x .ge. y'
+ assert str(as_ternary(x, y, z)) == "merge(y, z, x)"
+ assert str(as_eq(x, y)) == "x .eq. y"
+ assert str(as_ne(x, y)) == "x .ne. y"
+ assert str(as_lt(x, y)) == "x .lt. y"
+ assert str(as_le(x, y)) == "x .le. y"
+ assert str(as_gt(x, y)) == "x .gt. y"
+ assert str(as_ge(x, y)) == "x .ge. y"
def test_tostring_c(self):
language = Language.C
- x = as_symbol('x')
- y = as_symbol('y')
- z = as_symbol('z')
+ x = as_symbol("x")
+ y = as_symbol("y")
+ z = as_symbol("z")
n = as_number(123)
- assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == 'x * x'
- assert Expr(Op.FACTORS, {x + y: 2}).tostring(
- language=language) == '(x + y) * (x + y)'
- assert Expr(Op.FACTORS, {x: 12}).tostring(
- language=language) == 'pow(x, 12)'
-
- assert as_apply(ArithOp.DIV, x, y).tostring(
- language=language) == 'x / y'
- assert as_apply(ArithOp.DIV, x, x + y).tostring(
- language=language) == 'x / (x + y)'
- assert as_apply(ArithOp.DIV, x - y, x + y).tostring(
- language=language) == '(x - y) / (x + y)'
- assert (x + (x - y) / (x + y) + n).tostring(
- language=language) == '123 + x + (x - y) / (x + y)'
-
- assert as_ternary(x, y, z).tostring(language=language) == '(x ? y : z)'
- assert as_eq(x, y).tostring(language=language) == 'x == y'
- assert as_ne(x, y).tostring(language=language) == 'x != y'
- assert as_lt(x, y).tostring(language=language) == 'x < y'
- assert as_le(x, y).tostring(language=language) == 'x <= y'
- assert as_gt(x, y).tostring(language=language) == 'x > y'
- assert as_ge(x, y).tostring(language=language) == 'x >= y'
+ assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x"
+ assert (Expr(Op.FACTORS, {
+ x + y: 2
+ }).tostring(language=language) == "(x + y) * (x + y)")
+ assert Expr(Op.FACTORS, {
+ x: 12
+ }).tostring(language=language) == "pow(x, 12)"
+
+ assert as_apply(ArithOp.DIV, x,
+ y).tostring(language=language) == "x / y"
+ assert (as_apply(ArithOp.DIV, x,
+ x + y).tostring(language=language) == "x / (x + y)")
+ assert (as_apply(ArithOp.DIV, x - y, x +
+ y).tostring(language=language) == "(x - y) / (x + y)")
+ assert (x + (x - y) / (x + y) +
+ n).tostring(language=language) == "123 + x + (x - y) / (x + y)"
+
+ assert as_ternary(x, y, z).tostring(language=language) == "(x ? y : z)"
+ assert as_eq(x, y).tostring(language=language) == "x == y"
+ assert as_ne(x, y).tostring(language=language) == "x != y"
+ assert as_lt(x, y).tostring(language=language) == "x < y"
+ assert as_le(x, y).tostring(language=language) == "x <= y"
+ assert as_gt(x, y).tostring(language=language) == "x > y"
+ assert as_ge(x, y).tostring(language=language) == "x >= y"
def test_operations(self):
- x = as_symbol('x')
- y = as_symbol('y')
- z = as_symbol('z')
+ x = as_symbol("x")
+ y = as_symbol("y")
+ z = as_symbol("z")
assert x + x == Expr(Op.TERMS, {x: 2})
assert x - x == Expr(Op.INTEGER, (0, 4))
@@ -205,28 +227,35 @@ class TestSymbolic(util.F2PyTest):
assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3})
assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2})
- assert x ** 2 == Expr(Op.FACTORS, {x: 2})
- assert (x + y) ** 2 == Expr(Op.TERMS,
- {Expr(Op.FACTORS, {x: 2}): 1,
- Expr(Op.FACTORS, {y: 2}): 1,
- Expr(Op.FACTORS, {x: 1, y: 1}): 2})
- assert (x + y) * x == x ** 2 + x * y
- assert (x + y) ** 2 == x ** 2 + 2 * x * y + y ** 2
- assert (x + y) ** 2 + (x - y) ** 2 == 2 * x ** 2 + 2 * y ** 2
+ assert x**2 == Expr(Op.FACTORS, {x: 2})
+ assert (x + y)**2 == Expr(
+ Op.TERMS,
+ {
+ Expr(Op.FACTORS, {x: 2}): 1,
+ Expr(Op.FACTORS, {y: 2}): 1,
+ Expr(Op.FACTORS, {
+ x: 1,
+ y: 1
+ }): 2,
+ },
+ )
+ assert (x + y) * x == x**2 + x * y
+ assert (x + y)**2 == x**2 + 2 * x * y + y**2
+ assert (x + y)**2 + (x - y)**2 == 2 * x**2 + 2 * y**2
assert (x + y) * z == x * z + y * z
assert z * (x + y) == x * z + y * z
assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2))
assert (2 * x / 2) == x
- assert (3 * x / 2) == as_apply(ArithOp.DIV, 3*x, as_number(2))
+ assert (3 * x / 2) == as_apply(ArithOp.DIV, 3 * x, as_number(2))
assert (4 * x / 2) == 2 * x
- assert (5 * x / 2) == as_apply(ArithOp.DIV, 5*x, as_number(2))
+ assert (5 * x / 2) == as_apply(ArithOp.DIV, 5 * x, as_number(2))
assert (6 * x / 2) == 3 * x
- assert ((3*5) * x / 6) == as_apply(ArithOp.DIV, 5*x, as_number(2))
- assert (30*x**2*y**4 / (24*x**3*y**3)) == as_apply(ArithOp.DIV,
- 5*y, 4*x)
- assert ((15 * x / 6) / 5) == as_apply(
- ArithOp.DIV, x, as_number(2)), ((15 * x / 6) / 5)
+ assert ((3 * 5) * x / 6) == as_apply(ArithOp.DIV, 5 * x, as_number(2))
+ assert (30 * x**2 * y**4 / (24 * x**3 * y**3)) == as_apply(
+ ArithOp.DIV, 5 * y, 4 * x)
+ assert ((15 * x / 6) / 5) == as_apply(ArithOp.DIV, x,
+ as_number(2)), (15 * x / 6) / 5
assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5))
assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5})
@@ -238,127 +267,128 @@ class TestSymbolic(util.F2PyTest):
assert s // x == Expr(Op.CONCAT, (s, x))
assert x // s == Expr(Op.CONCAT, (x, s))
- c = as_complex(1., 2.)
- assert -c == as_complex(-1., -2.)
- assert c + c == as_expr((1+2j)*2)
- assert c * c == as_expr((1+2j)**2)
+ c = as_complex(1.0, 2.0)
+ assert -c == as_complex(-1.0, -2.0)
+ assert c + c == as_expr((1 + 2j) * 2)
+ assert c * c == as_expr((1 + 2j)**2)
def test_substitute(self):
- x = as_symbol('x')
- y = as_symbol('y')
- z = as_symbol('z')
+ x = as_symbol("x")
+ y = as_symbol("y")
+ z = as_symbol("z")
a = as_array((x, y))
assert x.substitute({x: y}) == y
assert (x + y).substitute({x: z}) == y + z
assert (x * y).substitute({x: z}) == y * z
- assert (x ** 4).substitute({x: z}) == z ** 4
+ assert (x**4).substitute({x: z}) == z**4
assert (x / y).substitute({x: z}) == z / y
assert x.substitute({x: y + z}) == y + z
assert a.substitute({x: y + z}) == as_array((y + z, y))
- assert as_ternary(x, y, z).substitute(
- {x: y + z}) == as_ternary(y + z, y, z)
- assert as_eq(x, y).substitute(
- {x: y + z}) == as_eq(y + z, y)
+ assert as_ternary(x, y,
+ z).substitute({x: y + z}) == as_ternary(y + z, y, z)
+ assert as_eq(x, y).substitute({x: y + z}) == as_eq(y + z, y)
def test_fromstring(self):
- x = as_symbol('x')
- y = as_symbol('y')
- z = as_symbol('z')
- f = as_symbol('f')
+ x = as_symbol("x")
+ y = as_symbol("y")
+ z = as_symbol("z")
+ f = as_symbol("f")
s = as_string('"ABC"')
t = as_string('"123"')
a = as_array((x, y))
- assert fromstring('x') == x
- assert fromstring('+ x') == x
- assert fromstring('- x') == -x
- assert fromstring('x + y') == x + y
- assert fromstring('x + 1') == x + 1
- assert fromstring('x * y') == x * y
- assert fromstring('x * 2') == x * 2
- assert fromstring('x / y') == x / y
- assert fromstring('x ** 2',
- language=Language.Python) == x ** 2
- assert fromstring('x ** 2 ** 3',
- language=Language.Python) == x ** 2 ** 3
- assert fromstring('(x + y) * z') == (x + y) * z
-
- assert fromstring('f(x)') == f(x)
- assert fromstring('f(x,y)') == f(x, y)
- assert fromstring('f[x]') == f[x]
- assert fromstring('f[x][y]') == f[x][y]
+ assert fromstring("x") == x
+ assert fromstring("+ x") == x
+ assert fromstring("- x") == -x
+ assert fromstring("x + y") == x + y
+ assert fromstring("x + 1") == x + 1
+ assert fromstring("x * y") == x * y
+ assert fromstring("x * 2") == x * 2
+ assert fromstring("x / y") == x / y
+ assert fromstring("x ** 2", language=Language.Python) == x**2
+ assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3
+ assert fromstring("(x + y) * z") == (x + y) * z
+
+ assert fromstring("f(x)") == f(x)
+ assert fromstring("f(x,y)") == f(x, y)
+ assert fromstring("f[x]") == f[x]
+ assert fromstring("f[x][y]") == f[x][y]
assert fromstring('"ABC"') == s
- assert normalize(fromstring('"ABC" // "123" ',
- language=Language.Fortran)) == s // t
+ assert (normalize(
+ fromstring('"ABC" // "123" ',
+ language=Language.Fortran)) == s // t)
assert fromstring('f("ABC")') == f(s)
- assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', 'MYSTRKIND')
-
- assert fromstring('(/x, y/)') == a, fromstring('(/x, y/)')
- assert fromstring('f((/x, y/))') == f(a)
- assert fromstring('(/(x+y)*z/)') == as_array(((x+y)*z,))
-
- assert fromstring('123') == as_number(123)
- assert fromstring('123_2') == as_number(123, 2)
- assert fromstring('123_myintkind') == as_number(123, 'myintkind')
-
- assert fromstring('123.0') == as_number(123.0, 4)
- assert fromstring('123.0_4') == as_number(123.0, 4)
- assert fromstring('123.0_8') == as_number(123.0, 8)
- assert fromstring('123.0e0') == as_number(123.0, 4)
- assert fromstring('123.0d0') == as_number(123.0, 8)
- assert fromstring('123d0') == as_number(123.0, 8)
- assert fromstring('123e-0') == as_number(123.0, 4)
- assert fromstring('123d+0') == as_number(123.0, 8)
- assert fromstring('123.0_myrealkind') == as_number(123.0, 'myrealkind')
- assert fromstring('3E4') == as_number(30000.0, 4)
-
- assert fromstring('(1, 2)') == as_complex(1, 2)
- assert fromstring('(1e2, PI)') == as_complex(
- as_number(100.0), as_symbol('PI'))
-
- assert fromstring('[1, 2]') == as_array((as_number(1), as_number(2)))
-
- assert fromstring('POINT(x, y=1)') == as_apply(
- as_symbol('POINT'), x, y=as_number(1))
- assert (fromstring('PERSON(name="John", age=50, shape=(/34, 23/))')
- == as_apply(as_symbol('PERSON'),
- name=as_string('"John"'),
- age=as_number(50),
- shape=as_array((as_number(34), as_number(23)))))
-
- assert fromstring('x?y:z') == as_ternary(x, y, z)
-
- assert fromstring('*x') == as_deref(x)
- assert fromstring('**x') == as_deref(as_deref(x))
- assert fromstring('&x') == as_ref(x)
- assert fromstring('(*x) * (*y)') == as_deref(x) * as_deref(y)
- assert fromstring('(*x) * *y') == as_deref(x) * as_deref(y)
- assert fromstring('*x * *y') == as_deref(x) * as_deref(y)
- assert fromstring('*x**y') == as_deref(x) * as_deref(y)
-
- assert fromstring('x == y') == as_eq(x, y)
- assert fromstring('x != y') == as_ne(x, y)
- assert fromstring('x < y') == as_lt(x, y)
- assert fromstring('x > y') == as_gt(x, y)
- assert fromstring('x <= y') == as_le(x, y)
- assert fromstring('x >= y') == as_ge(x, y)
-
- assert fromstring('x .eq. y', language=Language.Fortran) == as_eq(x, y)
- assert fromstring('x .ne. y', language=Language.Fortran) == as_ne(x, y)
- assert fromstring('x .lt. y', language=Language.Fortran) == as_lt(x, y)
- assert fromstring('x .gt. y', language=Language.Fortran) == as_gt(x, y)
- assert fromstring('x .le. y', language=Language.Fortran) == as_le(x, y)
- assert fromstring('x .ge. y', language=Language.Fortran) == as_ge(x, y)
+ assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND")
+
+ assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)")
+ assert fromstring("f((/x, y/))") == f(a)
+ assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, ))
+
+ assert fromstring("123") == as_number(123)
+ assert fromstring("123_2") == as_number(123, 2)
+ assert fromstring("123_myintkind") == as_number(123, "myintkind")
+
+ assert fromstring("123.0") == as_number(123.0, 4)
+ assert fromstring("123.0_4") == as_number(123.0, 4)
+ assert fromstring("123.0_8") == as_number(123.0, 8)
+ assert fromstring("123.0e0") == as_number(123.0, 4)
+ assert fromstring("123.0d0") == as_number(123.0, 8)
+ assert fromstring("123d0") == as_number(123.0, 8)
+ assert fromstring("123e-0") == as_number(123.0, 4)
+ assert fromstring("123d+0") == as_number(123.0, 8)
+ assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind")
+ assert fromstring("3E4") == as_number(30000.0, 4)
+
+ assert fromstring("(1, 2)") == as_complex(1, 2)
+ assert fromstring("(1e2, PI)") == as_complex(as_number(100.0),
+ as_symbol("PI"))
+
+ assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2)))
+
+ assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"),
+ x,
+ y=as_number(1))
+ assert fromstring(
+ 'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply(
+ as_symbol("PERSON"),
+ name=as_string('"John"'),
+ age=as_number(50),
+ shape=as_array((as_number(34), as_number(23))),
+ )
+
+ assert fromstring("x?y:z") == as_ternary(x, y, z)
+
+ assert fromstring("*x") == as_deref(x)
+ assert fromstring("**x") == as_deref(as_deref(x))
+ assert fromstring("&x") == as_ref(x)
+ assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y)
+ assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y)
+ assert fromstring("*x * *y") == as_deref(x) * as_deref(y)
+ assert fromstring("*x**y") == as_deref(x) * as_deref(y)
+
+ assert fromstring("x == y") == as_eq(x, y)
+ assert fromstring("x != y") == as_ne(x, y)
+ assert fromstring("x < y") == as_lt(x, y)
+ assert fromstring("x > y") == as_gt(x, y)
+ assert fromstring("x <= y") == as_le(x, y)
+ assert fromstring("x >= y") == as_ge(x, y)
+
+ assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y)
+ assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y)
+ assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y)
+ assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y)
+ assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y)
+ assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y)
def test_traverse(self):
- x = as_symbol('x')
- y = as_symbol('y')
- z = as_symbol('z')
- f = as_symbol('f')
+ x = as_symbol("x")
+ y = as_symbol("y")
+ z = as_symbol("z")
+ f = as_symbol("f")
# Use traverse to substitute a symbol
def replace_visit(s, r=z):
@@ -373,8 +403,9 @@ class TestSymbolic(util.F2PyTest):
assert (f[y]).traverse(replace_visit) == f[y]
assert (f[z]).traverse(replace_visit) == f[z]
assert (x + y + z).traverse(replace_visit) == (2 * z + y)
- assert (x + f(y, x - z)).traverse(
- replace_visit) == (z + f(y, as_number(0)))
+ assert (x +
+ f(y, x - z)).traverse(replace_visit) == (z +
+ f(y, as_number(0)))
assert as_eq(x, y).traverse(replace_visit) == as_eq(z, y)
# Use traverse to collect symbols, method 1
@@ -416,28 +447,28 @@ class TestSymbolic(util.F2PyTest):
assert symbols == {x}
def test_linear_solve(self):
- x = as_symbol('x')
- y = as_symbol('y')
- z = as_symbol('z')
+ x = as_symbol("x")
+ y = as_symbol("y")
+ z = as_symbol("z")
assert x.linear_solve(x) == (as_number(1), as_number(0))
- assert (x+1).linear_solve(x) == (as_number(1), as_number(1))
- assert (2*x).linear_solve(x) == (as_number(2), as_number(0))
- assert (2*x+3).linear_solve(x) == (as_number(2), as_number(3))
+ assert (x + 1).linear_solve(x) == (as_number(1), as_number(1))
+ assert (2 * x).linear_solve(x) == (as_number(2), as_number(0))
+ assert (2 * x + 3).linear_solve(x) == (as_number(2), as_number(3))
assert as_number(3).linear_solve(x) == (as_number(0), as_number(3))
assert y.linear_solve(x) == (as_number(0), y)
- assert (y*z).linear_solve(x) == (as_number(0), y * z)
+ assert (y * z).linear_solve(x) == (as_number(0), y * z)
- assert (x+y).linear_solve(x) == (as_number(1), y)
- assert (z*x+y).linear_solve(x) == (z, y)
- assert ((z+y)*x+y).linear_solve(x) == (z + y, y)
- assert (z*y*x+y).linear_solve(x) == (z * y, y)
+ assert (x + y).linear_solve(x) == (as_number(1), y)
+ assert (z * x + y).linear_solve(x) == (z, y)
+ assert ((z + y) * x + y).linear_solve(x) == (z + y, y)
+ assert (z * y * x + y).linear_solve(x) == (z * y, y)
- assert_raises(RuntimeError, lambda: (x*x).linear_solve(x))
+ assert_raises(RuntimeError, lambda: (x * x).linear_solve(x))
def test_as_numer_denom(self):
- x = as_symbol('x')
- y = as_symbol('y')
+ x = as_symbol("x")
+ y = as_symbol("y")
n = as_number(123)
assert as_numer_denom(x) == (x, as_number(1))
@@ -446,11 +477,11 @@ class TestSymbolic(util.F2PyTest):
assert as_numer_denom(x / y) == (x, y)
assert as_numer_denom(x * y) == (x * y, as_number(1))
assert as_numer_denom(n + x / y) == (x + n * y, y)
- assert as_numer_denom(n + x / (y - x / n)) == (y * n ** 2, y * n - x)
+ assert as_numer_denom(n + x / (y - x / n)) == (y * n**2, y * n - x)
def test_polynomial_atoms(self):
- x = as_symbol('x')
- y = as_symbol('y')
+ x = as_symbol("x")
+ y = as_symbol("y")
n = as_number(123)
assert x.polynomial_atoms() == {x}
@@ -459,4 +490,4 @@ class TestSymbolic(util.F2PyTest):
assert (y(x)).polynomial_atoms() == {y(x)}
assert (y(x) + x).polynomial_atoms() == {y(x), x}
assert (y(x) * x[y]).polynomial_atoms() == {y(x), x[y]}
- assert (y(x) ** x).polynomial_atoms() == {y(x)}
+ assert (y(x)**x).polynomial_atoms() == {y(x)}